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Abstract

The Linear Fractional Programming (LFP) problem that optimizes the ratio

of two linear objective functions under linear constraints has a wide range of

application areas. Based on the traditional definition of continuity, we devel-

oped an exact iterative algorithm that does not depend on big-M coefficients.

Removing the nonlinearity in the fractional objective function by converting the

objective function into a linear form, an equivalent linear-iterative problem is

obtained and a computationally efficient algorithm is proposed. We also analyze

the unbounded and asymptotic solution case of the LFP. To demonstrate the

efficiency of the proposed method, illustrative numerical examples are provided

for all solution cases. Also, we analyze the validity of our algorithm and com-

pare our results with the existing algorithm from the literature by generating

random large-scale test problems.
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1. Introduction

Linear fractional programming (LFP) problems are of great interest because

of their extensive application areas such as resource allocation, transportation,

production, finance, location theory, stochastic processes, Markov renewal pro-

grams, information theory, applied linear algebra, large scale programming,

game theory, etc. In many practical applications like cutting stock problems,

ore blending problems, shipping schedules problems, the optimal policy for a

Markovian chains, the sensitivity of linear programming problems, optimization

of ratios of criteria gives more insight into the situation than the optimization

of each criterion. To study relative efficiency in different fields such as educa-

tion, hospital administration, court systems, air force maintenance units, Bank

branches, etc., fractional programming solves more efficiently the above type of

problems. In real world decision situations, decision makers, sometimes, may

face up with the decision to optimize inventory/sales, actual cost/standard cost,

output/employee, etc. with respect to some constraints [[1]]. Reviews of vari-

ous fractional programming applications are given by Schaible ([2],[3],[4]), and

Craven [5]. Further references are listed in Schaible’s bibliography of this field

[2], which covers more than 550 articles. There are also comprehensive books

related to LFP problems, such as that of Bajalinov [6].

A usual linear fractional programming problem is a special case of a non-

linear programming problem. Isbell and Marlow [7] presented an algorithm

for the LFP problem of the maximization of a linear fractional function under

linear constraints. An LFP problem can be transformed into a linear program-

ming (LP) problem by using the variable transformation method of Charnes

and Cooper [8], or it can be solved by adopting the updated objective function

method of Bitran and Novaes [9]. Bitran and Magnanti [10] considered algo-

rithms, duality, and sensitivity analysis for optimization problems that they,

called fractional, whose objective function is the ratio of two real-valued func-

tions. Assuming that the denominator of the objective function of the LFP

problem over the feasible region is positive, Swarup [11] extended the well-
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known simplex method to solve LFP problems, with the object of giving an

algorithm for the solution of programming problems with linear fractional func-

tions without reducing them to LP problems. Singh [12] extended the saddle-

point and stationary point theory of optimality in nonlinear programming to

nonlinear fractional programming problems. Bajalinov [13] considered a special

problem in the context of linear and LFP: given an objective function on a fea-

sible bounded set S, the optimal vertex, and a neighboring vertex x̄, adjust the

objective function to make x̄ the new optimum. Considering the presented lit-

erature up to [13], it can be concluded that almost all of the methods developed

for LFP are analytical methods.

As an iterative method, Tantawy [14] focused on LFP problems with in-

equality constraints and presented a method based on the conjugate gradient

projection that is applied to solve nonlinear programming problems with linear

constraints. Tantawy [15] proposed an iterative method for solving LFP prob-

lems and showed that this method can be used for sensitivity analysis when

a scalar parameter is introduced into the objective function coefficients. Effati

and Pakdaman [16] introduced an interval-valued LFP problem and proved that

an interval-valued LFP problem can be converted to an optimization problem

with an interval-valued objective function whose bounds are linear fractional

functions. Tantawy [17] presented a concept of duality for the LFP problem in

which the objective function is a linear fractional function and the constraint

functions are in the form of linear inequalities. Using the concept of duality,

Simi and Talukder [18] presented a new approach for solving LFP problem.

