Experimental Study on Performance of Repaired and Strengthened Unreinforced Masonry Walls Using Polypropylene Bands

Shahrad Ebrahimzadeh a and Kourosh Nasrollahzadeh a

a: Department of Civil Engineering, K. N. Toosi University of Technology, P. O. Box 15875-4416, Tehran, Iran, Tel.: +98 2188779473; Fax: +98 2188779476

Abstract

This paper is aimed at proposing a strengthening method for improving the seismic performance of unreinforced masonry (URM) brick walls. What is noteworthy regarding the proposed technique is the low price and easy application of polypropylene (PP) bands, which are widely used in the packaging industry. Three half-scale specimens were tested under cyclic lateral loading simultaneously with imposing a constant vertical load. First, the URM wall was tested up to a certain drift in which a reduction in lateral capacity was recorded. According to the crack pattern observed on the wall surface, a repair strategy was taken to upgrade the damaged wall in the shortest possible time and with the minimum manpower. In doing so, the horizontal PP bands were employed to wrap the wall. The repair technique has stopped the spread of the cracks and prevented the reduction in lateral capacity. Besides, the third specimen, which is identical to the URM wall but it is strengthened by PP bands, was tested and developed a superior performance in terms of changing the failure mode and also increasing the maximum strength, the strength at maximum displacement and maximum displacement by 88%, 38% and 185%, respectively, compared to URM wall.

Keywords: Unreinforced masonry wall; Damaged URM Wall; Repair and strengthening; Experimental study; Quasi-static lateral loading; Polypropylene (PP) band; Strengthening materials

1. Introduction

The traditional methods adopted to reinforce masonry specimens by researchers to increase the bearing capacity and improve the performance of the structure include coating the walls with a layer of mortar [1] or the simultaneous use of cement mortar with metal mesh or steel mesh [2]. Specifically, in this method, all surfaces of the tested specimens are reinforced with a layer of steel mesh and cement-sand mortar with a thickness of 30 to 100 mm. [3] One of the most popular polymer fibers used to increase the strength and ductility of masonry specimens of the studies is called Fiber Reinforced Polymers or FRP. [4] Regarding retrofitting methods that use polymer fibers and cement-sand mortar simultaneously, several techniques such as Textile Reinforced Concrete TRC [5], Fabric Reinforced Cementitious Matrix FRCM [6,7], and Engineered Cementitious Composite ECC [8,9], can be mentioned. Using unreinforced cement mortar, the traditional retrofitting methods improve the tensile strain capacity of the tested specimens by less than 0.015% and increase the bearing capacity of the specimens by a maximum of 3.5 MPa. The primary advantage of using polymer fibers is the ease of execution, no increase in the weight of the structure [10], and improving the energy dissipation of masonry walls [11]. Despite the mentioned advantages, the use of FRP for strengthening and retrofit has drawbacks such as inability to use on wet surfaces, reduced performance at high temperatures and in alkaline environments (which are an integral part of masonry structures), inevitable potential hazards for workers, and the incompatibility of resin with the masonry materials. However, by using FRCM, TRM, and FRM methods, the mentioned shortcomings have been eliminated. Hence, benefits such as reversibility (separation without damage to the structural layers) and no conflict with the architecture of the structure (due to the low thickness of the coat on the wall) are brought to the retrofitting system and the seismic performance improvement of the structure. [12] Polypropylene bands are another example of polymer fibers used to reinforce masonry walls. The advantage of using these bands over other retrofitting techniques is the easy access and low price of these fibers. Cost-effectiveness of the retrofitting materials such as Polypropylene (PP) mesh and metal mesh on the one hand, and the significant impact on increasing shear strength, improving ductility, and the energy dissipation capacity of various types of masonry structures, on the other hand, have led to widespread use of this materials by

* Corresponding author.
E-mail address: nasrollahzadeh@kntu.ac.ir (Kourosh Nasrollahzadeh)
researchers such as Nayak et al. [13], and Heydariha et al. [14]. Both reinforcement methods are effective in preventing a sudden collapse of the masonry wall resulted from poor ductility and brittle behavior of the materials. Banerjee et al. [15] tested 32 full and half-scale specimens under diagonal compression loading to improve the strength of the walls reinforced with PP bands and metal mesh. The improved performance of PP band reinforced structures is a result of the fact that the PP band causes the integrity of the structure and contributes to the stress distribution. Meguro et al. [16] conducted shaking table tests of the 1:4 scale models as unreinforced masonry and PP mesh reinforced, and the results suggest the improved energy dissipation capacity and increased deformation capacity. Furthermore, Nissanka et al. [17], with the aim of comparing key parameters such as seismic performance, easy application, and cost-effectiveness compared the steel mesh and PP mesh materials retrofitting techniques. Macabuag et al. [18] investigated the effect of the directions of the PP bands on the grids used to improve the shear strength of the masonry walls. The results indicate that the vertical bands stretch when slipping occurs, hence they prevent slipping. The horizontal bands increase the friction of the bricks in each row placed on one another. The present research addresses the rapid retrofitting and repair method of the damaged masonry wall and retrofitting the unreinforced masonry wall with the least amount of PP and cement-sand mortar. The bands are used to repair the damaged specimen in order to prevent the decrease of bearing capacity and the spread of the crack pattern. Also, to strengthen the masonry wall, the combination of PP band and the least amount of cement-sand mortar increases the bearing capacity, causes lateral displacement, and changes the failure mode.

