
1  

Toward a sustainable economic production quantity model employing triple 

bottom line strategy: Uncertain multi-objective optimization with lost sales 

and full back-order 

 
Elnaz Ebrahimi 1,  

1 Department of Industrial Engineering, Mazandaran University of Science and Technology, Babol, Iran, 

(+98)911-100-2406, Elnazebrahimi211@yahoo.com 

 

Babak Shirazi1 *,  
1 Department of Industrial Engineering, Mazandaran University of Science and Technology, Babol, Iran, 

(+98)-912-109-9654, shirazi_b@icloud.com 

 

Iraj Mahdavi 1,  
1 Department of Industrial Engineering, Mazandaran University of Science and Technology, Babol, Iran, 

(+98)911-113-1380, Arashiraj@rediffmail.com 

 

Alireza Arshadi Khamseh2 

2 Industrial Engineering Department, Faculty of Engineering, Kharazmi University, Tehran, Iran,  

(+98)910-212-5323, Ar_arshadi@khu.ac.ir 

 
 

 

 
Abstract 

The triple bottom line (TBL) strategy has provided the manufacturers with optimized production systems to 

simultaneously achieve their economic, environmental, and social goals. This paper presents a multi-objective 

mixed-integer programming model for the sustainable economic production quantity (S-EPQ) based on the 

TBL strategy. The model is to optimize the total profits, environmental emissions of manufacturing activities, 

and the turnover cost of the workers, which leads to keeping a sustainable number of workers as the social 

factor based on the working hours. According to numerous uncertain factors in the production process, 

demand uncertainty and the possibility of shortage have been considered, including lost sales and full back-

order. Due to the NP-hardness of the problem, Particle Swarm Optimization (PSO) algorithm is employed to 

find the optimal solutions and make the operational decisions for the production system. To prove the 

applicability of the proposed sustainable production system, a case study was conducted in the dairy industry 

of Iran. Moreover, an extensive analysis was done to evaluate the performance of the proposed multi-

objective optimization model and heuristic solutions, and finally, some managerial insights were carried out 

for manufacturers of the dairy industry respecting the challenge of TBL. 

 

Keywords: Sustainable EPQ (S-EPQ); uncertainty; full back-order; lost sale; triple bottom line. 

 
 

1. Introduction 

 

 

Sustainable manufacturing has absorbed a great deal of interest in recent years, optimizing 

production systems based on economic, environmental, and social goals. A sustainable 

manufacturing trend is generally motivated by the triple bottom line (TBL) approach [1],[2]. The 

TBL approach employs the concept of sustainable development goals to simultaneously contribute to 
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the economic, environmental, and social factors. The convergent objectives of TBL need to 

reinforce, and a trade-off is necessary among divergent ones. For instance, producing smaller 

batches of various product types decreases holding costs and emissions. However, this conflicts with 

production emission and setup time reduction, leading to higher person-hour requirements [3]. 

Meanwhile, a higher inventory level is recommended to face the volatile market, but it contradicts 

environmental policy and increases expiration risk. Hence, this study aims to find a solution to attain 

an interaction between sustainability goals for a dairy manufacturing system. 

This study follows an economic production quantity (EPQ) concept to model a sustainable 

manufacturing system. This inventory model is shown its applicability in the industrial dairy 

companies to find an optimal production quantity, physical inventory, imperfect and expired goods, 

demand forecasting, emission cost and inventory cost [4], [5]. The EPQ is a classical inventory 

algorithm that focuses on economic performance while improving the impact of globalization and 

growing industrialization worldwide [6]. This study aims to shift the EPQ model conceptually to an 

S-EPQ to consider the environmental emissions of manufacturing, storage, and social justice for 

workers simultaneously. In this regard, the EPQ model is merged with the TBL strategy in a dairy 

manufacturing case study. 

The dairy industry generates massive emissions, discharges wastewater, and energy 

consumption [7],[8]. In this regard, environmental sustainability is a big challenge for dairy 

manufacturing. The first environmental emission is the first environmental emission of water 

consumption at cleaning the process line in each product type changeover for the production system. 

The wastewater is another emission resource collected from different salons and conveyed to the 

wastewater treatment centres. This process is directly affected by the variety of product types and the 

inventory levels for holding. The current EPQ model measures the emission of production, 

wastewater discharging, disposing of the imperfect items, holding products, and depleting expired 

products to achieve environmental sustainability. 

The last criterion of the TBL approach is social sustainability. Due to the lack of literature and 

the complex nature of the social dimension, it remained underexplored [9], [10]. The proposed EPQ 

model endeavors to achieve social justice as one of the TBL goals to enhance the workers' 

performance. The high competitiveness of the companies to meet the demand of customers in the 

volatile market caused the high variation in the required person-hour for production. This variation 

in working hours affects the hiring and firing rate of the worker. A high turnover rate discredits the 

company's reputation, directs the worker disloyal, and consequently harms performance. Based on 

this definition, the proposed EPQ model focuses on balancing the person-hour requirement, which 

significantly influences the company's social vision to achieve social sustainability. The proposed 

EPQ system not only links with the criteria of the TBL but also manages the uncertainty for dairy 

manufacturing. The products with deterministic shelf life become outdated and deplete at the end of 

a lifetime [11]. In addition, demand is one of the most efficient factors to decide on dairy 

manufacturing decisions. The value of most of the parameters in an inventory model is usually non-

crisped, impacting the entire system's behavior [12]. Manufacturers ought to be capable of producing 

products with a lower cost and higher quality in the shortest feasible time to supply the products on 

time to consumers [13].  As studied in most of the works, the demand has been considered a crisp 

number, which cannot present the fluctuation of market demand correctly. The proposed EPQ is also 

a multi-product and multi-period planning horizon by considering the shortage in each period. This 

study reflects the demand uncertainty and shortage conditions concerning perishability in dairy 

manufacturing. 
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The literature on EPQ is very rich in using different exact and heuristic algorithms. The level of 

decisions is operational, and the production managers may need to find a solution in a reasonable 

time. This study employs particle swarm optimization [14] as a traditional swarm-based method. In 

conclusion, the core contributions of the paper are addressed as follows: 

 Developing a novel multi-objective mixed-integer programming model to find an interaction 

between economic, environmental, and social goals. 

 Shifting the traditional EPQ model to an S-EPQ that is multi-product and multi-period. 

 Considering the uncertainty of manufacturing activities with demand and shortage conditions, 

including lost sales and full back-order. 

 Applying the dairy manufacturing case study to the proposed model. 

 

 

The rest of this article is summarized: Section 2 reviews the relevant studies in production 

systems with different inventory models. Section 3 addresses the statement of the S-EPQ problem 

and establishes the proposed multi-objective optimization model. Section 4 innovates a heuristic 

solution like the combination of two metaheuristics. In Section 5, the model's validation, 

comparison, and sensitivity analysis are carried out. Finally, the discussion of results, findings, and 

the conclusion of this paper is presented in Section 6.  

 

2. Literature review 

Numerous researchers have urged the study of Sustainable Production and Consumption issues 

to decrease environmental damages and enhance the overall condition since the rates of pollution 

and environmental calamities are caused by industrial production [15], [16]. Recent years have seen 

a great deal of interest in merging the concept of TBL with manufacturing systems modelled by 

advanced inventory theories. For example, Battini, Persona and Sgarbossa, [17] developed a 

sustainable economic order quantity (EOQ) model linking the material lot sizes from the purchase 

order to the end of the life cycle inside the buyer plant based on the life cycle assessment (LCA) 

approach. They provided a comparison study between a sustainable EOQ model and the traditional 

inventory system based on purchasing decisions. Next, Hovelaque and Bironneau, [18] proposed an 

inventory policy for the EOQ model to maximize the retailer's profit and minimize carbon emissions. 

