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Abstract

This paper presents a comprehensive approach for modeling and classification of air gap asymmetry and

inter-turn short circuit faults in ladder-secondary linear induction motors (LS-LIMs). It is based on a modified

Magnetic Equivalent Circuit (MEC) model incorporated with a current signal-based fault detection method using

Convolution Neural Network (CNN). The feature sets of the mentioned faults are classified separately by a CNN,

and the training and test data are extracted using three-phase currents obtained from MEC. For this purpose, both

healthy and faulty motors are modeled initially by the proposed MEC model to generate different labeled data for

training the designed CNNs. It is also shown that fault diagnosis of this motor by Fast Fourier Transform (FFT) is

not possible. Finally, the proposed networks are trained based on the obtained currents from Finite Element Method

(FEM) to validate their accuracy. Since faults diagnosis in LS-LIMs based on CNN has not been introduced in the

relevant literature so far, it is presented in this paper for the first time.

Index Terms

Ladder-secondary linear induction machine (LS-LIM), Inter-turn short circuit, Air gap asymmetry, Magnetic

Equivalent Circuit (MEC), Convolution neural network (CNN)
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I. INTRODUCTION

Recently, different topologies of linear motors have been modeled and investigated in order to use in

various industries. The most common of which are linear synchronous and induction machines (LSMs and

LIMs), which are well-known because of their specific features, such as low construction cost and high

efficiency, respectively. Although LSMs need a driver to have a stable performance and motion control

[1]–[3], LIMs are self starting linear motors with low manufacturing cost and simple structure. Hence,

they are widely used in many applications such as rail transportation thanks to their simplicity and low

maintenance cost [4], [5]. Traditional LIMs are usually in three-phase type, but they can also be designed

based on single and multi-phase power supply [6]. In addition, their secondary structure can be designed

in the form of a flat iron sheet [2] or a ladder structure [7]. LIMs inherently suffer from low efficiency

and power factor and it is obvious that various faults resulted from electromagnetic and mechanical

stress during operation can also cause further reduction in these output parameters. The occurrence of

faults disrupts normal operation of motors and even leads to huge economic losses and injury events

[8]. Therefore, fault diagnosis can play an active role in increasing the efficiency and lifetime of motors.

The basis of any reliable diagnosis method is modeling the motor performance under healthy and faulty

conditions, so a comprehensive model of ladder-secondary linear induction motors (LS-LIMS) considering

all their phenomena is required [9]. Finite Element Method (FEM) and Magnetic Equivalent Circuit

(MEC) have been so far the most popular and effective methods for modeling of electrical machines.

However, MEC method has more adjustable accuracy and shorter simulation time in comparison with

FEM [10]. A comprehensive MEC model with adjustable accuracy for a healthy LS-LIM considering

end-effect and saturation is proposed in [7], which is also used in this paper after some modifications to

model both healthy and faulty cases by a single MEC model.

Although there are many researches about different faults diagnosis in rotatory electrical machines in the

literature [11]–[15], very limited investigations have been conducted about LIMs fault detection, so far

[16]–[20]. The current signature analysis (CSA) and vibration signal analysis are known as the main

fault diagnosis methods [21]. However, fault detection based on the stator current is more popular due

to the sensitivity of vibration to background noise [22]. Inter-turn short circuit in a LIM is studied and

detected in [16], using a parameter evaluation method based on 3-phase equivalent circuit model. In [17],

CSA is applied for detection and estimation of bearing faults in induction machines, where Fast Fourier

Transform (FFT) is used to determine the severity of an outer race bearing fault. Using vibration signals

for bearing fault detection based on FFT in different situations encountered during operation without

considering LIMs phenomena is presented in [18]. In [19], an asymmetric structure of MEC is introduced

for analysis of the internal short circuit fault in LIMs, where the end effect and saturation are neglected.
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In [20], the healthy and faulty LIMs are simulated by time stepping FEM and a Fourier-based transform

is applied to analyze the air gap asymmetry fault. The end effect and saturation are not considered

accurately in these researches, which can affect fault diagnosis.