Biswas et al. [19] discussed the theory of LFP and presented some proof for the

optimality and convexity of LFP. Fu et al. [20] proposed simulation-based linear

fractional programming model, which integrates a runoff simulation model into

a LFP framework, is developed for optimal water resource planning. Ozkok [21]

presented an efficient iterative algorithm to solve LFP problem. In their paper

they noticed that in order to improve their algorithm they should determine

the good big-M values. Based on this idea, we improved their algorithm by

removing the big-M parameter in their approach. Moreover, we demonstrated
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the effectiveness of our new algorithm, which we developed by eliminating big-

M from Ozkok’s algorithm, on large-scale examples that we have produced, by

comparing the results.

As another type of LFP, Das et al. [22] focused on the LFP problem with

absolute value functions. They applied the traditional unrestricted variable

transformation and convert the LFP into an LP problem. As a real-life applica-

tion of LFP, there are some current studies. Considering the challenge of solving

large-scale LFP problems, Mohammed and Lomte [23] proposed a secure and

verifiable scheme to offload the computations on the cloud side. Mohammed

et al. [24] also focused on outsourcing of scientific computations and shown

how to use certificate validation to obtain correctness guarantees for privacy-

preserving outsourcing of LFP problem. Adding some parameters obtained by

solving a linear fractional programming problem, [25] presented an extended

version of the Tikhonov regularization method. In [26], an LFP is converted to

an LP problem by using the duality concept, and a traditional data envelopment

analysis model is provided to demonstrate the applicability.

Considering the objective function is continuous at every point of the feasible

region of LFP problem, a convergence condition is obtained by the traditional

definition of continuity. We combine our convergence condition and the objec-

tive function of the LFP problem to create an iterative constraint. Using this

constraint, we construct a new iterative LP problem to obtain the optimal solu-

tion of the LFP problem. This iterative LP problem can solve all LFP problems

that have a bounded feasible region.

This paper is organized as follows: In Section 2, we present the definition of

the LFP problem and some preliminaries. In the next section, we present our

methodology and give the steps of our new algorithm and its flow chart. Finally,

Section 4 and Section 5 consist of our numerical examples and conclusions,

respectively.
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2. Problem definition and preliminaries

The mathematical model of an LFP problem can be stated as follows:

maxZ(x) =
N(x)

D(x)
=

cTx+ α

dTx+ β

subject to x ∈ S

(1)

where S =
{
x ∈ Rn

∣∣Ax ≤ b, x ≥ 0, b ∈ Rm,
(
dTx+ β

)
> 0

}
is a convex

and compact nonempty set and the fractional objective function is defined on

S , that is Z : S ⊂ Rn → R (S) ⊂ R . We note here that assuming that is the

domain of the objective function is not a restriction, since the problem (1) aims

to find an optimal solution on S.

Remark 1: Resulting from the basic assumption
(
dTx+ β

)
> 0, the fractional

function Z(x) is continuous on R , and also on its domain S, that is, Z(x) is

continuous on ∀xi ∈ S and the corresponding function value is Z (xi) = Zi .

Definition 1: A neighborhood of a point xi ∈ Rn is the set

B (xi, r) = {x ∈ Rn ||x− xi| < r}

where r ∈ R+ is some positive number. The neighborhood is also called a ball

with radius r and centre xi.

Definition 2: Z(x) is continuous on S ⊂ Rn provided that for every point

xi ∈ S and for ε > 0 , there exists a number δ > 0 such that Z(x) satisfies

|Z (x)− Z (xi)| < ε whenever x ∈ S and the distance between x and xi satisfies

|x− xi| < δ.

Using Definition 1, Definition 2 can be re-expressed in terms of neighborhoods

as follows: ∀ε ∈ R+ , if there exists δ > 0 such that ∀x ∈ B (xi, δ) and

Z ∈ B (Zi, ε) where Zi = Z (xi), then Z (x) is continuous at the given xi ∈ Rn.

3. Our methodology

Considering the algorithm in Ozkok [21], the convergence condition for the

LFP (1),

Zx = Zix+ xiZ − Zixi (2)
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is obtained.

It is obvious that the fractional objective function Z = cTx+α
dTx+β

can be written

as follows:

dTxZ + βZ = cTx+ α. (3)

Combining (2) and (3), we have the following linear equation:

(
Zid

T − cT
)
x+

(
dTxi + β

)
Z̄ = Zid

Txi + α. (4)

Obviously, the structures of these two functions are different from each other.

Therefore, from now on, the objective function will be expressed with Z for the

LFP problem and Z̄ for the LP problem.