Their model contributed to pricing decisions and the price-depended demand under two approaches 

of exogenous and endogenous prices. Kumar and Goswami, [19] investigated a single-period EPQ 

model for imperfect quality items under uncertain demand. They developed an EPQ model 

restricting the budget and allowable shortages as fuzzy numbers. 

Next year, Majumder et al., [20] formulated an EPQ model with a partial trade credit policy 

from suppliers to the retailers and the retailers to their customers. Their primary assumption was that 

the demands depended on a time. The generalized Hukuhara derivative approach was applied to 

minimize the inventory cost of the model. In another research, Ghiami and Beullens, [21] presented 

an EPQ inventory system with deteriorating products and a partial back-ordering approach. 

 

Another essential factor that affects the inventory systems is perishability. The food supply has 

become a severe challenge due to the notable increase in the global population Sazvar, Rahmani and 

Govindan, [22]. The design of the inventory system for perishable products is highly significant 

since meeting the uncertain demand increases the risk of expired product quantity and unsatisfied 
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demand [23]. As far as we know, the study of [24] was the first optimization model for the 

perishable inventory with a lifetime. They studied the order quantity of perishable products and 

evaluated the system performance in a very shortsighted bound. Also, different classifications and 

considerations in perishable inventory models were examined during the time. Recently, 

perishability has been very active in inventory management studies. For instance, Chang et al., [25] 

focused on the pricing strategy of the perishable goods that the prices set according to freshness, 

inventory and cost. 

Further Chen, Li and Jin, [26] proposed EOQ/EPQ model considering stochastic demand and 

deteriorating characteristics of perishable foods. Lot-sizing was firstly contributed to sustainable 

manufacturing by Battini et al [27], that developed an ergonomic lot-sizing by integrating economic 

aspects to maintain a low level of fatigue and ergonomic risk. They estimated the economic impact 

of different workload levels using a simulation-optimization-based method. 

 

Taleizadeh, Soleymanfar and Govindan, [28] proposed an EPQ model considering the 

economic and environmental aspects simultaneously under uncertain demand. The shortage is  

analyzed under three different approaches, including lost sales, back-ordering, and partial back- 

ordering. The emission of inventory holding, obsolesces, and production are considered. Zadjafar 

and Gholamian, [29] revised an EOQ model by integrating the income of selling the waste, organic 

pollution of several gases, and the effect of emissions on human health. Furthermore, Debnath, 

Majumder and Bera, [11] formulated the fuzzy S-EPQ to maximize the profit simultaneously 

minimize the carbon emission cost. The demand factor depended on the product price and stock 

quantity under a fuzzy environment.  

 

Recent studies provided some real-life constraints to the EPQ and EOQ models. For example, the 

production system may go through an imperfect production situation due to the failure or 

deterioration of machines. Heeding this, Kazemi et al., [4] and Tayyab and Sarkar, [30] considered 

non-conforming products in their study. Kazemi et al., [4] developed an EOQ model for the 

imperfect items and emission costs due to warehousing and waste disposal activities. The results 

illustrated that the buyer policy converted by adding emission costs to the imperfect supply process. 

Hence, smaller batches tend to decrease the total profit. In another similar contribution, Tayyab and 

Sarkar, [30] provided an EPQ model with uncertain demand and process information in a multi-stage 

production process. The defective products are generated in the manufacturing process at an 

uncertain rate and then reworked into perfect quality products to reduce wastage.  

 

More recently, Nobil, Kazemi and Taleizadeh, [31] provided a case study of a dairy company to 

analyze and plan for the demand meeting and supply limitations, while almost the peak of demand is 

on the less supply of milk. This case urges an exact trade-off between lost sales and wasted products. 

Another study Lin, [32] studied the EPQ inventory model dealing with an imperfect production 

process under the backlogged scenario and uncertain demand. A stochastic programming model is 

designed for a green closed-loop supply chain by Kalantari and Pasandideh [33]. They examined the 

various factors that influence the total cost to improve the overall performance of the supply chain. A 

stochastic programming model is designed for a green closed-loop supply chain by Kalantari and 

Pasandideh [33]. The upper bound's demand and gas emission are considered uncertain factors.  
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Having a conclusion about the mentioned studies, we have classified the papers based on 

the economic factors, the environmental factors, including carbon emissions of holding inventory 

and purchasing, manufacturing, wastes, disposal, and imperfect products, as well as the 

environmental factor for wastewater filtering, collection, and recycling. Besides, social factors 

and uncertainty are other criteria to evaluate the papers. As reviewed in Table 1, the following 

findings can be observed:  

 Except for one paper [27] that has contributed to the social factors, other papers have considered 

the total cost in their optimization models. 

 Two studies contributed to all the environmental factors Taleizadeh, Soleymanfar and Govindan, 

[28], Debnath, Majumder and Bera, [11]. However, none of them considered the social factors 

and wastewater emissions. 

 Only two papers applied the TBL strategy in their optimization models Zadjafar and Gholamian, 

[29]. However, they have not considered all the environmental factors, such as environmental 

emissions of holding. 

 Uncertainty is contributed to most of the recent papers. 

 Simultaneous consideration of all the economic, environmental, and social factors under 

uncertainty has only been presented by the current paper. 

 
3. Proposed problem 

Figure 1 exposes a schematic view of the proposed problem that seeks to capture economic, social, 

and environmental trade-offs through the proposed inventory system as an extension to the EPQ. The 

inventory system consists of a manufacturer that produces multi-product in multi periods and deals 

with imperfect products manufactured during the routine production process. The additional products 

keep in the warehouse in the presence of uncertain customer demand. If inventories are not handled 

appropriately, they might become unreliable, inefficient, and costly [34].  The products released from 

the warehouse to the market are based on the First-In-First-Out (FIFO) method. The advantage of 

applying the FIFO method is equalizing the physical flow of goods and minimizing expired products 

during storage periods. All types of products are manufactured under a single technology. The 

production costs and storage capacities regard as invariable within the time horizon. The demand 

factor has been consistently one of the most influential factors in the decisions relating to inventory 

and production activities [20]. Uncertain demand indicates a probability of variation between 

available inventory and actual demand in each period. If the production quantity is more than the 

demand, the extra quantities will store, and if it faces a shortage, two different policies can be 

applied. (i) Lost sales (ii) Full back-orders. Under the first scenario, the unmet demand is lost and 

cannot respond in the coming periods, while following the second scenario meeting the demand in 

the subsequent periods is possible. 

 

3.1. Sustainability factors 

Rapid urbanization and population increase have contributed to increased pressures on global 

energy, water, and food resource systems [35]. Environmental issues and regulations are growing 

increasingly and attracted much attention to sustainable production [36]. The presented model 

integrates the economic, environmental, and social pillars based on the TBL strategy. It focuses on 

minimizing all related costs and emissions in addition to improving performance. 
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3.1.1. Sustainability in the manufacturing 

An assessment of the environmental emissions in the scope of manufacturing, warehousing, and 

disposal of expired and defective products, is provided here. The companies are urged to promote 

their manufacturing procedures by applying efficient and effective planning to face the competitive 

markets in a highly dynamic economy [37]. Determining the optimal inventory control policy for 

different products is one of the main issues of industrial and scientific studies, especially when the 

product is perishable [38]. As studied by Lee, Lu & Song [39], sustainable manufacturing can be 

measured as the manufacturing performance metrics for the production system concerning the 

economic, environmental, and social aspects. The food sector comprises multifaceted water and 

energy systems [40]. In the current study, we focus on the process plan at the manufacturing level. It 

is necessary to consider balanced production loads when production planning decisions [41]. Each 

production cycle needs to run the cleaning in place (CIP) operation in the food industry. The CIP is 

set based on changing the product type or the cycle time. It means that each change in the product 

type needs to run the CIP and each run of CIP requires the chemical materials, and they are time-

consuming and have tremendous cost. Water, like energy, is a significant input into any economy 

[8]. The CIP and cleaning operations are responsible for 70% of the water requirements [42]. 