2. Experimental program

2.1. Characteristics of the materials

2.1.1. Mortar and masonry tests

The cement-sand mortar with a volume ratio of 1:6 (cement: sand) with a thickness of 12 mm was used evenly in all rows to construct the wall. According to [19], mortar composed of Portland cement and river bed sand in the proportion of 1:6 represents weak shear strength as it is considered as the lower bound of the shear strength of existing masonry buildings in Iran. It is noted that the mortar used herein is the combination of cement and sand, whereas other types of mortar (e.g., lime-based one) are also reported in the literature. In the present study, the workability of mortar as well as the common practice in Iranian masonry construction were the basis for choosing 1:3 for water/cement ratio. In order to determine the compressive strength of the mortar used in the construction of masonry walls, according to the standard [20], 12 cubic mortar prisms with approximate dimensions of 50 × 50 × 50 mm were made. After 28-day curing of mortar specimens using a wet jute canvas, by applying uniaxial stress to the specimens, parameters such as compressive strength of mortar were determined. Moreover, the shear strength of the mortar of the building materials in the in-situ shear test of the mortar according to the standard [21] and reference [22], was tested in the outer row of the wall. The test is done experimentally by moving a brick based on the adjacent bricks. To do the in-situ shear strength test, the brick wall and mortar around it were emptied from three different heights, and a sheet with the dimensions of the hydraulic jackshaft chamber was placed to apply uniform stress to the entire surface of the brick specimen in front of the hydraulic jack. According to equation 1, the effect of stress resulting from the in-situ gravity load of the test specimen should be subtracted from it. The equation presented to calculate the shear strength of the mortar is as follows.

\[
V_{te} = \frac{V_{test}}{A_b} - P_{D+L} \\
V_{ne} = \frac{0.75(0.75 \times V_{te} + \frac{P_D}{A_n})}{1.5}
\]

(Eq.1)

(Eq.2)

In the equations 1 and 2, \(V_{test}\) is the force obtained from the in-situ shear test, \(V_{te}\) is the average shear stress, \(A_b\) is the surface of the upper and lower horizontal mortar, \(A_n\) is the net area of mortar, \(P_D\) is the vertical dead load up to the mortar level of the location of the sample and \(V_{ne}\) is the shear stress measured by the in-situ test. It should be noted that the mortar shear strength value obtained from the in-situ shear test was calculated in the range between 0.11 to 0.2 MPa, which, assuming the same thickness of the horizontal mortar, the average
strength of 0.15 MPa was calculated. The value obtained from the uniaxial pressure test on the fabricated specimens, which was inhibited in the test set-up using a multilayer sheet on both sides, was equal to the mean of 0.09 MPa. Table 1 indicates the specifications of the cement-sand mortar.

2.1.2. Clay brick

The brick used to make the specimens (solid clay brick) is proportional to a half-scale masonry wall of dimensions of 96 × 50 × 36 mm (length × width × height) and a specific mass of 1943 kg/m³. All tests were done to determine the mechanical properties of the brick in accordance with standard [23]. The compressive strength of the bricks used in this experimental program is determined by applying a uniaxial pressure test to 9 specimens. In order to determine the water absorption of the specimens according to the method presented in [24], the bricks are first completely submerged for 24 hours, and to determine the water absorption, the weights of the specimens are recorded before and after drying at room temperature. Moreover, according to Standard [25], six masonry prisms consisting of five rows of single bricks were constructed and tested under uni-axial compression to determine the compressive strength of masonry units (i.e., the assemblage of bricks and mortar). Table 2 shows the mechanical properties of bricks, such as mean compressive strength, modulus of elasticity, flexural strength, and Coefficient of Variation and also the mean compressive strength of the masonry units has been reported.

2.1.3. PP bands

To calculate the tensile strength, the bands were stretched in two ways. In the first case, the PP bands were subjected to uniaxial tension using Universal Machine. In the second case, the polypropylene bands connected by a metal clamp in the middle were stretched. It should be mentioned that two bands are cut to equal length, and each of them passes through the metal clamp with equal overlap and is punched together by special punching pliers at the point where the clamp is located. Table 3 demonstrates the values obtained from the uniaxial tensile test of PP bands in different modes, which are in accordance with the standard [26]. In Figure 1a, the PP band and metal clamp used in the uniaxial tensile test and the main masonry wall test are shown. In Figure 1b, the PP band is stretched, and in Figure 1c, the PP band is tested until rupture. Figure 1d. displays the PP-band tensile test with a metal clamp in the middle of the length according to what was mentioned in the previous section.

2.2. Geometry of specimens and test set-up

The test specimens consisted of three half-scale unreinforced masonry specimens of dimensions 2000 × 1400 × 155 mm (length × height × width). According to the literature available on Iranian masonry construction [19, 32], the wall dimensions with length of 2000 mm, height of 1400 mm, and wall thickness of 110 to 160 mm are common for the half-scale specimens, which are the same dimensions considered in the present study. Also, this gives an aspect ratio of 0.7 for the wall specimen. Besides, the width of the half-scale wall is taken herein as 150 mm, consisting of one brick length of 96 mm plus one brick width of 50 mm on average. The first wall was subjected to cyclic quasi-static loading before and after the damage. Furthermore, having strengthened the second wall from the beginning, it was subjected to cyclic quasi-static loading. Above the tested masonry walls, there is a concrete beam with dimensions of 2100 × 270 × 440 mm, and at the bottom of the specimens, a concrete beam with dimensions of 2200 × 350 × 440 mm (length × height × width, respectively) is placed. As Figure 2 shows, the lower concrete beam is connected to the rigid floor with 8 pairs of high-strength screws with a nominal diameter of 20 mm and a length of 250 mm. In the stage of applying the reversed cyclic lateral load, two steel plates and four high-strength steel rebars with a diameter of 25.4 mm are used. According to Figure 2, a schematic of the specimen before the test and the dimensions of the wall and the number of rows of bricks are illustrated.