Recently, deep learning methods (DL) [23] have also drawn significant attention in electrical machines

fault detection thanks to their success in pattern recognition and classification [22], [24]–[27]. The most

noticeable advantage of DL methods over classical ones is their strong capability for automatically

extracting features from raw data [22]. In [24], diagnosing gear fault in a rotary LIM based on two

main modules called information fusion and decision making is presented. Inter-turn short circuit fault

in permanent magnet synchronous motor is detected by a DL-based method in [26] to show its higher

accuracy compared to classical methods. Convolution Neural Network (CNN) is also one of the most

widely used DL-based methods that have multiple layers. A CNN classifier for gearbox faults under

various constant loads and speeds is presented in [28]. Based on the authors’ knowledge and the above

illustrations, it seems that few investigations have been done on fault detection in LS-LIMs. Therefore, this

paper presents a comprehensive approach based on a modified MEC model according to [7] incorporated

with CNN to detect inter-turn short circuit and air gap asymmetry faults. Therefore, the paper novelties

are summarized as follows:

A- Modeling inter-turn and air gap asymmetry faults in a LS-LIM based on a flexible MEC model

under different conditions.

B- Diagnosis and classification of inter-turn and air gap asymmetry faults in a LS-LIM by two

separate CNNs.

II. CONSIDERED MEC FOR LS-LIM MODELING

In this paper, both healthy and faulty LS-LIMs are modeled by a single MEC model thanks to its

capability and shorter processing time compared to FEM. The flexible MEC model is used recently for

modeling rotational [29], [30], and linear electric machines modeling [7]. This flexible model is capable

of modeling LS-LIM with different dimensions, poles and slot numbers under different loads, where

the core nonlinearity is fitted on the material B-H curve. This model also makes it possible to consider

end effect that is an important phenomenon in linear motors [31], actuators, and sensors [32], [33] by

considering two virtual zones with desired accuracy at both entrance and exit ends of the primary. It is

notable to say that current features in a LS-LIM are influenced by end effect in addition to saturation,

so considering this can have a significant impact on finding the faults detection patterns. The motor

structure and its MEC model are shown in Figs. 1 and 2, respectively. Moreover, the matrix form of the
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whole system equations derived from MEC model is written in Eq. (1), where all of the space and time

harmonics are considered. All of the equations leading to this general equation are fully explained in [7].

Fig. 1. LS-LIM structure and dimension

Fig. 2. Proposed MEC for a sample of LS-LIM with nv = 1, n11 = 2, n12 = 3, n21 = 2, n22 = 2
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III. FAULTS MODELING

Studied faults are shown in Fig. 3, where inter-turn fault is modeled by creating a short circuit on

phase A. For this purpose, Nf of the total turns (Ns) are shorted by Rf resistance, so Rf →∞ and

Rf → 0 denote healthy and faulty conditions, respectively. Moreover, air gap asymmetry is modeled by

defining two different values for the machine air gap at the entrance and exit ends (δ1 and δ2). Hence,

Ass, App, Aps, Asp, Wp, Rs and Mp matrices in [7] need to be changed due to some modifications

in the air gap permeances and primary windings resistance and inductance matrices.

A. Air Gap Permeances for Asymmetry Modeling

The air gap permeances are modeled for healthy and faulty LS-LIM with air gap asymmetry. Considering

0 ≤ m ≤ 1 as the asymmetry indexes, the permeance between the ith mover and jth stator flux tubes

function (G′) is computed by Eq. (5) based on Eqs. (2)-(4).

(a) (b)

Fig. 3. Studied faults (a)- Air gap asymmetry fault (b)- Windings diagram in healthy and faulty cases with inter-turn fault
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Gp(θ) =
1∑

k=−1

G(θ − 2kπ) (4)

G′(θact, i, j) = Gp
(
θ − (i− 1)γp+ (j − 1)γs

)
(5)

In the Eqs (2)-(5):
γp = θp

np
, γs = 2π

ns
, γt = max (γs, γp)

β = log(
rpi
rso

)

(6)

Gm is defined as bellow function, where gap(θact, i,m) is the air-gap function.