Therefore, this study provides a sustainable manufacturing system with CIP operations and related 

balance with the total emissions and cost. Regarding each machine run, there are almost fixed 

defective items due to imperfect processes and the machines warm-up [43], so production in larger 

lot sizes can lessen this quantity. It is supposed that manufacturing in each cycle (between the two 

CIPs) contains a fixed percentage of defective items for each product type. The companies are 

attempting to control the process plan to lead to a minimum number of CIP runs and, consequently, a 

low level of defective products, less consumed water, and shorter needed person-hour. More variety 

of products and demand uncertainty makes planning more complicated. In addition to the 

aforementioned environmental factors, this study contributes to the working hours as a social factor. 

If the working hours are stable and suitable for the workers, it increases their satisfaction and 

company reputation. From another point of view, the turnover of the workers charges the cost to the 

factory. It includes the cost of hiring and firing, learning the new employment, losing experienced 

workers, and missing workers' loyalty to the company. Hence, we aimed to keep the minimum 

turnover of workers during the periods and charge less cost to the company. 

3.1.2. Sustainability in the warehousing 

Warehousing is another challenge to achieving sustainability for the proposed EPQ system. The 

limitation of the repository would affect the inventory model [44].  The carbon emissions related to 

warehousing are a significant factor because of the considerable energy requirement for heating, 

cooling, material handling equipment, etc. 45]. The warehouse emissions are calculated based on the 

energy consumption, including electricity and fuel utilization per hour for each product. 

Warehousing is an essential part of inventory management when facing uncertainty. Storage can be 

helpful to handle the volatile market while can increase the emission and risk of expired products. 

Some other evolutionary algorithm recently proposed for sustainability modelling [46] . The expired 

products refer to the items that passed their accredited shelf life and did not sell out [1],[47]. The 

study scope of the sustainability for perishable food supply chains is still not thoroughly investigated 
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[48]. This factor makes the supply network complex, and in the case of multi-item models, it 

increases exponentially compared with the single-item inventory models [23]. In the current study, 

the fixed lifetime considers for perishable products. The decision flow chart is depicted in Figure 2.  

 

 

4. Formulation 
 

Here, the proposed S-EPQ model is introduced. Mathematical models have become an increasingly 

powerful means of decision-making in engineering, science, economics, and policy-making [49]. 

The proposed model strives to identify the optimum quantity of production, storage, and working 

hours to minimize the environmental emissions and the costs of manufacturing, storing, and expiring 

products under two different scenarios. The model also analyzes the working hours periodically to 

keep it sustainable. Therefore, the advantage of the TBL approach is taken to meet the standards of 

the economic, environmental, and social factors for an inventory model. Before introducing the 

developed model, the following notations were provided: 

 

Indices: 

 

𝑝 Index of products, p =  {1, … , P}  

𝑖 Index of time periods, 𝑖 =  {1, … , 𝐼}    

𝑤 Index of warehouse, 𝑤 =  {1, … , W}  

 
Parameters: 

𝐷𝑝𝑖 ∶Demand quantity of product 𝑝 in period 𝑖 (𝑢𝑛𝑖𝑡). 

𝑆𝑝 : Sales price of product 𝑝 ($ 𝑢𝑛𝑖𝑡⁄ t). 

𝐶𝑝
𝑝𝑟

: Unit production cost of product 𝑝 ($ 𝑢𝑛𝑖𝑡⁄ ). 

𝐶𝑝
𝑆𝑒: Setup cost for producing product 𝑝 ($ 𝑠𝑒𝑡𝑢𝑝⁄ ). 

𝐶𝑝
𝐼𝑛: Inventory holding cost of product 𝑝 ($ 𝑢𝑛𝑖𝑡⁄ ). 

𝑏𝑝 : Required space for each unit of product 𝑝 (𝑚3 𝑢𝑛𝑖𝑡⁄ ). 

 

γ𝑝 : Fraction of imperfect production of product 𝑝. 

𝐸𝐶𝑝
𝑤: The emission of inventory holding for product p in warehouse w ($ 𝑢𝑛𝑖𝑡⁄ ). 

𝐸𝐶𝑝
𝑒𝑥: The emission of expired and imperfect of product 𝑝 ($ 𝑢𝑛𝑖𝑡⁄ ). 

𝐸𝐶𝐶𝐼𝑃 : The emission of cleaning in place $ 𝑅𝑢𝑛⁄ ). 

𝐶𝑤   : Total capacity of warehouse 𝑤 (𝑚3
). 

𝐶𝐻: Cost of hiring the workers ($ 𝑚𝑎𝑛⁄ ). 

𝐶𝐹: Cost of firing the workers $ 𝑚𝑎𝑛⁄ ). 

𝑇𝐹𝑝 : Standard produced tonnage of product p per full time employment. 

𝐶𝐶𝐼𝑃: Cost of performing the 𝐶𝐼𝑃 

𝑆𝐿𝑝 : The shelf life of product 𝑝 (𝑑𝑎𝑦𝑠). 

𝑀: A large positive number (the summation of capacities can be estimated) 
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Decision variables: 

𝑄𝑝𝑖: Gross production quantity of product 𝑝 in period 𝑖. 

𝑆𝐴𝑝𝑖: Sales quantity of product 𝑝 in period 𝑖. 

𝐼𝑝𝑖: Inventory quantity of product 𝑝 in period 𝑖. 

𝑄𝑝𝑖
𝑖𝑚: Imperfect quantity of product 𝑝 in period 𝑖. 

𝑄𝑝𝑖
𝑒𝑥: Expired quantity of product 𝑝 in period 𝑖. 

 𝐻𝐼𝑖 : Number of hired workers in period 𝑖. 

𝐹𝐼𝑖 : Number of fired workers in period 𝑖. 

𝑋𝑝𝑖  :1, if the product 𝑝 is produced in period 𝑖, 0 otherwise. 

𝑌𝑤𝑝: 1, if warehouse 𝑤 is appropriate for stocking product 𝑝, 0 otherwise. 

Using the above notations, the proposed model aims to maximize the total profit of the EPQ system 

as the first objective. However, the second and the third goals are to minimize the environmental 

emissions for manufacturing and the cost of workers turnover. These objectives are formulated as 

follows: 

𝑀𝑎𝑥 𝑍1 =  ∑ ∑  [(𝑆𝐴𝑝𝑖. 𝑆𝑝) − ( 𝑄𝑝𝑖. 𝐶𝑝
𝑝𝑟 + 𝐶𝐶𝐼𝑃 . 𝑋𝑝𝑖) − (𝐶𝑝

𝑆𝑒 . 𝑋𝑝𝑖) − (𝐶𝑝
𝐼𝑛. 𝐼𝑝𝑖)]𝐼

𝑖=1
𝑃
𝑝=1                 (1)                                                                                                                                                                                                                                   

𝑀𝑖𝑛𝑍2 =  𝐸𝐶𝐶𝐼𝑃 . 𝑋𝑝𝑖 + 𝐸𝐶𝑝
𝑒𝑥 . 𝑄𝑝𝑖

𝑖𝑚 + 𝐸𝐶𝑝
𝑒𝑥. 𝑄𝑝𝑖

𝑒𝑥 + ∑ 𝐸𝐶𝑝
𝑤 .  𝐼𝑝𝑖. 𝑌𝑤𝑝)𝑊

𝑤=1                                          (2) 

𝑀𝑖𝑛𝑍3 = ∑ (𝐶𝐻. 𝐻𝐼𝑖 + 𝐶𝐹. 𝐹𝐼𝑖)𝐼
𝑖=1                                                                                                    (3) 

The first objective function of the model maximizes the total profit of the S-EPQ model. The first 

term of Eq. (1) is related to sales profit minus the cost, including the cost of production, CIP process, 

setup, and inventory holding. 