2.3. Instrumentation

According to Figure 3.b-c, two loadcells were placed along the axle shaft of the hydraulic jack and the force distribution beam to measure the value of the applied lateral load. The third loadcell was used to control and measure changes in the vertical load during the experiment. (Figure 3.h) Furthermore, two LVDTs were used horizontally along the applied force to record the horizontal displacement, and the third LVDT was used along the diameter of the specimen. (Figure 3. c–e) It should be mentioned that the upper and lower LVDT distances from the axis of the jackshaft are 21 and 14 cm, respectively. To control the out-of-plane movement of the wall and record the possible rotation period of the force distribution beam, a total station with a surface accuracy of 1 mm (Figure 3.f), and targets that were attached to the bottom, top, and middle of the wall height and also connected to the beam were used. (Fig 3.g) The camera operator read the mentioned points at the peak moments of displacement and the beginning and end of each loading cycle. The data of the total station camera was used
to control the movement of the upper concrete beam, which is responsible for distributing the load. As shown in the table 4, the camera and LVDT data are synchronized at the peak points of the loading pattern based on the point pick time, and up to the tenth millimeter accuracy, a significant consistency is observed.

2.4. Loading protocol

The unreinforced masonry walls were tested by applying a constant vertical load of an average of 28 kN concurrently with a quasi-static reciprocating cyclic lateral load recommended by the American Concrete Institute or ACI [27]. In each drift ratio, three reciprocating cycles and, then, as half of the amplitude are applied to the specimens. The initial drift ratio of the protocol is equal to 0.2%, which the response interval of the fabricated specimens is linear. The axial distance of the lateral load applied to the specimen at a height of 1535 mm above the foundation level. Figure 4 shows the lateral load protocol. A vertical load of about 2.8 tons should be applied to the specimen. A concrete beam with a weight of 6.9 kN and a vertical load of 21.03 kN was applied to the specimen. The stress resulted from the gravity load is calculated to be 0.75 MPa. In order to load vertically, a manual hydraulic jack was used on the concrete beam.

2.5. Details of the proposed strengthening technique

In the proposed method for repairing and retrofit, the materials used in both cases are plastic products with a low price and worldwide availability. Methodology and concept of repairing and strengthening the masonry wall in any damaged condition and before the damage are closely related. First, repairing the damaged wall with goals such as using the minimum manpower, materials for repair, technical skills of the expert force on the one hand, and, on the other hand, the best possible efficiency, improving seismic performance, stopping the crack pattern, and finally preventing wall destruction. Second, polypropylene fibers, even with the worst quality available, have a much higher tensile strength than cement-sand mortar. The technique of improvement with polypropylene fibers should be done in the fastest possible time, and on the other hand, the improved structure can protect the residents who are temporarily staying in it from the aftershocks and so on. To achieve this goal, the strengthening technique must be employed during the fiber loading in question (polypropylene fibers can be fastened in different forms around the wall: horizontal strap, vertical strap on the sides, alternate vertical and horizontal bands, i.e., warps and wefts, and also fibers along the diameter of the wall or oblique fibers, etc.). Since the strap fastening is placed in the thickness of the wall, and each strap has only one fastening along the wall, hence, the amount of force applied to fasten the strap around the wall is very small and to the extent that the strap is in contact with the wall surface. On the other hand, the strength of the polypropylene strap is low (100 kg fastened strap), and, since the bands did not rupture in the experiments, the initial condition of the bands lack considerable force. (Figure 5. a-b) In the tested specimen, the walls were only retrofitted with polypropylene fibers horizontally in order to strengthen the wall. (Figure 5.c) In the areas of the wall where cracks have formed in the depth of the wall, the bands are fastened to each other with the help of wire on both sides of the wall and are completely tangent to the wall surface to achieve the best performance (Fig 5.d). As for real and full-scale structures, the proposed method can be utilized on site. In doing so, a few holes are required to be drilled through the wall thickness and within the weak mortar layer in order to pass the steel wires to connect and fix the PP bands on both sides of the wall (in the case of repairing the damaged wall), or to pass the PP bands near the wall ends to encircle the wall thickness (in the case of strengthening the existing wall). In the latter case, a mortar layer is shotcrete on the wall surface to cover the PP bands, and also, to provide better attachment of the PP bands to the masonry wall surface. When strengthening, the PP bands may be anchored into a small cement foundation built at the bottom of the wall.

The third point concerns strengthening the masonry wall before loading. Due to the similarity of the manufacturing process and the same dimensions, mortar thickness, the ratio of sand to cement, and loading pattern, the prediction of similar behavior is not far-fetched. Therefore, using a similar and expanded process, the next specimen was reinforced before applying lateral load and wall damage. To reinforce the specimen, the polypropylene fibers are used in horizontal, vertical, and oblique positions. (Figure 6.c) The horizontal bands in each row are fastened alternately on the levels of the bricks, and also three verticals bands are fastened at a distance of 30 cm from the end of the wall (on both sides of the wall and like a vertical coil). The way the oblique bands are fastened is based on the crack pattern created in the first specimen test and with the aim of preventing the spread of cracks. By dividing the length and height of the wall into three equal parts, the oblique bands are used to strengthen the wall. (Fig 6.a) It is also necessary to enclose and attach the bands to the wall in order to engage the bands when loading in low drifts. (Figure 6.b) In order to enclose the bands, a layer of cement-sand mortar (similar to the horizontal mortar used in building the wall) was coated on the bands with an average thickness of 20 mm. (Figure 6.d) In order for the coating to have a minimal effect on the behavior of the wall, and the most influential factor in the improvement of the wall are polypropylene bands, the coated surface
should be as small as possible. On the other hand, this surface should provide enclosure and integration of the bands and walls. (Figure 6.e)

3. Experimental observations

During the experiment, various observations were recorded, which will be discussed and presented in this section.