Gm(θ, i,m) = µ0 × l ×
min(lp/np, ls/ns)

gap(θ, i,m)
(7)

The permeance between the given i and j nodes (Gij) can be computed by Eq. (8), where the gap function

is written in Eq. (9).

Gij , Gm(θ, i,m)G′(θ, i, j) (8)


gap(θ, i,m) = δ1 + γm(i− 1)m− lv

lm
(δ2− δ1)

m = δ2−δ1
θp

lp
lp+2lv

(9)

B. Inter-Turn Fault Modeling

Inter-turn fault modeling needs some modifications in windings resistance and inductance matrices

compared to [7]. Considering Nw as the total number of the conductors per phase, the Rs and L matrices

with shorted part in phase A can be written as below:

Rs =


Ra(1− Nf

Nw
) +Rf 0 0 −Rf

0 Ra 0 0

0 0 Ra 0

0 0 −Rf Ra(Nf
Nw

) +Rf

 (10)
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L =


Ln Ln Ln 0

Ln Ln Ln 0

Ln Ln Ln 0

0 0 0 0

 (11)

IV. FAULT DIAGNOSIS METHOD

In this section, the fault detection methods are applied to a 2-pole LS-LIM with parameters tabulated

in Table I. The studied machine is chosen deliberately because the end effect phenomenon has more vivid

influence on the current signature of LS-LIMs with a lower pole pair number (lower than 6) [31]. At first,

it is shown that current signature analysis using FFT method is not efficient for fault diagnosis of this

machine. Hence, signal analysis based on CNN is used to provide an accurate results. Some procedure of

classical fault diagnosis methods can be omitted by using deep learning technique. In spite of classical

methods, it can help to find patterns of signals which are not recognizable directly by user [26].
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TABLE I

PARAMETERS OF SIMULATED LS-LIM (270 Vrms , Y CONNECTED) [7]

Dimension

Parameter Symbol value

Number of primary slots nps 6

Effective depth (cm) l 15

Primary yoke height (cm) hp2 2

Primary slot height (cm) hp1 3

Secondary bar height (cm) hs1 0.3

Secondary iron height (cm) hs2 1

Width of the primary slot (cm) xps 1

Width of the primary tooth (cm) xpt 2.5

Virtual zone width (cm) xv 5

Mass of the primary (kg) m 12

Secondary inter-bars width (cm) xts 1

Secondary bars width (cm) xbs 1

Air-gap length (mm) δ 5

Electrical properties

Parameter Symbol value

Rated power (kW ) Pmax 3.5

Rated speed (m/s) vm 5.5

Number of poles p 2

Turn number/pole/ phase Ns 200

Windings resistance (Ω) Ra 2

Copper Bars resistivity (Ω.m) ρ 17× 10−9

Voltage source frequency (Hz) f 50

Synchronous speed (m/s) vsyn 9.5

Considered accuracy

Parameter Symbol value

Number of flux tubes in xv nv 1

Number of elements in xps n12 3

Number of flux tubes in xpt n11 2

Number of flux tubes in xbs n21 2

Number of flux tubes in xts n22 2

A. Application of FFT for Fault Diagnosis

Fourier transform is the most common frequency domain tool, which can extract the main point

of amplitude, harmonic amplitude and sidebands. This diagnosis algorithm needs two steps of feature

extraction and fault classification depending on expert’s experience. Classification and finding a proper

pattern based on fault signs in this way is very difficult and even impossible, especially in complex

machines. Since LS-LIMs current signature is affected by end effect in addition to saturation, its fault
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detection is more complicated than rotary ones. In order to investigate the performance of FFT, the

LS-LIM under different loads are simulated and some of results are shown in Fig. 4. It is notable

to say that the synchronous speed of this motor which is actually the same as the unloaded speed is

vsyn = 9.5 m/s. The simulated scenarios are as follows:

Scenario 1: Healthy LS-LIM under FL = 200 N and FL = 400 N .

Scenario 2: Asymmetric air gap (ASG) fault with δ1 = 2.5 mm and δ2 = 7.5 mm under

FL = 200 N and FL = 400 N .

Scenario 3: Inter-turn short circuit fault (IT) with Rf = 0.2 Ω and Nf = 5 under FL = 200 N

and FL = 400 N .