Thus, the problem (1) can be converted to the following iterative LP prob-

lem:

max Z̄ (5a)

s.t.
(
Zid

T − cT
)
x+

(
dTxi + β

)
Z̄ = Zid

Txi + α (5b)

x ∈ S (5c)

Here, the subscript i ∈ {0, 1, 2, . . .} denotes the iteration counter and (5b)

represents our iterative constraint. Starting with an initial solution (x0, Z0),

that is i = 0, the the sub-problem (5) generates a second feasible solution

(x∗
1, Z

∗
1 ) by using the initial solution, then moves to a third feasible solution

(x∗
2, Z

∗
2 ) by using the previous feasible solution (x∗

1, Z
∗
1 ) , and so on. In general,

if (x∗
i , Z

∗
i ) is a feasible solution obtained at iteration i, then our algorithm finds

a new feasible solution
(
x∗
i+1, Z

∗
i+1

)
at iteration i+ 1.

Proposition 1: The gradient vectors of the fractional objective function Z

and the linear objective function Z̄ are equal at every point xi ∈ S .

Proof: We omit the proof, the interested reader can see it in Ozkok [21].

Result 1: Since the gradient direction determines the direction of the in-

crease of a function, an increase in the linear objective function Z̄ (xi) ≤ Z̄(x∗)

implies an increase in the fractional objective function Z (xi) ≤ Z(x∗).
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Proposition 2: Starting with an initial point x0 ∈ S , let the successive

optimal solutions of (5) be x1,x2, . . . ,xi,xi+1, . . . , ∀i ∈ N . Then, the fractional

objective function values generate an increasing sequence for the successive op-

timal solutions x0,x1, . . . ,xi,xi+1, . . . , that is Z0 ≤ Z
1
≤ . . . ≤ Z

i
≤ Z

i+1
≤ . . .

until reaching the optimal solution of (1) where ∀i ∈ N .

Proof: We omit the proof, the interested reader can see it in Ozkok [21].

Theorem 1: If an increasing sequence {Zi}i∈N is bounded above, then it

converges.

Proof: Straightforward.

Result 2: If the feasible region S is bounded, then {Zi}i∈N always con-

verges since it is bounded above. This means that successive optimization of

the problem (5) guarantees obtaining the optimal solution of problem (1).

Result 3: If the feasible region S is unbounded, then {Zi}i∈N is either

bounded above (convergent) or unbounded (divergent).

Result 4: The case of unbounded solution of problem (5)
(
lim
x→∞

Z̄(x) → ∞
)

implies lim
x→∞

Z(x) = lim
x→∞

cTx+α
dTx+β

which is the asymptotic solution of problem

(1). This solution can be obtained by an additional analysis which we give in

the next subsection.

3.1. Unbounded feasible region case

Assume that the feasible region

S =
{
x ∈ Rn

∣∣Ax ≤ b,x ≥ 0,b ∈ Rm,
(
dTx+ β

)
> 0

}
is unbounded and the problem (5) has an unbounded solution, that is

lim
x→∞

Z̄(x) → ∞. By adding the constraint x1 + x2 + · · · + xn ≤ M to the

feasible region S , we get

S =
{
x ∈ Rn

∣∣Ax ≤ b, x ≥ 0, b ∈ Rm,
(
dTx+ β

)
> 0 , 1 · x ≤ M

}
where M is a very big number. As seen, S is the restricted form of with the

hyperplane x1 + x2 + · · · + xn = M . The optimal solution in S occurs at an

extreme point of the intersection of the original constraints Ax ≤ b and the
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hyperplane x1 + x2 + · · · + xn = M . Let reduce the feasible region S by the

following transformation for each decision variable:

xj

M
= vj ⇒ xj = M vj ⇒ x = M ·V

By this transformation, the constraint 1 · x ≤ M can be converted to v1 +

v2 + . . . + vn ≤ 1 or 1 · V ≤ 1 . The original constraints Ax ≤ b can be

converted to AV ≤ 0 since the limit of b
M is zero as M approaches to infinity.

The nonnegativity constraints x ≥ 0 and the assumption
(
dTx+ β

)
> 0 can be

written as V ≥ 0 and dTV > 0 respectively.