3.1. Unreinforced Masonry Wall (URMW)

The first crack in the 0.05% drift was observed below the fourth row of the wall with a horizontal crack length of 40 cm. (Figure 7.a) In the continuation of the experiment up to 0.2% drift, vertical and horizontal cracks consisting of toes were connected to each other and hence caused the diagonal crack pattern to be observed from the toe to the bottom of the brick of row 15. According to the lateral loading pattern applied to the test specimen up to 0.3 drift in the toe areas as well as the lower rows of the specimen that are on the footing, horizontal cracks of great lengths were formed in the specimen. These cracks were in the form of capillaries, and, as the experiment continued, these cracks did not expand, and, practically, the failure mode of the specimen was not formed because of these capillary cracks. (Figure 7.b) At a displacement of + 4.29 mm (equivalent to 0.3% drift), a horizontal crack along the length of a brick starts from the side of the jack under row 17 (Figure 7.c) and enters the horizontal mortar below row 16 by passing through a brick with a stepped position and continues horizontally again with a stepping mode between rows 13 and 14. (Figure 7.d) A deep horizontal shear crack was developed at half the height of the wall along the entire length of the wall, and the dominant failure mode can certainly be considered a result of the formation of this shear-slip crack. Moreover, at the displacement of + 5.6 mm (equivalent to 0.4% drift), vertical cracks are created and with the connection of vertical and horizontal cracks, up to the horizontal crack between rows 13 and 14, a continuous diagonal crack is observed. (Figure 7.e) In the 0.43% drift, the applied lateral load caused the spread of diagonal cracks in the lower part of the shear-slip crack, which led to the connection of these diagonal cracks to the horizontal crack in question (Figure 7.f).

3.2. Retrofitted Damaged Masonry Wall (RDMW)

During the loading test of the horizontal polypropylene strap reinforced damaged masonry wall, the principle that each strap was operating independently in the row where it was fastened was observed. Each strap dissipated energy by keeping the wall cohesive and allowing rows of bricks to slide on top of each other. (Figure 8.a) During loading in the 0.8% drift, the widths of the cracks were set up to 21 mm, and the horizontal slip between rows 13 and 14 was reported to be 14 mm. (Figure 8.b) Sliding wall layers on each other caused horizontal cracks to penetrate deep into the wall, and the cracks are visible on both sides of the wall. At the end of the experiment, between rows 14 and 15, the wall had a 2 cm torsional motion towards the outside of the wall plate and the lateral load axis, and a horizontal residual slip of 5 cm was recorded. (Figure 8.c-e)

3.3. Strengthened Unreinforced Masonry Wall (SUMW)

The first crack was observed at the displacement of + 1.62 mm on both sides of the wall, at a height of 27 cm from the level on the foundation, with a length of 72 cm horizontally, and in the 0.15% drift, the crack length increased to 120 cm. (Figure 9.a-b) At the displacement of +2.8 mm, a horizontal crack of 120 cm at a height of 27 cm continued diagonally and down the wall with an oblique length of 25 cm to the foundation. In the -2.1mm displacement of the horizontal crack on the level of the foundation, a horizontal crack with a length of 147 cm was formed, and in the 0.14% drift, the crack on the level of the foundation increased to a length of 160 cm. Below the level of the foundation, a horizontal crack of 45 cm length parallel to the top crack was formed on both sides of the wall. (Figure 9.c) In a 0.28% drift in the toe of the wall, a vertical crack with a height of 5 cm appears on both sides of the wall. In 0.6% drift, diagonal cracks and cement coat debonding were observed in the toes, and also the wall uplifting was recorded to be 9mm from below the foundation (Figure 9.h), which was observed along the wall and on both sides. (Figure 9.g) Crack pattern at the end of the experiment, when the wall experienced a displacement equivalent to 1.6% drift, no significant change was observed with the 1% drift crack pattern, except for increased debonded areas and toe crushing. (Figure 9.e) In the 1% drift in the toe and a domain with the length of 20cm and height of 8cm, the toe crushing is associated, and in the positive and negative maximum displacements, two rectangle-like areas in both toes with dimensions that are 20 to 25 cm in the length and 15 to 20 cm in the height of the wall are crushed. (Figure 9.d) At the maximum displacement of +19.6 mm, the horizontal cracked that was formed at the level of 26 cm from the foundation was completely closed, and the uplifted length and the width of the crack under the foundation was reported to be 120 cm and 26 mm, respectively. (Figure 9.f) In the -9mm displacement, the wall underwent a horizontal slip of 10 mm in the
direction of the force (Figure 9.i).

4. Experimental results and discussion

In this section, the experimental results of the reference specimen or the unreinforced masonry wall (URMW), the retrofitted damaged specimen, and the strengthened undamaged specimen are demonstrated. In addition to the description, the crack pattern, hysteresis curve, stiffness, strength, and the dissipated energy are also compared.