Based on the authors’ investigations, finding any patterns related to slip and speed according to the

obtained harmonic spectrums for this machine is not possible due to its complexity. Therefore, a CNN

framework based on deep learning method is needed, which its usage in machine fault diagnosis is a

relatively new area. CNN has the ability of automatic feature extraction, and this makes it resilient to

dependence on manual feature extraction and selection.

(a) (b)

(c)

Fig. 4. PSD of stators’ current under healthy and faulty conditions (a)- healthy (b)- ASG fault (c)-IT fault
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B. Application of CNN for Fault Diagnosis

Data-driven fault classifiers such as CNN method have sparked great interests in fault diagnosis of

electrical machines. It is one of the most effective DL-based network for signal classification, especially

where the significant features are ambiguous. In fact, resorting to a proper set of input features is the

most significant advantage of neural network methods over traditional techniques [34]. The schematic of

a typical CNN is shown in Fig. 5, where its several layers jointly perform both feature extraction and

classification functions. As can be seen, it consists of an input layer, an output layer, and multiple hidden

layers (a series of convolutional layers). At first, raw data for both healthy and faulty conditions resulted

from modeling are fed to the network by input layer. Then, various features are learnt from the training

data in convolutional layers (CONV). They are sometimes followed by activation functions, pooling,

normalization, or fully connected layers. Finally, the extracted features are fed into a fully connected

layers with the Softmax activation function to drive the final classification decision.

V. SIMULATION RESULTS

In this section, simulation results for healthy and faulty cases are presented to evaluate the effectiveness

of the proposed method. For this purpose, the performance of LS-LIM under healthy and faulty conditions

including inter-turn, air gap asymmetry and both faults simultaneously are simulated to train and test the

CNNs. In the proposed fault detection method, two networks are designed for diagnosing each studied

fault because their extracted features are so close to each other, which makes it impossible to use a single

CNN. However, the measured winding currents are the input of both CNNs and the architectures of them

are the same. The mentioned CNNs consist of different layers as follows:

Fig. 5. A sample schema of a CNN with three hidden layers
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~-A 2D input layer

~-A CONV layer with five 3× 5 filters and hyperbolic tangent activation function

~-A max pooling layer to reduce dimension of the features without losing information

~-A CONV layer with fifteen 3× 5 filters and rectified linear unit activation function

~-Another max pooling layer to reduce the number of parameters and computation in the network

~-A dropout layer

~-A FC with 2 neurons and Softmax activation function corresponding to motor operation conditions as

the output layer

The batch size and learning rate of CNNs are heuristically adjusted at 64 and 0.005, respectively.

The simulation results are separated into train and test datasets, while 20% of the training data is randomly

selected for validation. The obtained currents from simulation of the mentioned scenarios in Table II are

used to provide train and test datasets, where the duration and sampling time for each scenario is 1.5 sec

and 0.5 msec, respectively. It is notable that a window with a length of 200 samples is also applied on

the measured signals, so a 3× 200 matrix yields as the input layer of the CNNs. The last half second of

the measured signals are used for training and testing procedures in which the overlap of two consecutive

windows is 50 samples. Since the training procedure is a stochastic one, its algorithm is repeated 20

times for each CNN to reach reliable results.

According to the presented mean and standard deviation in Table III, it can be seen that the accuracy of

both networks for training and testing data are more than 90%. The confusion matrices for both proposed

CNNs are also brought in Table IV to show the accuracy of each network in classification of different

cases. It is illustrated that the proposed CNN for detection of inter-turn fault can predict the whole faulty

cases accurately and only 7% of healthy cases are misclassified. On the other hand, another CNN can

classify all healthy cases correctly and its prediction accuracy for distinguishing air gap asymmetry fault

is 90%. Therefore, the proposed method provides an intelligent, efficient, and computationally viable

solution for the multiple fault diagnosis in LS-LIM compared to FFT. It is notable to say that this method

is faster than FFT because after giving the resulted currents to these networks, they can predict the related

classes automatically and do not depend on the user’s decision.
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TABLE II