Thus, the reduced feasible region Ŝ

Ŝ =
{
V ∈ Rn

∣∣AV ≤ 0, V ≥ 0, dTV > 0, 1 ·V ≤ 1
}
,

and the objective function of (1) is:

Z (x) =
cTx+ α

dTx+ β
=

McTV + α

MdTV + β
=

M
(
cTV + α

M

)
M

(
dTV + β

M

) .
The limit of the objective function as M approaches to infinity can be eval-

uated as:

lim
M→∞

Z(x) =
cTV

dTV
= Z̄(V),

thus the problem to find the maximum of asymptotic values of the fractional

objective function Z(x) can be written as follows:

max
(

lim
M→∞

Z(x)
)
= maxZ̄(V) =

cTV

dTV
(6a)

s.t. AV ≤ 0 (6b)

1 ·V = 1 (6c)

V ≥ 0. (6d)

Note that 1 · V ≤ 1 is handled in equality form as (6c), since the optimal

solution is on the hyperplane x1 + x2 + · · ·+ xn = M .

Assume that Z̄ is continuous at Vi ∈ Ŝ and Z̄i =
cTVi

dTVi
.
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By Definition 2, ∀ε ∈ R+ correspond to a δ > 0 such that
∣∣Z̄ − Z̄i

∣∣ < ε

for each V satisfies |V −Vi| < δ. Then,
∣∣Z̄ − Z̄i

∣∣ |V −Vi| < ε.δ and(
Z̄ − Z̄i

)
(V −Vi) = 0 imply the following:

Z̄V = Z̄iV +ViZ̄ − Z̄iVi. (7)

Combining (7) and Z̄ = cTV
dTV

, the following linear approximation equation can

be written as: (
Z̄id

T − cT
)
V + Z̄dTVi = Z̄id

TVi. (8)

Obviously, the objective function of (6) is nonlinear whereas (8) is linear.

Therefore, from now on the objective function will expressed with Z̄ for the

LFP problem while Ẑ for LP problem.

Theorem: The fractional objective function Z̄ and the linear objective

function Ẑ take the same value at the point Vi and also their gradient vectors

are the same at that point.

Proof: Straightforward.

Then, the transformed problem can be written as:

max Ẑ (9a)

s.t. AV ≤ 0 (9b)

1 ·V = 1 (9c)(
Z̄id

T − cT
)
V + Z̄dTVi = Z̄id

TVi (9d)

V ≥ 0. (9e)

Let the optimal solution of (9) and the corresponding optimal objective function

value are denoted by V∗ = Vi+1 and Z̄ (V∗) = Z̄ (Vi+1) = Z̄i+1, respectively.

Remark 2: If Z̄i+1 → ∞ , then the unbounded solution occurs.

Remark 3: If Z̄i+1 = Z̄i , then the maximum of asymptotic values

max
(

lim
M→∞

Z(x)
)
= max Z̄(V) = Z̄i is found by the optimal solution of (9).

Remark 4: If Z̄i+1 > Z̄i, then the iterative process is continued by setting

i = i+ 1.
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Remark 5: Assume that Z̄i = max
(

lim
M→∞

Z(x)
)
.

Case 1: If Z (xi+1) < Z̄i for all xi+1 ∈ S, Z̄i is the supremum of the objective

function at the feasible region S, that is, sup
S

Z(x) = Z̄i.

Case 2: If Z (xi+1) > Z̄i for ∃ xi+1 ∈ S, by setting Zi = Z̄i, the problem

max Ẑ (10a)

s.t.
(
Zid

T − cT
)
x+

(
dTxi + β

)
Ẑ = Zid

Txi + α (10b)

x ∈ S (10c)

is solved iteratively until either Zi+1 → ∞ (unbounded solution) or Zi+1 =

Zi (optimal solution) is obtained.

Result 5: The problem (10) and the problem

max
(
cT − Zid

T
)
x (11a)

s.t. x ∈ S (11b)

have the same optimal solution.

Proof : From (10b), Ẑ can be written as Ẑ =
Zid

Txi+α−(Zid
T−cT )x

(dTxi+β)
.

Since Zid
Txi + α and dTxi + β are constants, and dTxi + β > 0 by the

assumption, handling the object function Ẑ as
(
cT − Zid

T
)
x does not change

the optimal solution.