4.1. Crack pattern and Hysteresis curve

According to the observations, the reference specimen had a linear behavior up to 0.05% drift, and no crack was observed in the wall. The first crack was observed at a displacement of +0.7 mm at a lateral force of 10.02 kN. Then, with increasing lateral load to drifts of less than 0.1%, horizontal cracks were formed in one-third of the bottom of the wall and in the toes. In short, from 0.1% to 0.2% drift, the most obvious occurrence is the emergence of vertical cracks and the formation of a stepped state due to the connection of these cracks to the horizontal cracks that were created in previous cycles. In other words, diagonal cracks were formed due to the connection of vertical and horizontal cracks appeared at the height of one-third of the bottom of the wall. After the 0.3% drift, a shear crack was developed along the entire wall, and with the beginning of cycle 12, with the drift of 0.4%, a deep horizontal crack appeared in half the height of the wall along the entire wall, which can certainly be considered the dominant failure mode due to the formation of this shear-slip crack. At the displacement of 5.85 mm, in addition to increasing the width of the crack in question, the spread of diagonal cracks was observed in the lower part of the shear-slip crack, which led to the connection of vertical and horizontal cracks, and the cracks from the toes are connected to develop a diagonal crack pattern from the toe to under the brick of row 15. The experiment continued until a drift of 0.48%. With a 28% drop in bearing capacity, the test sample was stopped.

In order to investigate the effect of polypropylene bands on the performance of the damaged wall, the unreinforced masonry wall was loaded up to 0.48% drift and more than 0.35% for damage with the moderate amount recommended in FEMA 306 [28].

With the help of fastened horizontal bands, the spread of the crack pattern was stopped. Also, the lateral bearing capacity of the specimen up to 0.38% drift with a drop of 9% was almost equal to the lateral capacity of the prototype. Testing of the retrofitted damaged specimen continued up to 1.4% drift. In the strengthened masonry wall, no crack was observed up to 0.081% drift and in the lateral force of 28.32 kN, and the effect of strengthening in addition to increasing the bearing capacity in improving the elastic behavior of the masonry wall was also evident. The failure mode of the un-strengthened specimen started with the first crack and the spread of the diagonal-tensile crack pattern, and in the 0.48% drift, the shear-slip failure mode was created in the specimen, and the failure mode of the specimen was considered as a combination of the two main in-plane modes. The failure mode of the strengthened specimen was rocking motion, and in the 1.6% drift, a crack was created in the toe of the wall and a layer of cement-sand coating was on the verge of separation from the specimen surface. The crack pattern of the reference and strengthened specimen at the end of the experiment where the wall experienced a displacement equivalent to 1.6% drift is shown in Figure 10. The Hysteresis curves of the three specimens are illustrated in Figure 11. In a sound retrofitted masonry wall, non-slip horizontal cracks, preventing the cracks from opening and closing by horizontal and oblique bands, as well as enclosing them with the applied mortar, reduce the size of cyclic curves. In Figure 11 (a-d), the hysteresis curves of the reference, retrofitted damaged, and strengthened specimens, and the comparison of all three curves are shown.

4.2. Idealization process of the actual structural response curve

In order to further evaluate the behavior of the specimens, in addition to the cyclic curve, the equivalent bilinear force-displacement curve is also considered. The bilinear curve [29] is the idealized format of the envelope diagram for the experimental cyclic curve of the specimen, expressing a relationship between the base shear and the displacement at top of the wall, as depicted in Figure 12.

The main parameters of a bilinear curve include: the effective lateral stiffness (\(K_e\)), the maximum shear force (\(V_{max}\)), and the displacement, (\(d_{u}\)) at the intersection of two lines in the bilinear curve, as depicted in Figure 13. Besides, the maximum or ultimate displacement \(d_{u}\) is defined as the displacement corresponding to 20% drop in the maximum lateral capacity of the experimental curve (i.e., 0.8\(V_{max}\)) [30], as illustrated in Figure 12.
\[V_u = 0.8V_{\text{max}} \quad d_u = d_{0.8V_{\text{max}}} \]
(Eq.3)

\[K_e = \frac{V_u}{d_u} \]
(Eq.4)

\[d_e = \frac{V_u}{K_e} \]
(Eq.5)

\[k = \frac{d_u}{d_e} \]
(Eq.6)

\[\mu = \frac{d_u}{d_e} \]
(Eq.7)

According to [32], the initial stiffness of the masonry walls subjected to lateral loading could be measured when the wall behaves in the elastic region. In this regard, the initial stiffness, \(k_i \), is defined as the tangent slope of the experimental envelope curve at the origin point. Alternatively, the initial stiffness can be estimated as the secant slope of the experimental curve corresponding to 0.1% drift ratio. According to the data extracted from the bilinear force-displacement curve as reported in Table 5, the maximum strength and ultimate strength of the retrofitted damaged specimen decreased by 26% and 13%, respectively, compared to the prototype. The maximum displacement of the retrofitted damaged specimen is 183% greater than that of the prototype. Moreover, the maximum strength, ultimate strength, and maximum displacement of the retrofitted specimen increased by 88%, 38%, and 185%, respectively, compared to the un-strengthened specimen. The retrofitted damaged specimen has the lowest ultimate strength among the three specimens, and its final lateral displacement is 171% greater than that of the un-strengthened specimen. Therefore, the effect of the proposed technique on improving the performance of walls is herein pronounced. By retrofitting the damaged wall, the lateral capacity does not increase significantly, and even the stiffness of the wall decreases compared to the unreinforced state, but the ductility and the maximum lateral displacement have increased significantly. Increased ductility has led to an increase in the energy dissipation capacity of the specimens, which is of importance for unreinforced masonry walls.