DIFFERENT CONSIDERED SCENARIOS FOR GENERATION TRAIN AND TEST DATASETS

Data Condition FL (N) Nf Rf (Ω) δ1 (mm) δ2 (mm)

Healthy
0 0 ∞ 5 5

200 0 ∞ 5 5

ASG

250 0 ∞ 7 3

250 0 ∞ 8 2

350 0 ∞ 4 6

450 0 ∞ 7.5 2.5

Tr
ai

n

IT

0 10 1 5 5

200 5 0.05 5 5

200 5 1 5 5

400 5 1 5 5

400 5 10 5 5

600 5 10 5 5

IT & ASG
0 5 0.05 4 6

200 5 0.05 4 6

Healthy 400 0 ∞ 5 5

ASG
250 0 ∞ 6 4

300 0 ∞ 4.5 5.5

Te
st

IT

150 30 0.25 5 5

200 40 1 5 5

250 100 5 5 5

300 5 0.05 5 5

400 5 0.05 5 5

IT & ASG
300 5 0.05 4 6

400 5 0.05 4 6

TABLE III

MEAN AND STANDARD DEVIATION OF ACCURACY FOR DESIGNED CNNS

Accuracy

Train Dataset Test Dataset

CNN for IT Fault Detection 96± 2% 93± 3%

CNN for ASG Fault Detection 98± 1% 92± 2%
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TABLE IV

CONFUSION MATRICES FOR DESIGNED CNNS

CNN for IT fault diagnosis
Predicted Class

Healthy IT

Healthy 0.93 0.07

IT 0 1.00

CNN for ASG fault diagnosis
Predicted Class

Healthy ASG

Healthy 1.00 0

ASG 0.10 0.90

VI. VALIDATION BY 2D FEM

In this part, the designed CNNs are trained by the obtained currents from 2D-FEM via Maxwell

software based on the same assumptions as mentioned in the section V and defined parameters in Table I.

A 16 MB-RAM, 2.5 GHz computer is used for simulation, where a 0.01 mm Length-based Mesh and

∆t = 0.005 ms are applied to reach trustable results. For this purpose, several healthy and faulty scenarios

are simulated by 2D-FEM as below:

Scenario 1: No-load Healthy LS-LIM.

Scenario 2: Healthy LS-LIM under FL = 200 N .

Scenario 3: LS-LIM with ASG fault (δ1 = 2.5 mm and δ2 = 7.5 mm under FL = 250 N ).

Scenario 4: LS-LIM with ASG fault (δ1 = 4 mm and δ2 = 6 mm under FL = 200 N ).

Scenario 5: LS-LIM with IT fault (Rf = 0.5 Ω and Nf = 10 under FL = 200 N ).

Scenario 6: LS-LIM with IT fault (Rf = 10 Ω and Nf = 10 under FL = 400 N ).

The resulted currents are given to the proposed CNNs, and the accuracy of test datasets for the neural

networks are shown in Table V. As can be seen, the accuracy of the proposed CNNs for the whole test

datasets are more than 90% based on the obtained currents from 2D FEM. It can be concluded that the

fault diagnosis networks based on FEM results have a good accuracy as well as based on the obtained

currents from MEC. Moreover, some of the resulted currents curves from FEM are illustrated in Fig. 6 to

show that faulty cases are not possible to be detected by comparing the general form of currents figures

in faulty machine with the healthy one without extraction of their frequency features and finding a proper

pattern.
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Fig. 6. Currents curves for some investigated scenarios

Moreover, in Fig. 7 figure, it is shown that there is a minor difference between the current amplitude

of phase A in faulty scenarios in comparison with the healthy one. In addition, thrust and primary

speed of machine for these scenarios are brought in Fig. 8. As can be seen from these figures, it is

impossible to diagnose faulty cases from speed, current or thrust curves with the naked eye and it requires

a comprehensive approach.