As given in Eq. (2), the second objective function represents the environmental emission of the CIP 

process, imperfect and expired product disposal, and storage emission. 

Eq. (3) is contributed to social sustainability. The third objective function tries to minimize the 

turnover cost of the workers, which leads to keeping a sustainable number of workers in each period 

as the social factor based on the working hours. 

 Following constraints (Eqs. (4) and (5)) provide that the total demand for products must be met per 

period. 

𝑆𝐴𝑝𝑖 ≤ 𝐷𝑝𝑖                                     ∀𝑝, 𝑖                                       (4)                                                   

𝑆𝐴𝑝𝑖 ≥ 0                                          ∀𝑝, 𝑖                                      (5)                                                  

Eqs. (6) to (8) determine the production quantity per period. 

𝑄𝑝𝑖 − 𝑄𝑝𝑖
𝑖𝑚 ≥ 𝐷𝑝𝑖 − 𝐼𝑝𝑖−1              ∀𝑝, 𝑖 > 1                            (6)                                         

𝑄𝑝𝑖 ≤ 𝑋𝑝𝑖. 𝑀                                     ∀𝑝, 𝑖                                    (7)                                                 

𝑄𝑝𝑖 ≥ 0                                               ∀𝑝, 𝑖                                   (8)                                                

Eqs. (9) to (11) cover the assumptions of the shelf-life products. Based on this assumption, the 

product cannot be delivered to the market after the termination of the shelf life, and the expired 

products are collected at the disposal center. 

𝑄𝑝𝑖
𝑒𝑥 = 0                                                                                               ∀𝑝, 𝑖 ≤ 𝑆𝐿𝑝                   (9) 
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𝑄𝑝𝑖
𝑒𝑥 ≥ 𝐼𝑝𝑖−(𝑆𝐿𝑝+1) − [∑ 𝑆𝐴𝑝�́� + ∑ 𝑄𝑝�́�

𝑒𝑥𝑖−1
�̈�=𝑖−𝑆𝐿𝑝

𝑖
�́�=𝑖−𝑆𝐿𝑝

]             ∀𝑝, 𝑖 > 𝑆𝐿𝑝                  (10) 

𝑄𝑝𝑖
𝑒𝑥 ≥ 0                                                                                                ∀𝑖, 𝑝                            (11) 

Eq. (12) guarantees that imperfect quantity during production is determined based on a fraction of 

production. 

𝑄𝑝𝑖
𝑖𝑚 = 𝛾𝑝. 𝑄𝑝𝑖                                                                                      ∀𝑝, 𝑖                   (12) 

            There is a capacity limitation for storage in each warehouse, as given in Eq. (13). 

             ∑ 𝑏𝑝. 𝑌𝑤𝑝(𝑄𝑝𝑖 − 𝑄𝑝𝑖
𝑖𝑚 + 𝐼𝑝𝑖−1 − 𝑆𝐴𝑝𝑖 − 𝑄𝑝𝑖

𝑒𝑥) ≤ 𝐶𝑤         ∀𝑖, 𝑤𝑃
𝑝=1                            (13) 

Eqs. (14) to (16) state the equilibrium of product flow and the initial inventory of products, respectively. 

𝐼𝑝𝑖+1 = 𝑄𝑝𝑖+1 − 𝑄𝑝𝑖+1
𝑖𝑚 + 𝐼𝑝𝑖 − 𝑆𝐴𝑝𝑖+1 − 𝑄𝑝𝑖

𝑒𝑥             ∀𝑝, 𝑖 ≠ 1                                (14) 

𝐼𝑝1 = 0                                                                                   ∀𝑝                                           (15) 

𝐼𝑝𝑖 ≥ 0                                                                                    ∀𝑝, 𝑖                                      (16) 

As given in Eqs. (17) to (20), the requirement of hiring or firing the workers depends on the production 

quantity that presents in the following equations. 

𝐻𝐼𝑖 − 𝐹𝐼𝑖 = (𝑄𝑝𝑖 − 𝑄𝑝𝑖−1)/𝑇𝐹𝑝                 ∀𝑖, 𝑝                                                         (17) 

𝐻𝐼𝑖. 𝐹𝐼𝑖 = 0                                                      ∀𝑖                                                              (18) 

𝐻𝐼𝑖 ≥ 0                                                             ∀ 𝑖                                                             (19) 

𝐹𝐼𝑖 ≥ 0                                                              ∀ 𝑖                                                             (20) 

Finally, the binary decision variables are indicated in Eq. (21). 

𝑋𝑝𝑖, 𝑌𝑤𝑝 ∈ {0,1}                                              ∀𝑝, 𝑖                                                     (21) 

 

4.1. S-EPQ model considering lost sales 

Here, an extension of the primary model introduced earlier is provided. In this case, the unmet 

demand in each period is lost sales and cannot be back-ordered. The penalty cost for lost customers 

is charged in each period. The optimal production quantity is direct by the trade-off among inventory 

holdings cost, holding emission, expired quantity, and lost sales expenses. Following parameters 

were added to the main notations: 

𝐶𝑖
𝑝

: The cost of lost sales of product p in period i 

𝐿𝑆𝑝𝑖: The lost sale quantity of product p in period i 

After updating the basic model with lost sales, the objectives are rewritten as follows: 

 

𝑀𝑎𝑥 𝑍1 = ∑ ∑ ([(𝑆𝐴𝑝𝑖. 𝑆𝑝) − ( 𝑄𝑝𝑖. 𝐶𝑝
𝑝𝑟 + 𝐶𝐶𝐼𝑃 . 𝑋𝑝𝑖) − (𝐶𝑝

𝑆𝑒 . 𝑋𝑝𝑖) − (𝐶𝑝
𝐼𝑛. 𝐼𝑝𝑖) − 𝐶𝑝

𝐿 . 𝐿𝑆𝑝𝑖]
𝐼
𝑖=1

𝑃
𝑝=1      (22)                   

𝑀𝑖𝑛𝑍2 =  𝐸𝐶𝐶𝐼𝑃 . 𝑋𝑝𝑖 + 𝐸𝐶𝑝
𝑒𝑥 . 𝑄𝑝𝑖

𝑖𝑚 + 𝐸𝐶𝑝
𝑒𝑥. 𝑄𝑝𝑖

𝑒𝑥 + ∑ 𝐸𝐶𝑝
𝑤 .  𝐼𝑝𝑖. 𝑌𝑤𝑝)𝑊

𝑤=1                                                (23)          

𝑀𝑖𝑛𝑍3 = ∑ (𝐶𝐻. 𝐻𝐼𝑖 + 𝐶𝐹. 𝐹𝐼𝑖)𝐼
𝑖=1                                                                                                          (24) 

The constraints of the model are the same as the basic model as follows: 
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𝑝𝑖 

 