5. Prediction of shear capacity

5.1. Predictive equation

In this section, according to the experimental observations and the obtained results, an equation is proposed to predict the shear strength of the masonry wall reinforced with PP band and cement-sand coating. Considering the behaviour of the sample during the test and the conditions of connection of polypropylene bands to the masonry wall from the top beam to the foundation of the wall floor and the integrity of the whole tested sample as a composite element, this equation has been suggested. It should be noted that the reinforced wall is modelled as a composite body that includes two parts of the building unit and materials used for reinforcement, which are polypropylene and cement. Regarding Figure 14, \(H_1 \) is the wall height (1400mm), and \(M_{\text{max}} \) is the maximum bending moment that is resistant to lateral force. According to the basic assumption of the bending theory, in which the plane remains flat after bending, the crack threshold strain value can be considered equal for both defined elements. In the proposed equation, the bending capacity of the wall is calculated based on the \(\varepsilon_{tu} \), and the final tensile strain of the bands is 0.1. Also, the final compressive strain of the reinforced wall is less than the strain obtained from the strength test of prismatic sample materials. In the proposed equation, the bending capacity of the wall is calculated based on the final tensile strain of the bands. Also, in practice, the final compressive strain of the reinforced wall is less than the strain obtained from the strength test of prismatic sample materials. In the presented equation, \(t_c \) is the thickness of mortar and PP band with decreasing coefficient (less than 20mm and equal to 10mm), \(t_m \) is wall thickness (200mm), \(L_w \) is also the effective wall length or 0.8 actual length of the wall (1600mm). Regarding other parameters of this equation, \(N \) is axial force (21.03 kN), \(f_{tu} \) is the tensile stress with decreased coefficient in order to consider the effect of mortar and PP together (\(\approx 0.2 \times 133.3 = 26.6 \text{MPa} \)), \(f_{tu} \) is the ultimate tensile stress, \(E_\mu \) is the modulus of elasticity of the
reinforcement material (3.7 GPa), and E_m is the modulus of elasticity of the material ($1000 \times f_m$). According to masonry characteristics, two other important assumptions have been applied to the fundamental bending relationship. First, the value of T_2 in the linear range is much less than T_1, so it is omitted. Moreover, the tensile strength of the masonry wall was neglected during the test, and all tensile strengths were attributed to the reinforcement materials. It is noted that the PP bands embedded in the mortar layer covering the wall surface is treated as a composite material, which develops compressive strength through the mortar layer while providing the tensile capacity by the PP band. Following this analogy, P_1 and T_1 represent the resultant forces related to compression and tension, respectively, acting on the wall cross section. On the other hand, the masonry units provide compression (denoted by P_2) whereas the tensile contribution by the masonry units is ignored.

$$V_{\text{max}} = \frac{M_{\text{max}}}{H_1} = 32.387kN$$

(Eq.9)

$$M_{\text{max}} = f_r \times t_c \left(L_w - x_1 \right) \times \left(0.5L_w - \frac{x_1}{6} \right) + \left(0.5L_w - x_1 \right) \times N = 45.3431kN.m$$

(Eq.10)

$$x_1 = \frac{N + f_r \times t_c \times L_w}{0.5 \times (E \times t_c + E_m \times t_m) \times \varepsilon_c + f_r \varepsilon_w t_c} = 0.188m$$

(Eq.11)

5.2. Comparison of the calculated and measured shear capacity

A comparison of the test results and the proposed relationship is presented in Table 6. As seen in the last column (Table 6), the difference is approximately 13.13%.

6. Conclusion

Table 7 indicates the maximum bearing capacity, ultimate strength, and the maximum lateral displacement of the un-strengthened specimen, strengthened damaged specimen, and the strengthened specimen.

- The maximum strength and ultimate strength of the retrofitted damaged specimen decreased by 26% and 13%, respectively, compared to the prototype. The maximum displacement of the retrofitted damaged specimen is 183% greater than that of the prototype.
- Reinforcement of the damaged specimen prevented the decrease of lateral bearing capacity, and the lateral bearing capacity of the specimen up to 0.38% drift with 9% reduction was almost equal to the lateral capacity of the prototype. In the 1.2% drift, the bearing capacity decreased by 23%, and before the drift in question, the changes in the bearing capacity of the strengthened damaged specimen were small.
- In the unreinforced wall, horizontal and vertical cracks are observed, connected to each other with increasing lateral displacement. The unreinforced damaged masonry wall has a larger cyclic curve due to the possibility of sliding rows of bricks along the crack. Thus, the strength of the retrofitted damaged masonry wall is the ability to dissipate energy up to 23% more than the strengthened specimen and 60% more than the unreinforced masonry wall.
- To strengthen the damaged specimen, polypropylene bands were used only horizontally and according to the failure mode of the prototype, which is a combination of diagonal-tensile mode and shear-slip failure.
- The maximum strength, ultimate strength, and maximum displacement of the retrofitted specimen increased by 88%, 38%, and 185%, respectively, compared to the unreinforced masonry wall.
- The shear and tension-diagonal failure mode of the unreinforced masonry was as expected. With the retrofitting method, the failure mode has changed, which is also an important and desirable result of the test. Since the ratio of height to the length of the wall is less than 1, the retrofitted and un-retrofitted walls show two different failure modes. It is worth mentioning that the prevailing mode changed from shear to flexural (rocking).
- The ductility coefficient of the strengthened masonry wall is 26% higher than that of the unreinforced masonry wall.
- According to the equivalent two-line force-displacement curve, the mean values of the ultimate strength and the corresponding displacement in the retrofitted damaged specimen have the lowest ultimate strength among the three specimens. The ultimate strength and ultimate lateral displacement of the strengthened specimen are 171% and 196% higher than the unreinforced masonry wall, respectively.
Nomenclature