Fig. 7. Thrust and primary speed for some scenarios
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Fig. 8. Thrust and primary speed for some scenarios

TABLE V

ACCURACY OF THE DESIGNED CNNS BASED ON FEM RESULTS

Scenario Test Dataset

Healthy (1) 95%

Healthy (2) 91%

ASG (3) 90%

ASG (4) 92%

IT (5) 93%

IT (6) 93%

VII. CONCLUSION

In this paper, a novel method for multiple faults classification in a 2-pole LS-LIM using a convolutional

neural network based on a comprehensive MEC model is presented. It is demonstrated that, despite the

fact that CNN algorithms require a large dataset to train, they can automatically perform adaptive feature

extractions on the obtained currents without any prior expertise on fault characteristic frequencies. This

feature makes this method more efficient than FFT in finding a proper pattern in a such complicated

machine, which is impossible or very difficult to be derived by user directly. Moreover, the confusion

matrices for the designed CNNs show that they have an acceptable accuracy in classifying air gap

asymmetry and inter-turn short circuit faults. For validation, the obtained currents from 2D FEM in both

faulty and healthy conditions are also given to the designed CNNs, which confirm the good accuracy of

the proposed networks.



JOURNAL OF LATEX CLASS FILES, VOL. 54, NO. 11, MARCH 2017 16

REFERENCES

[1] Salimi, H., Zakipour, A., and Asadi, M. “A novel analytical approach for time-response shaping of the pi controller in field oriented

control of the permanent magnet synchronous motors,” Journal of Electrical and Computer Engineering Innovations (JECEI),

pp. 463–476, 2022.

[2] Niknafs, S., Shiri, A., and Bagheri, S. “Modeling and analysis of flat double-sided linear permanent magnet synchronous generator by

magnetic equivalent circuit,” Journal of Electrical and Computer Engineering Innovations (JECEI), vol. 10, no. 1, pp. 17–24, 2022.

[3] Heidary, M., Naderi, P. and Shiri, A. “Modeling and analysis of a multi-segmented linear permanent-magnet synchronous machine

using a parametric magnetic equivalent circuit,” Electrical Engineering, vol. 104, no. 2, pp. 705–715, 2022.

[4] Lv, G., Zhou, T., Zeng, D., et al. “Influence of secondary constructions on transverse forces of linear induction motors in curve rails

for urban rail transit,” IEEE Transactions on Industrial Electronics, vol. 66, no. 6, pp. 4231–4239, 2018.

[5] Esfahanian, H. R., Hasanzadeh, S., Heydari, M., et al. “Design, optimization, and control of a linear tubular machine integrated with

levitation and guidance for maglev applications,” Scientia Iranica, 2021.

[6] Hamedani, P., Sadr, S., and Shoulaei, A. “Independent fuzzy logic control of two five-phase linear induction motors supplied from a

single voltage source inverter,” Journal of Electrical and Computer Engineering Innovations (JECEI), vol. 10, no. 1, pp. 195–208,

2022.

[7] Naderi, P., Heidary, M., and Vahedi, M. “Performance analysis of ladder-secondary-linear induction motor with two different secondary

types using magnetic equivalent circuit,” ISA transactions, 2020.

[8] Faiz, J., Ebrahimi, B., and Sharifian, M. “Different faults and their diagnosis techniques in three-phase squirrel-cage induction motorsa

review,” Electromagnetics, vol. 26, no. 7, pp. 543–569, 2006.

[9] Feng, Z., Chen, X., and Zuo, M. J. “Induction motor stator current am-fm model and demodulation analysis for planetary gearbox

fault diagnosis,” IEEE Transactions on Industrial Informatics, vol. 15, no. 4, pp. 2386–2394, 2018.

[10] Sheikh-Ghalavand, B., Vaez-Zadeh, S., and Isfahani, A. H. “An improved magnetic equivalent circuit model for iron-core linear

permanent-magnet synchronous motors,” IEEE Transactions on Magnetics, vol. 46, no. 1, pp. 112–120, 2009.

[11] Naderi, P. and Shiri, A. “Rotor/stator inter-turn short circuit fault detection for saturable wound-rotor induction machine by modified

magnetic equivalent circuit approach,” IEEE Transactions on Magnetics, vol. 53, no. 7, pp. 1–13, 2017.

[12] Ali, M. Z., Shabbir, M. N. S. K., Liang, X., et al. “Machine learning-based fault diagnosis for single-and multi-faults in induction

motors using measured stator currents and vibration signals,” IEEE Transactions on Industry Applications, vol. 55, no. 3, pp. 2378–2391,

2019.