𝑆𝐴𝑝𝑖 ≤ 𝐷𝑝𝑖 − 𝐿𝑆𝑝𝑖                                               ∀ 𝑝, 𝑖                                         (25) 

𝑆𝐴𝑝𝑖 ≥ 0                                                                ∀𝑝, 𝑖                                          (26) 

𝑄𝑝𝑖 ≤ 𝑋𝑝𝑖. 𝑀                                                         ∀𝑝, 𝑖                                          (27) 

𝑄𝑝𝑖 ≥ 0                                                                  ∀𝑝, 𝑖                                          (28) 

𝐶𝑝
𝐿 = (𝑆𝑝 − 𝐶𝑝

𝑝𝑟) + (𝐶𝑔)                                   ∀𝑝                                    (29) 

𝐷𝑝𝑖 − (𝑄𝑝𝑖 − 𝑄𝑝𝑖
𝑖𝑚 + 𝐼𝑝𝑖−1 − 𝑄𝑝𝑖

𝑒𝑥) ≤ 𝐿𝑆𝑝𝑖     ∀𝑝, 𝑖                                          (30) 

𝐿𝑆𝑝𝑖 ≥ 0                                                                 ∀𝑝, 𝑖                                          (31) 

𝑄𝑝𝑖
𝑒𝑥 = 0                                                                  ∀𝑝, 𝑖 ≤ 𝑆𝐿𝑝                               (32) 

𝑄𝑝𝑖
𝑒𝑥 ≥ 𝐼𝑝𝑖−𝑆𝐿𝑝

− [∑ (𝑆𝐴𝑝�́� + 𝑄𝑝�́�
𝑒𝑥)𝑖

�́�=𝑖−(𝑆𝐿𝑝−1) ]                                         ∀𝑝, 𝑖 > 𝑆𝐿𝑝        (33) 

𝑄𝑝𝑖
𝑒𝑥 ≥ 0                                                                                                             ∀𝑖, 𝑝                   (34) 

𝑄𝑝𝑖
𝑖𝑚 = 𝛾𝑝. 𝑄𝑝𝑖                                                                                                   ∀𝑝, 𝑖                   (35) 

∑ 𝑏𝑝. 𝑌𝑤𝑝(𝑄𝑝𝑖 − 𝑄𝑝𝑖
𝑖𝑚 + 𝐼𝑝𝑖−1 − 𝑆𝐴𝑝𝑖 − 𝐿𝑆𝑝𝑖 − 𝑄𝑝𝑖

𝑒𝑥) ≤ 𝐶𝑤            ∀𝑖𝑃
𝑝=1 , 𝑤                 (36) 

𝐼𝑝1 = 0                                                                                                               ∀𝑝                       (37) 

𝐼𝑝𝑖+1 = 𝑄𝑝𝑖+1 − 𝑄𝑝𝑖+1
𝑖𝑚 + 𝐼𝑝𝑖 − 𝑆𝐴𝑝𝑖+1 − 𝑄𝑝𝑖

𝑒𝑥                                          ∀𝑝, 𝑖 ≠ 1           (38) 

𝐻𝐼𝑖 − 𝐹𝐼𝑖 = (𝑄𝑝𝑖 − 𝑄𝑝𝑖−1)/𝑇𝐹𝑝                                                                  ∀𝑖, 𝑝                   (39) 

𝐻𝐼𝑖. 𝐹𝐼𝑖 = 0                                                                                                       ∀𝑖                        (40) 

𝐻𝐼𝑖 ≥ 0                                                                                                              ∀ 𝑖                       (41) 

𝐹𝐼𝑖 ≥ 0                                                                                                              ∀ 𝑖                        (42) 

𝑋𝑝𝑖, 𝑌𝑤𝑝 ∈ {0,1}                                                                                               ∀𝑝, 𝑖               (43) 

 

4.2. S-EPQ model considering full back-ordering 

The model proposed in Section 3.2.1 reformulates by the full back-ordering supposition. Based on 

this model, the unsatisfied demand is considered fully back-ordered. Likewise, the defined amount 

of cost charged for deliveries by the delay. The following parameters have been added to the basic 

model: 

Parameters: 

𝐶𝑏 : Back-ordering cost of products 

𝐵𝑝𝑖: The back-ordered quantity of product 𝑝 in period 𝑖 

 
Binary variables: 

𝑋𝑝𝑖
𝐵  : 1, if back-ordered product 𝑝 is responded in period 𝑖, 0 otherwise. 

Based on these definitions, the final model is adjusted as follows: 

𝑀𝑎𝑥 𝑍1 = ∑ ∑ ([(𝑆𝐴𝑝𝑖. 𝑆𝑝) − ( 𝑄𝑝𝑖. 𝐶𝑝
𝑝𝑟 + 𝐶𝐶𝐼𝑃 . 𝑋𝑝𝑖) − (𝐶𝑝

𝑆𝑒 . 𝑋𝑝𝑖) − (𝐶𝑝
𝐼𝑛. 𝐼𝑝𝑖) − 𝐶𝑏 . 𝐵𝑝𝑖])𝐼

𝑖=1
𝑃
𝑝=1                                                                                                              

(44) 
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𝑀𝑖𝑛𝑍2 =  𝐸𝐶𝐶𝐼𝑃 . 𝑋𝑝𝑖 + 𝐸𝐶𝑝
𝑒𝑥 . 𝑄𝑝𝑖

𝑖𝑚 + 𝐸𝐶𝑝
𝑒𝑥. 𝑄𝑝𝑖

𝑒𝑥 + ∑ 𝐸𝐶𝑝
𝑤 .  𝐼𝑝𝑖. 𝑌𝑤𝑝)𝑊

𝑤=1               (45) 

𝑀𝑖𝑛 𝑍3 = ∑ (𝐶𝐻. 𝐻𝐼𝑖 + 𝐶𝐹. 𝐹𝐼𝑖)𝐼
𝑖=1                                                                         (46)       

 

The constraints of the model are developed as follows: 

 

𝑆𝐴𝑝𝑖 ≤ 𝐷𝑝𝑖 − 𝐵𝑝𝑖 + ∑ 𝐵𝑝𝑡. (1 − 𝑋𝑝𝑡
𝐵 )𝑖−1

𝑡=1                        ∀ 𝑝, 𝑖                                 (47) 

𝑆𝐴𝑝𝑖 ≥ 0                                                                                 ∀𝑝, 𝑖                                  (48) 

𝑄𝑝𝑖 ≤ 𝑋𝑝𝑖. 𝑀                                                                          ∀𝑝, 𝑖                                      (49) 

𝑄𝑝𝑖 ≥ 0                                                                                   ∀𝑝, 𝑖                                      (50) 

𝐷𝑝𝑖 − (𝑄𝑝𝑖 − 𝑄𝑝𝑖
𝑖𝑚 + 𝐼𝑝𝑖−1 − 𝑄𝑝𝑖

𝑒𝑥 − 𝐵𝑝𝑖−1) ≤ 𝐵𝑝𝑖        ∀𝑝, 𝑖                                      (51) 

𝐵𝑝𝑖 ≥ 0                                                                                                           ∀𝑝, 𝑖                  (52) 

𝐵𝑝1 = 0                                                                                                            ∀𝑝                      (53) 

∑ 𝑏𝑝. 𝑌𝑤𝑝. (𝑄𝑝𝑖 − 𝑄𝑝𝑖
𝑖𝑚 + 𝐼𝑝𝑖−1 − 𝑆𝐴𝑝𝑖 − 𝐵𝑝𝑖 − 𝑄𝑝𝑖

𝑒𝑥) ≤ 𝐶𝑤            ∀𝑖, 𝑤𝑃
𝑝=1                (54) 