Similar conclusion can be made for the problem (9) and the following prob-

lem:

max
(
cT − Zid

T
)
V (12a)

s.t. AV ≤ 0 (12b)

1 ·V = 1 (12c)

V ≥ 0. (12d)
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3.2. Finding an initial objective function value

An initial objective function value Zi can be found by solving one of the

following problems over the feasible region S or selecting an arbitrary value.

max
x∈S

0 (13a)

max
x∈S

cTx (13b)

max
x∈S

−dTx (13c)

max
x∈S

(
cT − dT

)
x (13d)

We will choose the initial value by maximizing
(
cT − dT

)
x over S.

Remark 2: If an unbounded solution is encountered in problems (13b), (13c)

or (13d), problem (13a) can be used to determine an initial objective function

value.

Remark 3: The problems (13a)-(13d) have no notable advantage over each

other in terms of the number of iterations. However, it can be interpreted that

the problem (13d) may require the least number of iterations since it considers

both the numerator and the denominator of the fractional objective function,

while problem (13a) may require the greatest number of iterations.

3.3. A stopping criterion

As stated in the Proposition 2, the problem (5) generates an increasing

sequence for the fractional objective function. If the problem (1) has an optimal

solution (x∗, Z∗) , then Z∗ will be a finite value, so the corresponding sequence

will be bounded above. In each iteration, the solution becomes closer to (x∗, Z∗).

Thus, the stopping criterion can be defined as to obtain the same objective

function value in two successive iterations, Z∗
i+1 = Z∗

i .

3.4. Statement of our algorithm

Based on the previous sections, we are now ready to give our algorithm:

Step 0: Load the LFP problem (1).
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Step 1: Select an initial objective function value Z0 and set i = 0.

Step 2: Solve the problem (11) and find the optimal solution x∗.

Step 2a: If the problem (11) is bounded, set xi+1 = x∗ and Zi+1 = Z (xi+1),

and go to Step 3.

Step 2b: If the problem (11) is unbounded, set Z̄i = Zi and go to Step 4.

Step 3: Consider the objective function value Zi+1.

Step 3a: If Zi+1 → ∞, then the LFP problem (1) is unbounded. STOP.

Step 3b: If Zi+1 < Zi, then sup
S

Z(x) = Zi. STOP.

Step 3c: If Zi+1 = Zi, then the optimal solution of (1) is found, that is x∗ = xi

and Z∗ = Zi. STOP.

Step 3d: Otherwise, set i = i+ 1 and go to Step 2.

Step 4: Solve the problem (12), find the optimal solution V∗ and evaluate

Z̄ (Vi+1) = Z̄i+1.

Step 4a: If Z̄i+1 → ∞, then the LFP problem (1) is unbounded. STOP.

Step 4b: If Z̄i+1 > Z̄i, set i = i+ 1 and go to Step 4.

Step 4c: Otherwise, set Zi = Z̄i and go to Step 5.

Step 5: Solve the problem (11) and find the optimal solution x∗.

Step 5a: If the problem (11) is bounded, set xi+1 = x∗ and Zi+1 = Z (xi+1),

and go to Step 6.

Step 5b: If the problem (11) is unbounded, then the LFP problem (1) is un-

bounded. STOP.

Step 6: Consider the objective function value Zi+1.

Step 6a: If Zi+1 → ∞, then the LFP problem (1) is unbounded. STOP.

Step 6b: If Zi+1 < Zi, then sup
S

Z(x) = Zi. STOP.
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Step 6c: If Zi+1 = Zi, then the optimal solution of (1) is found, that is x∗ = xi

and Z∗ = Zi. STOP.

Step 6d: Otherwise, set i = i+ 1 and go to Step 5.

The flow chart of our algorithm is given in Figure-1.
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Figure 1: Flow chart of our algorithm
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4. Numerical experiments

In this section, after presenting some examples for each solution case of the

LFP problem, we analyze the validity of our algorithm by generating random

large-scale test problems.