[13] Corral-Hernandez, J. A. and Antonino-Daviu, J. A. “Thorough validation of a rotor fault diagnosis methodology in laboratory and

field soft-started induction motors,” Chinese Journal of Electrical Engineering, vol. 4, no. 3, pp. 66–72, 2018.

[14] Liang, X., Ali, M. Z., and Zhang, H. “Induction motors fault diagnosis using finite element method: A review,” IEEE Transactions on

Industry Applications, vol. 56, no. 2, pp. 1205–1217, 2019.

[15] Faiz, J., Ghasemi-Bijan, M., and Ebrahimi, B. M. “Modeling and diagnosing eccentricity fault using three-dimensional magnetic

equivalent circuit model of three-phase squirrel-cage induction motor,” Electric Power Components and Systems, vol. 43, no. 11,

pp. 1246–1256, 2015.

[16] Utsumi, T. and Yamaguchi, I. “Detection and location of inter-turn short circuit in linear induction motor,” in 4th IEEE International

Symposium on Diagnostics for Electric Machines, Power Electronics and Drives, 2003. SDEMPED 2003., pp. 63–68, IEEE, 2003.

[17] Haddad, R. Z., Lopez, C. A., Pons-Llinares, J., et al. “Outer race bearing fault detection in induction machines using stator current

signals,” in 2015 IEEE 13th International Conference on Industrial Informatics (INDIN), pp. 801–808, IEEE, 2015.

[18] Bianchini, C., Immovilli, F., Cocconcelli, M., et al. “Fault detection of linear bearings in brushless ac linear motors by vibration

analysis,” IEEE Transactions on Industrial Electronics, vol. 58, no. 5, pp. 1684–1694, 2010.

[19] Nosrati, A. and Nazarzadeh, J. “Analysis of linear induction machines with internal fault by mec,” COMPEL-The international journal

for computation and mathematics in electrical and electronic engineering, 2017.



JOURNAL OF LATEX CLASS FILES, VOL. 54, NO. 11, MARCH 2017 17

[20] Faiz, J., Ghods, M., and Tajdyni, A. “Dynamic air gap asymmetry fault detection in single-sided linear induction motors,” IET Electric

Power Applications, vol. 14, no. 4, pp. 605–613, 2019.

[21] Chernyavska, I. and Vı́tek, O. “Analysis of air-gap eccentricity in inverter fed induction motor by means of motor current signature

analysis and stray flux of motor,” in 2017 IEEE 11th International Symposium on Diagnostics for Electrical Machines, Power

Electronics and Drives (SDEMPED), pp. 72–76, IEEE, 2017.

[22] Zhang, S., Wang, B., and Habetler, T. G. “Deep learning algorithms for bearing fault diagnostics-a review,” in 2019 IEEE 12th

International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED), pp. 257–263, IEEE,

2019.

[23] Topaloglu, I., “Deep learning based convolutional neural network structured new image classification approach for eye disease

identification,” Scientia Iranica, 2022.

[24] Razavi-Far, R., Hallaji, E., Farajzadeh-Zanjani, M., et al. “Information fusion and semi-supervised deep learning scheme for diagnosing

gear faults in induction machine systems,” IEEE Transactions on Industrial Electronics, vol. 66, no. 8, pp. 6331–6342, 2018.

[25] Wang, S., Bao, J., Li, S., et al. “Research on interturn short circuit fault identification method of pmsm based on deep learning,” in

2019 22nd International Conference on Electrical Machines and Systems (ICEMS), pp. 1–4, IEEE, 2019.

[26] Han, J.-H., Choi, D.-J., Park, S.-U., et al. “A study on fault classification system based on deep learning algorithm considering speed

and load condition,” in 2019 22nd International Conference on Electrical Machines and Systems (ICEMS), pp. 1–4, IEEE, 2019.

[27] Zhang, W., Hu, Y., Zeng, D., et al. “Motor bearing fault diagnosis based on deep learning,” in 2019 20th IEEE/ACIS International

Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD), pp. 8–14, IEEE,

2019.