𝑄𝑝𝑖
𝑒𝑥 = 0                                                                                                             ∀𝑝, 𝑖 ≤ 𝑆𝐿𝑝     (55) 

𝑄𝑝𝑖
𝑒𝑥 ≥ 𝐼𝑝𝑖−𝑆𝐿𝑝

− [∑ (𝑆𝐴𝑝�́� + 𝑄𝑝�́�
𝑒𝑥)𝑖

�́�=𝑖−(𝑆𝐿𝑝−1) ]                                         ∀𝑝, 𝑖 > 𝑆𝐿𝑝     (56) 

𝑄𝑝𝑖
𝑒𝑥 ≥ 0                                                                                                             ∀𝑖, 𝑝                (57) 

𝑄𝑝𝑖
𝑖𝑚 = 𝛾𝑝. 𝑄𝑝𝑖                                                                                                   ∀𝑝, 𝑖                (58) 

𝐼𝑝1 = 0                                                                                                               ∀𝑝                     (59) 

𝐼𝑝𝑖+1 = 𝑄𝑝𝑖+1 − 𝑄𝑝𝑖+1
𝑖𝑚 + 𝐼𝑝𝑖 − 𝑆𝐴𝑝𝑖+1  − 𝑄𝑝𝑖

𝑒𝑥                                         ∀𝑝, 𝑖                (60) 

𝐼𝑝𝑖 ≥ 0                                                                                                               ∀𝑝, 𝑖                 (61) 

𝐻𝐼𝑖 − 𝐹𝐼𝑖 = (𝑄𝑝𝑖 − 𝑄𝑝𝑖−1)/𝑇𝐹𝑝                                                                  ∀𝑖, 𝑝                (62) 

𝐻𝐼𝑖. 𝐹𝐼𝑖 = 0                                                                                                       ∀𝑖                   (63) 

𝐻𝐼𝑖 ≥ 0                                                                                                              ∀ 𝑖                   (64) 

𝐹𝐼𝑖 ≥ 0                                                                                                               ∀ 𝑖                 (65) 

𝑋𝑝𝑖, 𝑋𝑝𝑖
𝐵 ∈ {0,1}                                                                                                ∀𝑝, 𝑖           (66) 

5. Solution method 

As highlighted in the literature, the multi-product EPQ model with shortage was NP-hard [50]. Also, 

the EPQ model with warehouse capacity limitation is another example of NP-hard problems [51]. 

Since the similar models are concluded as NP-hard, the proposed S-EPQ that is multi-product and 

multi-period is also NP-hard. The model is also more complex than most of the literature due to the 

perishability limitations of the dairy manufacturing case study [52]. 

 

5.1. Solution representation 

Both red deer algorithm (RDA) and particle swarm optimization (PSO) use a continuous search 

space. As a combinatorial optimization like the proposed model, we need to transform the continuous 
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variables into integer ones. In this regard, the random key method is used [53]. In this regard, a 

heuristic strategy is applied to transform an infeasible solution into a feasible one. Only for binary 

variables, in our optimization model, we need to add this procedure.  

In this example, assume that we have five possible orders and want to select the optimal one. For each 

response, a uniform number is chosen from the logic of the meta-heuristics. Then, the highest values 

are opted to be one. The criterion to stop the selection is the shelf life of the product. After each order 

is selected, the cost calculates to check the objective functions. 

5.2. Basic algorithms 

5.2.1. Red deer algorithm 

Evolutionary algorithms are a well-known classification of metaheuristics. These algorithms are 

also nature-inspired. However, from the current to the next generation, only a group of animals that 

are probably more potent will be kept, and other agents will be removed. As another evolutionary 

metaheuristic,[46] recently proposed the Red Deer Algorithm (RDA), inspired by the fantastic 

behaviors of males and females during a breeding season. 

This algorithm studies the behavior of red deers regarding roaring, fighting, and mating behaviors. 

The males known as stags roar loudly and repeatedly to attract the females in the breeding season, 

called hinds. Based on this feature of the males, the hinds select their preferable stag, and he will 

create his territory and harem. A harem is a group of hinds, and a commander as the head of this 

group manages and controls them. The fighting action always exists among males. Stags and 

commanders fight, and the winner will achieve the territory and harem. This competition among 

males is the main activity. The last part of this season is the mating behaviors among males and 

hinds, and as a result, the new red deers will bear for the next breeding season. Among all roaring, 

fighting, and mating processes, the evolutionary concept confirms that only the strongest will always 

keep in nature, and this rule exists among red deers. Fard and Hajiaghaei- Keshteli, [46] modelled 

these facts as another evolutionary algorithm. They generated the first population of red deers as 

random solutions. This population is divided into males and hind. Then, males roar, and based on 

their power, a group of them will choose as the commanders, and the others are stags. Next, a fight 

between commanders and stags occurs. Later, a harem will be generated by random hinds for each 

commander. The number of hinds in a harem is directly related to the commander's power. The 

commander mate with some hinds in the harem and a few hinds in another. The stags that do not 

have this chance to be a commander can mate with the closest hind. After the mating, offspring 

create for each mating. Finally, for the next generation, the males will sort out the best solutions 

among all available solutions, and the hinds will pick by an evolutionary mechanism like the roulette 

wheel selection method. With these features, the authors developed a fascinating and successful 

metaheuristic and called it RDA. 

This study uses a multi-objective RDA. In this updated version of RDA, there are two main 

features. In the algorithm's main loop to compare two solutions, a solution is better than another if it 

dominates another. It means that it has a better value in at least one objective while other objectives 

are equal to the objectives of another solution. Another difference of the multi-objective RDA is the 

selection of next-generation based on the concept of non-dominated solutions and crowding distance 

to identify the Pareto solutions.
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5.2.2. Particle swarm optimization 

One of the primary swarm-based algorithms is the PSO proposed by Kennedy & Eberhart [14]. 

This optimization algorithm is inspired by the swarm behavior of birds and fishes. Similar to other 

metaheuristics, it starts with a random population. The best solution for this population is the global 

solution. In each iteration, each population agent moves toward the global solution and the local 

solution. The local solution is the current position of this search agent. The position of each search 

agent would be updated, with attention to the feasible space and the mirror concept of this swarm. 

The global solution will be updated if a better solution is found in this iteration. This process is 

continued until the maximum number of iterations is satisfied. 

This study applies a multi-objective PSO. The main differences are evaluating the solutions to 

find the global one and sorting the rest of the solutions at the end of each iteration.  

 
5.3. Proposed novel hybrid heuristic 

One novelty of this paper is the development of a new optimization algorithm. This study 

combines RDA and PSO heuristically in a multi-objective framework. As mentioned earlier, the PSO 

updates the position of search agents based on a global solution and the local one. This hybrid 

algorithm uses this concept in the mating process to improve the diversification phase of RDA. This 

hybridization of RDA and PSO is called HRDPSOA. 

In the proposed HRDPSOA, except for mating operators for commanders, all algorithm parts are 

similar to the multi-objective RDA. We consider the males and the hinds as the global and local 

solutions for each mating. Finally, the offspring would be considered the result of this movement 

from the hind to the commander. This strategy uses the benefits of PSO to improve the RDA 

differently.  

6. Computational results 

Here, we provide a comprehensive analysis to show the performance of the developed hybrid 

heuristic and the efficiency and applicability of the deployed optimization model. We first  address our 

case study in dairy manufacturing in Iran and our benchmarks. Then, tuning, validation, and 

comparison of the algorithms are made to approve the performance of the proposed HRDPSOA. 