4.1. Illustrative examples

Example 1: (Optimal solution case) Consider the following example:

maxZ (x) =
2x1 + 3x2 − x3 + 5

x1 + 2x2 + 3x3 + 2

s.t.− 2x1 + x2 + 3x3 ≤ 2,

− x1 + x2 + 5x3 ≥ 1,

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

(14)

Step 1: The initial point x0 = (0, 0, 0.2) and the objective function value

Z0 = 1.8462 are determined by solving the following LP problem:

max 0

s.t.− 2x1 + x2 + 3x3 ≤ 2,

− x1 + x2 + 5x3 ≥ 1,

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

(15)

Step 2: With these initial values, the LP problem corresponding to (11) is

formed as:

max 0.1538x1 − 0.6924x2 − 6.5386x3

s.t.− 2x1 + x2 + 3x3 ≤ 2,

− x1 + x2 + 5x3 ≥ 1,

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

(16)

The optimal solution of (16) is x1 = (0, 1, 0) and the objective function value is

Z1 = 2.

Step 2a: Since the problem (16) is bounded, then x2 = x1
∗ = (0, 1, 0) and

Z2 = Z (x2) = 2, and go to Step 3.

Step 3d: Since Z1 ̸= Z0, then set i = 1 , and go to Step 2.
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Step 2: With these values, the LP problem corresponding to (11)is formed

as:

max − x2 − 7x3

s.t.− 2x1 + x2 + 3x3 ≤ 2,

− x1 + x2 + 5x3 ≥ 1,

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

(17)

The optimal solution of (17) is x2 = (0, 1, 0) and the objective function value is

Z2 = 2.

Step 3c: Since Z2 = Z1, then the optimal solution of Example 1 and the

optimal objective value are x∗ = x∗
2 = (0, 1, 0) and Z∗ = Z∗

2 = 2, respectively.

Example 2: (an asymptotic solution)

To demonstrate an asymptotic solution for the LFP problem, let us consider

the following example:

maxZ (x) =
2x1 + 3x2 − x3

x1 + 2x2 + 3x3

s.t.− 2x1 + x2 + 3x3 ≤ 2,

− x1 + x2 + 5x3 ≥ 1,

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

(18)

Step 1: The initial point x0 = (0, 0, 0.2) and the objective function value

Z0 = −0.3333 are determined by solving the following LP problem:

max 0

s.t.− 2x1 + x2 + 3x3 ≤ 2,

− x1 + x2 + 5x3 ≥ 1,

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

(19)
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Step 2: With these initial values, the LP problem corresponding to (11) is

formed as:

max 2.3333x1 + 3.6667x2

s.t.− 2x1 + x2 + 3x3 ≤ 2,

− x1 + x2 + 5x3 ≥ 1,

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

(20)

The Problem (20) is unbounded, then go to Step 2b.

Step 2b: Since the problem (20) is unbounded, then set Z̄0 = Z0 =

−0, 3333, and go to Step 4.

Step 4: Consider the following problem

max 2.3333V1 + 3.6667V2

s.t.− 2V1 + V2 + 3V3 ≤ 0,

− V1 + V2 + 5V3 ≥ 0,

V1 + V2 + V3 = 1,

V1 ≥ 0, V2 ≥ 0, V3 ≥ 0.

(21)

The optimal solution of (21) is V1 = (0.3333, 0.6667, 0) and the objective

function value is Z̄ (V1) = Z̄1 = 1.6.

Step 4b: Since Z̄1 > Z̄0, set i = 1 and go to Step 4.

Step 4: Consider the following problem

max 0.4V1 − 0.2V2 − 5.8V3

s.t.− 2V1 + V2 + 3V3 ≤ 0,

− V1 + V2 + 5V3 ≥ 0,

V1 + V2 + V3 = 1,

V1 ≥ 0, V2 ≥ 0, V3 ≥ 0.

(22)

The optimal solution of (22) is V2 = (0.5, 0.5, 0) and the objective function

value is Z̄2 = 1.6667.

Step 4b: Since Z̄2 > Z̄1, set i = 2 and go to Step 4.
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Step 4: Consider the following problem

max 0.3333V1 − 0.3334V2 − 6.0001V3

s.t.− 2V1 + V2 + 3V3 ≤ 0,

− V1 + V2 + 5V3 ≥ 0,

V1 + V2 + V3 = 1,

V1 ≥ 0, V2 ≥ 0, V3 ≥ 0.

(23)

The optimal solution of (23) is V3 = (0.5, 0.5, 0) and the objective function

value is Z̄3 = 1.6667.