\(V_{test} \) The force obtained from the in-situ shear test
\(V_{te} \) Shear stress; that the average of the tested amounts is placed in Eq. 2
\(A_p \) The surface of the upper and lower horizontal mortar
\(A_n \) Mortar net area
\(K_e \) Effective lateral stiffness
\(V_u \) Maximum shear force
\(d_e \) Displacement
\(d_u \) Maximum displacement
\(A_{env} \) The area under the envelope curve in the positive or negative region
\(H_t \) Wall height
\(t_c \) Thickness of mortar and PP strap with decreasing coefficient
\(t_m \) Wall thickness
\(L_w \) Effective wall length
\(N \) Axial force
\(f_t \) Tensile stress with decreased coefficient
\(f_{tu} \) Ultimate tensile stress
\(E \) Modulus of elasticity of the reinforcement material
\(E_m \) Modulus of elasticity of the material

References

method for developing countries”, Institute of Industrial Science, University of Tokyo, (2005).

List of tables

Table 1. The specifications of the cement-sand mortar.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Numerical value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cement-sand ratio</td>
<td>1:6</td>
</tr>
<tr>
<td>Water-cement ratio</td>
<td>1:3</td>
</tr>
<tr>
<td>Compressive strength of mortar (MPa)</td>
<td>3.26</td>
</tr>
<tr>
<td>Shear Strength from In-situ shear test (MPa)</td>
<td>0.15</td>
</tr>
<tr>
<td>Mean shear strength of the mortar from uniaxial test (MPa)</td>
<td>0.09</td>
</tr>
</tbody>
</table>

Table 2. Properties of bricks and masonry units (Coefficient of Variation is abbreviated as COV).

<table>
<thead>
<tr>
<th>Type of brick</th>
<th>Property</th>
<th>Numerical value</th>
<th>COV (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clay brick</td>
<td>Dimension (mm)</td>
<td>96 × 50 × 36</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Compressive strength (MPa)</td>
<td>5.7</td>
<td>17.3</td>
</tr>
<tr>
<td></td>
<td>Water absorption (%)</td>
<td>15.9</td>
<td>18.7</td>
</tr>
<tr>
<td></td>
<td>Modulus of elasticity (MPa)</td>
<td>1084</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Density (kN/m³)</td>
<td>19.4</td>
<td>4.1</td>
</tr>
<tr>
<td></td>
<td>Flexural strength (MPa)</td>
<td>1.29</td>
<td>11.4</td>
</tr>
<tr>
<td>Masonry unit</td>
<td>Compressive strength (MPa)</td>
<td>4.1</td>
<td>9.1</td>
</tr>
</tbody>
</table>

Table 3. Properties of the PP band.

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Parameters</th>
<th>Mean</th>
<th>Standard deviation</th>
<th>No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>PP-band</td>
<td>Width (mm)</td>
<td>16</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Thickness (mm)</td>
<td>1.2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Density (g/cm³)</td>
<td>0.9</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>PP-band without punched clips</td>
<td>Tensile strength (MPa)</td>
<td>133.3</td>
<td>0.11</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Elastic Modulus (GPa)</td>
<td>3.7</td>
<td>0.28</td>
<td>3</td>
</tr>
<tr>
<td>PP-band with punched clips</td>
<td>Tensile strength (MPa)</td>
<td>70.62</td>
<td>0.13</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Elastic Modulus (GPa)</td>
<td>2.01</td>
<td>0.28</td>
<td>3</td>
</tr>
</tbody>
</table>
Table 4. Comparison between LVDT and survey data