Finally, some sensitivity analyses are performed to test the efficiency of the developed optimization 

model in a real-world setting. It should be noted that MATLAB2013a and GAMS software took the 

results in a computer with 1.7GB CPU and 6.0GB RAM. 
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6.1. Case study and benchmarks 
 

Nowadays, dairy products are profoundly significant in the human diet, and the food industry is 

one of the economic drivers in Europe and other developed markets [54], [55]. The dairy industry in 

Iran is considered for a case study, and the company of Kalleh is selected. 

Kalleh brand was established in 1991 to improve and upgrade the food basket of the Iranian 

people. As a result of the activities carried out in this collection over the past years, this brand has 

been ranked 48th worldwide in the food industry, a popular and top brand, and was the only exporter 

of dairy products in Iran for seven years. 

Kalleh started its activity with daily absorption of 3 liters of milk, and today it has more than 2500 

tons of daily milk reception. This causes the daily production of more than 2650 tons of dairy 

products. In this production process, 4,000 people work daily in different sectors to get the final 

products to consumers. Due to security reasons, we cannot provide more details about our case study, 

and the interested readers can ask for further details via an email to the corresponding author. 

 
6.2. Tuning, validation and comparison 

This section aims to show the performance of the proposed HRDPSOA in comparison with 

PSO and RDA to solve the proposed optimization model. To have an unbiased assessment, the 

parameters of the algorithms must be tuned. Good tuning is highly essential to confirm the 

performance of the developed HRDPSOA. 

To do the tuning, the Taguchi experimental design method is applied [56]. In this method, we 

first consider some candidate values for each, then find the best set for parameters. In this notice, 

Table 2 reports the results of tuning for the algorithms. 
 

After tuning, it is essential to show that the algorithms find the optimal solution. The algorithms 

are employed to solve the case study in dairy manufacturing and, the exact solver checks their results 

via GAMS software. The epsilon constraint method [57] is utilized to find the Pareto solutions 

exactly. This method transforms the multi- objective model into a single objective form and limits the 

rest of the objectives as the allowable bounds. For the proposed case study, after updating the bounds, 

only three feasible solutions are found. The results of the epsilon constraint and three metaheuristics 

are given in Table 3. These solutions are also depicted in Figure 3. This figure shows that the 

solutions of the metaheuristics are optimal and validated by the epsilon constraint method. It also 

shows that the diversity of HRDPSOA is closer to the solutions of the epsilon constraint method and, 

the solutions of HRDPSOA dominate RDA and PSO. 

 

To compare the algorithms, we have utilized four commonly used metrics in the literature 

comprising the number of Pareto solutions (NPS), mean ideal distance (MID), the spread of non- 

dominance solution (SNS), and maximum spread (MS). These metrics are defined as follows: 



15  

 NPS is the number of non-dominated solutions in the Pareto optimal set. A higher value 1 

of this metric shows a better diversity of the solutions [58]. 2 

 MS measures the distance between the best and the worst solutions in the optimal Pareto 3 

set. It can be formulated as follows: 4 

𝑀𝑆 = √(∑(𝑍𝑗
𝑀𝑎𝑥 − 𝑍𝑗

𝑀𝑖𝑛)

𝑁𝑂

𝑗=1

)

2

 (67) 

 5 

𝑍𝑀𝑎𝑥 and 𝑍𝑀𝑖𝑛 are respectively the maximum and the minimum value of the objective j among 6 
𝑗 𝑗 7 

all the solutions. NPS metric evaluates the diversity of the solutions. A higher value of the MS 8 

metric means a better capability of the algorithm [59] to find an optimal solution. 9 

 MID measures the distance between solutions in the Pareto optimal set and, we can 10 

formulate it as follows: 11 

𝑀𝐼𝐷 =

∑ √(∑
𝑍𝑗

𝑖 − 𝑍𝑗
𝐵𝑒𝑠𝑡

𝑍𝑗
𝑀𝑎𝑥 − 𝑍𝑗

𝑀𝑖𝑛
𝑁𝑂
𝑗=1 )

2

𝑁𝑃𝑆
𝑖=1

𝑁𝑃𝑆
 

(68) 

 12 

Where NO is the number of objectives, 𝑍𝑗
𝑖 is the solution i for objective j, and 𝑍𝑗

𝐵𝑒𝑠𝑡  is the maximum 13 

or minimum value regarding the type of the objective function. A lower value of this metric shows a 14 

faster convergence of the solution [58]. 15 

 SNS is the spread of non-dominated solutions. This metric, similar to MS, measures the 16 

distance between the non-dominated solutions. A higher value of this metric brings a 17 

better diversity of Pareto solutions in the algorithm [58]. It is formulated as follows: 18 

𝑆𝑁𝑆 =
√(𝑀𝐼𝐷 − √∑ (∑ 𝑍𝑗

𝑖𝑁𝑃𝑆
𝑖=1 )𝑁𝑂

𝑗=1 )2

𝑁𝑃𝑆 − 1
 

(69) 

 Ten simulated test studies are benchmarked by the data of Taleizadeh, Soleymanfar and 19 

Govindan, [28] to provide a comparison between three optimization algorithms. 20 

 We have classified these tests into three levels, i.e., small, medium, and large, to analyze 21 

the complexity for solving our model. The first three tests are linked with the low 22 

complexity level. Tests 4, 5, and 6 are assumed as the medium size and, other tests are 23 

simulating the large scale. PSO, RDA, and the proposed HRDPSOA are implemented to 24 

solve these simulation tests. In each test problem, the non-dominated solutions found by the 25 

algorithms are analyzed by the assessment metrics defined above. Table 4 reports the 26 

results of the assessment metrics for analyzing the quality of the algorithms. Note that the 27 

best value in each test is shown in bold. 28 

 29 

The result figuring Table 4 generally confirms that the proposed HRDPSOA is acquiring better 30 
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results than PSO and RDA. To exhibit this robustness via statistical tests, we normalize the results of 31 

Table 4 and use the interval plot depicted in Figure 4. 32 

As shown in Figure 4(a), HRDPSOA is highly more satisfying than RDA in the criterion of the 33 

NPS metric. The RDA is also more reliable than PSO in this metric. Based on the criterion of the 34 

MID metric (Figure 4(b)), HRDPSOA outperforms the PSO, and consequently, the PSO is slightly 35 

more helpful than RDA in this metric. The results are similar to the MID metric regarding the SNS 36 

metric (Figure 4(c)). HRDPSOA is significantly more beneficial than PSO and RDA. As indicated in 37 

Figure 4(d), the results are identical to the NPS metric. HRDPSOA outperforms the RDA and PSO, 38 

respectively. 39 

The computational time of the algorithms is quite similar, and the proposed hybrid HRDPSOA 40 

is slightly inefficient; based on the quality criterion as addressed in the assessment metrics, the 41 

proposed HRDPSOA is very strong and efficient in this paper. 42 

 43 

6.3. Sensitivity analysis 44 

Sensitivity analysis supplies knowledge on the relative significance of model input parameters 45 

and assumptions [49] and is always a crucial element of decision making. Here, some sensitivity 46 

analyses are performed to study the efficiency and the impact of the         parameters for decision-47 

makers. The Sensitivity analysis is beneficial in situations where uncertainties exist in the 48 

definition of the various factors [60]. In this regard, we have defined two scenarios. The first 49 

scenario is the model  presented in Section 3.2.1 as an S-EPQ model considering lost sales. The 50 

second scenario is presented in Section 3.2.2 as an S-EPQ model considering full back-ordering. 51 