Step 4c: Since Z̄2 = Z̄3, set Z3 = Z̄3, and go to Step 5.

Step 5: Consider the following problem

max 0.3333x1 − 0.3334x2 − 6.0001x3

s.t.− 2x1 + x2 + 3x3 ≤ 2,

− x1 + x2 + 5x3 ≥ 1,

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

(24)

The optimal solution of (24) is x4 = (0, 1, 0) and the objective function value

is Z4 = 1.5.

Step 5a: The problem (24) is bounded. Then, set x4 = x∗ and Z4 = Z(x4)

go to Step 6b.

Step 6b: Since Z3 > Z4, then sup
S

Z(x) = Z3 = 1.6667.

Example 3: (an unbounded solution)

To demonstrate an unbounded solution for the LFP problem, let us consider

the following example:

maxZ (x) =
2x1 + 3x2 − x3

x1 + 2x2 + 3x3 − 1

s.t.− 2x1 + x2 + 3x3 ≤ 2,

− x1 + x2 + 5x3 ≥ 1,

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

(25)
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Step 1: The initial point x0 = (0, 0, 0.2) and the objective function value

Z0 = 0.5 are determined by solving the following LP problem:

max 0

s.t.− 2x1 + x2 + 3x3 ≤ 2,

− x1 + x2 + 5x3 ≥ 1,

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

(26)

Step 2: With these initial values, the LP problem corresponding to (11)

formed as:

max 1.5x1 + 2x2 − 2.5x3

s.t.− 2x1 + x2 + 3x3 ≤ 2,

− x1 + x2 + 5x3 ≥ 1,

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

(27)

The Problem (27) is unbounded, then go to Step 2b.

Step 2b: Since the problem (27) is unbounded. Then, set Z̄0 = Z0 = 0.5,

and go to Step 4.

Step 4: Consider the following problem

max 0.3333V1 + 0.6667V2

s.t.− 2V1 + V2 + 3V3 ≤ 0,

− V1 + V2 + 5V3 ≥ 0,

V1 + V2 + V3 = 1,

V1 ≥ 0, V2 ≥ 0, V3 ≥ 0.

(28)

The optimal solution of (28) is V1 = (0.3333, 0.6667, 0) and the objective

function value is Z̄ (V1) = Z̄1 = 4.

Step 4b: Since Z̄1 > Z̄0, set i = 1 and go to Step 4.
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Step 4: Consider the following problem

max − 2V1 − 5V2 − 13V3

s.t.− 2V1 + V2 + 3V3 ≤ 0,

− V1 + V2 + 5V3 ≥ 0,

V1 + V2 + V3 = 1,

V1 ≥ 0, V2 ≥ 0, V3 ≥ 0.

(29)

The optimal solution of (29) is V2 = (0.5, 0.5, 0) and the objective function

value is Z̄2 = 5.

Step 4b: Since Z̄2 > Z̄1, set i = 2 and go to Step 4.

Step 4: Consider the following problem

max − 3V1 − 7V2 − 16V3

s.t.− 2V1 + V2 + 3V3 ≤ 0,

− V1 + V2 + 5V3 ≥ 0,

V1 + V2 + V3 = 1,

V1 ≥ 0, V2 ≥ 0, V3 ≥ 0.

(30)

The optimal solution of (30) is V3 = (0.5, 0.5, 0) and the objective function

value is Z̄3 = 5.

Step 4c: Since Z̄2 = Z̄3, set Z3 = Z̄3, and go to Step 5.

Step 5: Consider the following problem

max − 3x1 − 7x2 − 16x3

s.t.− 2x1 + x2 + 3x3 ≤ 2,

− x1 + x2 + 5x3 ≥ 1,

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

(31)

Step 5b: The problem (31) is unbounded, then the LFP problem is un-

bounded.

4.2. Generation of test problems

We randomly generate a number of test instances to validate the proposed

solution method. The size of an instance is given by the Number of Variables
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(NoV ) and Number of Constraints (NoC). For each problem instance, we

generate the coefficient matrixA, the right-hand side vector b, and the objective

coefficients c, d and constants α and β that are unrestricted in sign for a specified

(NoV,NoC) to meet the requirement
(
dTx+ β

)
> 0. All these parameters are

generated as random integer numbers chosen from the uniform distribution.