<table>
<thead>
<tr>
<th>Time of Observe</th>
<th>Survey data (mm)</th>
<th>Time of Observe</th>
<th>LVDT (mm)</th>
<th>Max Drift (%)</th>
<th>Cycle No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>05-03 16:07:17.0</td>
<td>-0.1720</td>
<td>03/05 16:02</td>
<td>-0.17</td>
<td>-0.008</td>
<td>1</td>
</tr>
<tr>
<td>05-03 16:13:53.0</td>
<td>-0.69</td>
<td>03/05 16:06</td>
<td>-0.67</td>
<td>-0.07</td>
<td>5</td>
</tr>
<tr>
<td>05-03 16:20:17.0</td>
<td>-0.912</td>
<td>03/05 16:19</td>
<td>-0.97</td>
<td>-0.1</td>
<td>8</td>
</tr>
<tr>
<td>05-03 16:32:56.0</td>
<td>1.792</td>
<td>03/05 16:30</td>
<td>1.77</td>
<td>0.14</td>
<td>9</td>
</tr>
<tr>
<td>05-03 16:57:19.0</td>
<td>-2.212</td>
<td>03/05 16:56</td>
<td>-2.41</td>
<td>-0.14</td>
<td>12</td>
</tr>
<tr>
<td>05-03 17:03:24.0</td>
<td>2.469</td>
<td>03/05 17:02</td>
<td>2.5</td>
<td>0.14</td>
<td>13</td>
</tr>
<tr>
<td>05-03 17:16:12.0</td>
<td>-2.745</td>
<td>03/05 17:15</td>
<td>-2.75</td>
<td>-0.14</td>
<td>14</td>
</tr>
<tr>
<td>05-03 17:44:19.0</td>
<td>-2.843</td>
<td>03/05 17:41</td>
<td>-2.09</td>
<td>-0.1</td>
<td>16</td>
</tr>
<tr>
<td>05-03 18:39:05.0</td>
<td>3.574</td>
<td>03/05 18:40</td>
<td>4.16</td>
<td>0.3</td>
<td>23</td>
</tr>
<tr>
<td>05-03 18:49:39.0</td>
<td>-4.285</td>
<td>03/05 18:46</td>
<td>-3.2</td>
<td>-0.28</td>
<td>24</td>
</tr>
<tr>
<td>05-03 19:01:34.0</td>
<td>-5.825</td>
<td>03/05 19:00</td>
<td>-5.7</td>
<td>-0.28</td>
<td>24</td>
</tr>
<tr>
<td>05-03 19:13:13.0</td>
<td>-4.579</td>
<td>03/05 19:11</td>
<td>-4.7</td>
<td>-0.28</td>
<td>24</td>
</tr>
<tr>
<td>05-03 19:43:12.0</td>
<td>6.455</td>
<td>03/05 19:42</td>
<td>6.58</td>
<td>0.34</td>
<td>25</td>
</tr>
<tr>
<td>05-03 20:02:38.0</td>
<td>-0.035</td>
<td>03/05 20:02</td>
<td>0</td>
<td>-0.008</td>
<td>29</td>
</tr>
</tbody>
</table>

Table 5. The results of the idealization of specimens.

<table>
<thead>
<tr>
<th>Backbone curve</th>
<th>Lateral stiffness K_l (kN/mm)</th>
<th>Yield condition V_y (kN)</th>
<th>Ultimate condition V_u (kN)</th>
<th>Elastic Displacement d_e (mm)</th>
<th>Ductility $\mu = d_u / d_e$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unreinforced masonry wall</td>
<td>Average 25.92</td>
<td>13.05</td>
<td>0.64</td>
<td>15.66</td>
<td>6.61</td>
</tr>
<tr>
<td>PP-retrofitted damaged masonry wall</td>
<td>Average 25.92</td>
<td>11.19</td>
<td>0.64</td>
<td>13.41</td>
<td>7.89</td>
</tr>
<tr>
<td>PP-retrofitted masonry wall</td>
<td>Average 25.01</td>
<td>28.37</td>
<td>1.62</td>
<td>34</td>
<td>21.15</td>
</tr>
</tbody>
</table>

Table 6. Comparison of calculated and experiment result shear capacity.

<table>
<thead>
<tr>
<th>Specimen Type</th>
<th>Experimental Shear strength (kN)</th>
<th>Calculated Shear strength (kN)</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strengthened specimen</td>
<td>37.16</td>
<td>32.38</td>
<td>0.87</td>
</tr>
</tbody>
</table>

Table 7. Summary of the test results.

<table>
<thead>
<tr>
<th>Specimen Type</th>
<th>Maximum strength (kN)</th>
<th>Ultimate strength (kN)</th>
<th>Maximum displacement (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Un-strengthened specimen</td>
<td>19.77</td>
<td>14.63</td>
<td>7.92</td>
</tr>
<tr>
<td>Strengthened damaged specimen</td>
<td>14.55</td>
<td>12.8</td>
<td>22.42</td>
</tr>
<tr>
<td>Strengthened specimen</td>
<td>37.16</td>
<td>20.25</td>
<td>22.64</td>
</tr>
</tbody>
</table>

List of figures
Figure 1. Uniaxial tensile test of the PP band. (b) applying tension to the strap; (d) applying tension to the punched strap with the clamp.

Figure 2. Schematic of the dimensions of the tested specimen.
Figure 3. Stages of construction and instrumentation.

Figure 4. Cyclic load protocol.
Figure 5. The process of repairing the damaged masonry wall.

Figure 6. The process of strengthening the unreinforced masonry wall.
Figure 7. The unreinforced masonry wall experiment.

Figure 8. The damaged masonry wall experiment.
Figure 9. The strengthened masonry wall experiment.

Figure 10. Comparison of the crack patterns of the URMW and SUMW.
Figure 11. Hysteresis curves of the experimental specimens.

Figure 12. Actual and idealized response envelope (Tomasevic [31]).
Figure 13. Idealized load-displacement curve of specimens.

Figure 14. Retrofitted specimens stress-strain diagram and forces distribution corresponding to the bending capacity.

Biography

Shahrad Ebrahimzadeh received the B.S. degree in Civil Engineering from the K. N. Toosi University of Technology, Tehran, Iran, in 2013 and M. Sc. Degree in Structural Engineering from K. N. Toosi University of Technology, Tehran, Iran, in 2017. Currently he is PhD candidate at structural engineering in University of Southern Queensland in Australia. His research interest areas include composite material, numerical analysis by using ABAQUS, optimization, seismic performance of structures, and Programming, especially MATLAB.

Kourosh Nasrollahzadeh is an Assistant Professor in Structural Engineering in the Department of Civil Engineering at K. N. Toosi University of Technology in Tehran, Iran. He received the Japan Concrete Institute (JCI) Award for outstanding paper and presentation in two successive years in 2001 and 2002. He was awarded a post-doctoral research fellowship at the University of Tokyo in Japan in 2004-2006. His research interests include seismic retrofitting of structures by FRP, experimental research, and reliability analysis.