[28] Chen, Z., Li, C., and Sanchez, R.-V. “Gearbox fault identification and classification with convolutional neural networks,” Shock and

Vibration, vol. 2015, 2015.

[29] Rostami, M., Naderi, P., and Shiri, A. “Modelling and analysis of permanent magnet vernier machine using flexible magnetic equivalent

circuit method,” IET Science, Measurement & Technology, vol. 16, no. 3, pp. 160–170, 2022.

[30] Sharouni, S., Naderi, P., Hedayati, M., et al. “Performance analysis of a novel outer rotor flux-switching permanent magnet machine

as motor/generator for vehicular and aircraft applications,” IET Electric Power Applications, vol. 15, no. 2, pp. 243–254, 2021.

[31] Shiri, A. and Shoulaie, A. “Design optimization and analysis of single-sided linear induction motor, considering all phenomena,” IEEE

Transactions on energy conversion, vol. 27, no. 2, pp. 516–525, 2012.

[32] Paymozd, A., Saneie, H., and Nasiri-Gheidari, Z. “Analytical modelling of linear resolver considering longitudinal end effect,” Scientific

Journal of Applied Electromagnetics, vol. 10, no. 1, 2022.

[33] Zare, F. and Nasiri-Gheidari, Z. “Improving the performance of helical motion resolver based on accurate modelling of longitudinal

end effect,” IET Electric Power Applications, 2022.

[34] Pal, M. and Edwards, M. G. “Archives of computational methods in engineering: Numerical convergence and the maximum principle,”

Archives of computational methods in engineering: state of the art reviews, vol. 17, no. 2, pp. 137–189, 2010.

Malihe Heidary was born in Tehran, Iran, in 1989. She received B.Sc. and M.Sc. degrees in electrical engineering

from Shahid Beheshti and Olom Tahghighat university of science and technology, Tehran, Iran , in 2013 and 2015,

respectively. She is currently working toward the Ph.D. degree in electrical engineering at Shahid Rajaee University

of Science and Technology, Tehran, Iran. Her areas of research interests include linear electric machines, renewable

energy and design, optimization, and performance analysis of electrical machines.



JOURNAL OF LATEX CLASS FILES, VOL. 54, NO. 11, MARCH 2017 18

Vahab Nekoukar received the B.Sc., M.Sc. and Ph.D. degrees in electrical engineering from the Khaje Nasir Toosi

University in 2005, Tarbiat Modares University in 2007 and Iran University of Science and Technology in 2012,

respectively. In 2014, he joined the School of Electrical Engineering, Shahid Rajaee Teacher Training University, as an

assistant professor. His current research interests include control of biological systems, robotics and machine learning.

Peyman Naderi was born in Ahvaz, Iran, in 1975. He received his B.S. degree in Electronic Engineering in 1998

and M.S. degree in Power Engineering from Chamran University, Iran, Ahvaz in 2001. He has a Ph.D. degree in

Power Engineering Science from K.N. Toosi University, Tehran, Iran. His interests are electrical machine modeling

and fault diagnosis and also power system transient. He is currently associate professor in Shahid Rajaee Teacher

Training University of Tehran, Iran.

Abbas Shiri was born in Hashtrood, Iran in 1980. He received the B.Sc. degree from Tabriz University and M.Sc.

and Ph.D. degrees from Iran University of Science and Technology all in electrical engineering in 2004, 2006 and

2013, respectively. He is currently an assistant professor at Shahid Rajaee Teacher Training University, Tehran, Iran.

His areas of research interests include linear electric machines, electromagnetic systems and actuators, electrical

machine design and modeling.


	Introduction
	Considered MEC for LS-LIM Modeling
	Faults Modeling
	Air Gap Permeances for Asymmetry Modeling 
	Inter-Turn Fault Modeling

	Fault Diagnosis Method
	Application of FFT for Fault Diagnosis
	Application of CNN for Fault Diagnosis

	Simulation Results
	Validation by 2D FEM
	Conclusion
	References
	Biographies
	Malihe Heidary
	Vahab Nekoukar
	Peyman Naderi
	Abbas Shiri