By the generation of test problems, we aim to assess the effect of NoV and

NoC on the total execution time and the iteration number of our algorithm.

The sizes of the generated test problems, the maximum and minimum of the

number of iterations and the CPU times (in seconds) of the algorithm are given

in Table 1. Here, we note that one iteration refers to a new point generated by

our algorithm. Also, the results in Table 1 do not contain unbounded, infeasible

or asymptotic solution cases. For each class, ten problem instances are generated

and solved using the software GAMS 24.1.3. All the computational experiments

were carried out on a computer with a 2.7 GHz processor and 8GB RAM running

Windows 10 Pro.

Table 1 also presents the comparison results of our algorithm with Ozkok

[21]. The same starting point is used in the executions to make a reasonable

comparison. In reporting CPU times, the time to obtain the starting point has

been excluded.

Table 1 shows that our algorithm can reach the optimal solution for differ-

ent sizes of the problem within a reasonable number of iterations, even with

large problem instances. As the size of the problem increases, the CPU time

is increasing as well for both algorithm. We can clearly say that our algorithm

outperforms Ozkok [21] when both iteration numbers and CPU times are taken

into account.

Additionally, Figure 2 and Figure 3 represent the average number of iter-

ations and average CPU time (in seconds) of our algorithm for the specified

(NoV,NoC), respectively.
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Table 1: Comparison results of the proposed algorithm and [21].

Class Number of iterations CPU Time (in seconds)

(NoV,NoC) Min [Our Method] Min [21] Max [Our Method] Max [21] Min [Our Method] Min [21] Max [Our Method] Max [21]

1 (5, 5) 1 2 4 4 0.171 0.195 0.689 0.874

2 (10, 10) 2 2 4 10 0.176 0.256 0.779 0.895

3 (20, 20) 2 5 6 10 0.365 0.369 0.826 0.917

4 (30, 30) 3 6 5 10 0.604 0.71 1.078 1.264

5 (40, 40) 3 3 6 15 0.545 0.556 1.148 1.209

6 (50, 50) 3 7 10 11 0.42 0.499 0.733 0.767

7 (60, 60) 5 6 8 14 0.457 0.494 0.895 0.967

8 (70, 70) 4 6 8 14 0.566 0.581 0.765 0.797

9 (80, 80) 5 6 8 11 0.483 0.493 0.912 0.987

10 (90, 90) 5 5 9 18 0.497 0.499 0.958 1.071

11 (100, 100) 4 6 9 12 0.697 0.882 1.271 1.382

12 (200, 200) 6 6 9 8 1.031 1.106 1.476 1.645

13 (350, 350) 6 6 8 7 1.445 1.514 2.226 2.666

14 (500, 500) 6 6 7 9 3.604 3.72 6.176 6.876

15 (750, 750) 6 7 8 11 11.965 12.217 17.825 18.684

16 (1000, 1000) 6 7 7 10 32.642 34.01 39.135 39.372

Figure 2: (NoV,NoC) vs average number of iterations.

5. Conclusion

In this paper, an exact iterative algorithm by providing an extension and

improvement to Ozkok [21] based on the traditional continuity definition is

developed for the LFP problem. With this new extended algorithm, we aim

at removing the model dependency on the big-M coefficients. Our proposed

algorithm converts the LFP problem to a linear programming problem and

constructs an iterative procedure. Whereas most of the existing methods in the
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Figure 3: (NoV,NoC) vs average CPU time (in seconds)

literature find the optimal solution over a bounded convex region, our algorithm

is able to solve all LFP problems that have a bounded or unbounded feasible

region. Moreover, our algorithm is easily applicable and is capable of generating

all types of solutions of LFP such as optimal, unbounded or asymptotic. As a

result, considering the performance of our algorithm on large-scale examples,

it can be said that it is more effective than Ozkok’s algorithm. A limitation

of our algorithm is that it cannot solve LFP problems involving frequently en-

countered uncertainty situations in real life. In future studies, our algorithm

will be modified to solve fuzzy LFP problems. In addition, we aim to apply our

algorithm to real life problems by investigating specific application areas such

as resource allocation, transportation, production, finance, location theory, etc.
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