The impact of these scenarios toward sustainability is analyzed comprehensively by the data of 52 

an actual case study in dairy manufacturing in Iran. 53 

First sensitivity analysis is the changes in the shelf life of products on average. For both 54 

scenarios, the shelf life of products is increased from 3 days to 6 months. Ten cases are designed 55 

accordingly. The results are reported in Table 5. 56 

 57 

The results given in Table 5 show that the second scenario is better than the first scenario in the 58 

total profit criterion. However, the first scenario is better than the second one in the second and 59 

third objectives based on environmental and social factors. Variations of the objectives in both 60 

scenarios indicate that an apparent similarity between them (Figure 5). In both scenarios, an 61 

increase in the shelf life of products leads to a reduction in the total profit, which is not suitable. 62 

However, this increases in the variations of the shelf life of products leads to an improvement in 63 

the environmental and social criteria. The last analysis on the scenarios and sustainability goals 64 

refers to the diversity of products. Following this, the diversity of products has been increased 65 

from 1 to 20 and, the results of both scenarios are noted. In this regard, 7 cases are simulated. 66 

Table 6 reports the outputs of the scenarios for the sensitivity analysis and, Figure 6 shows the 67 

variation of sustainability goals for both scenarios. 68 

 69 

Once again, the results given in Table 6 confirm that the second scenario gives us more profit than 70 

the first scenario modeling. However, it does not improve the environmental and social criteria. The 71 

behavior of both scenarios is the same, as can be concluded from Figure 6. In both scenarios, an 72 
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increase in the diversity of the products increases the total profit. However, this increases the 73 

environmental pollution and additional working hours. Therefore, the diversity of the products 74 

improves economic sustainability only. It does not improve the environmental and social goals. 75 

 76 
 77 

 Managerial insights 78 

The following findings could be helpful for managers to make quick decisions and analyses about 79 

the implementation of TBL in dairy manufacturing systems. Among the items in our S-EPQ 80 

model, the she0lf life of products is particularly significant on the economic, environmental, and 81 

social factors. Although an increase in shelf life improves the environmental and social criteria, it 82 

reduces the total profit negatively. 83 

I. The diversity of the products is another notable parameter that has a significant impact on 84 

economic sustainability. However, it damages the environmental and social criteria. 85 

II. It has frequently been observed that some of the inventory parameters treat as uncertain 86 

variables. This phenomenon can happen in so many practical situations in real life, as the 87 

market demand, which is usually not precisely known. In this case, taking advantage of the 88 

stochastic demand would be beneficial. 89 

III. Another significant managerial insight is to shift the traditional EPQ model to an S-EPQ 90 

facing stochastic demand. The demand uncertainty makes our model more realistic and helps 91 

the managers compute the expected total cost robustly. Therefore, the decisions made by our 92 

model are robust against the demand uncertainty. 93 

IV. To manage the high complexity of EPQ models, an efficient solution is highly needed. 94 

Therefore, a practical and robust optimization algorithm like our hybrid of RDA and PSO can 95 

be suggested to the managers for solving the real test optimality.  96 

7. Conclusion and further research 97 

In this paper, an S-EPQ model was developed to determine the optimal quantity of manufacturing 98 

for the perishable products under three pillars of sustainability simultaneously (the TBL approach). 99 

The high cost of production and storage and arising consciousness toward social factors and 100 

environmental issues led to studying the supply chain as an integrated sustainable supply chain. The 101 

model was subjected to back-order and lost sales. Hence, a multi- objective model is provided to 102 

solve the problem and assumed deterioration function during storage plus generating defective items 103 

during manufacturing. 104 

It has been estimated stochastic to cope with the inherent uncertainty of the demand data and its 105 

variation over time. Uncertainty is inherent in managerial practice. A PSO algorithm as a powerful 106 

swarm-based method was proposed due to the NP-hard nature of the problem. Then, the proposed 107 

algorithm was tuned, validated, and compared with its individuals, and sensitivity analyses were 108 

conducted to study the perishability of the developed S-EPQ model. The results show the advantage 109 

of the developed hybrid algorithm in terms of quality Pareto solutions compared to the original 110 

version of PSO and RDA. The applicability of the proposed model and algorithm manifested in a real 111 

case study in the Kalleh dairy industry. Finally, some sensitivity analyses were performed to study 112 

the impact of the shelf life of products and the number of products on the S-EPQ considering lost 113 

sales (the first scenario) and full back-order (the second scenario).  114 
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In conclusion, this paper presented an S-EPQ model under two scenarios, including lost sales and 115 

full back-order, that would be advantageous for companies to maximize the total profit, diminish 116 

environmental pollution, and improve social justice in the manufacturing systems. A novel hybrid 117 

algorithm was also developed. Although this study was profoundly practical and efficient for 118 

implementing the TBL strategy for dairy manufacturing, many other suppositions can be considered 119 

for further research. Vehicle routing optimization makes the proposed problem more practical and 120 

complex than the current format of this paper. Reducing the negative impacts of logistics activities is 121 

highly important in supply chain sustainability practices [61]. Combining more social factors such as 122 

job opportunities can be another interesting addition to future studies. Other novel heuristics and 123 

meta-heuristics may be suggested for our proposed model. The proposed novel hybrid algorithm in 124 

this paper can be adjusted for solving other complex optimization problems like supply chain 125 

network design and healthcare facility location. 126 

 127 
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 318 
Table 2. Tuning of algorithms’ parameters 319 

   

Algorithm Parameter Value 

 Maximum number of iteration (MaxIt) 500 

 Number of Population (nPop) 100 

PSO 
Rate of weight damper (W) 0.9 

Coefficient of the global solution (C1) 2 

 Coefficient of the local solution (C2) 2 

 Maximum number of iteration (MaxIt) 500 

 Number of Population (nPop) 100 

RDA Percentage of fighting (gamma) 0.8 

 Percentage of mating in harms (alpha) 0.6 

 Percentage of mating of harems (betta) 0.6 

 Maximum number of iteration (MaxIt) 500 

 Number of Population (nPop) 100 

 Coefficient of the global solution (C1) 2 

HRDPSOA Coefficient of the local solution (C2) 2 

 Percentage of fighting (gamma) 0.8 

 Percentage of mating in harms (alpha) 0.7 

 Percentage of mating of harems (betta) 0.5 

 320 

 321 
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Table 3. Results of the case study 322 

 323 

Epsilon constraint PSO RD

A 

HRDPSOA 

Y1 Y2 Y3 Y1 Y2 Y3 Y1 Y2 Y3 Y1 Y2 Y3 

31040 697.5 77.5 31180.4 706.68 78.52 31885.6 727.2 80.8 31978.5 726.3 80.7 

32018 723.6 80.4 31570 711.45 79.05 32009 730.8 81.2 31993.5 732.6 81.4 

32040 738 82 31862 733.14 81.46 32017 753.3 83.7 32009 735.3 81.7 

- - - 32015 745.2 82.8 32027 756 84 32016 738.9 82.1 

- - - 32020 749.7 83.3 32035 760.5 84.5 32029 742.5 82.5 

- - - - - - - - - 32038 746.1 82.9 

 324 

Table 4. Results of the assessment metrics 325 

 326 
  Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7 Test 8 Test 9 Test 10 

 
NPS 

PSO 5 10 14 15 18 16 18 14 20 18 

RDA 5 9 16 17 16 14 16 20 18 16 

HRDPSO

A 

6 10 18 17 17 18 20 18 16 20 

 
MID 

PSO 2.9316 3.7218 4.0318 2.8172 3.283 4.372 3.823 3.2288 3.4852 4.3881 

RDA 3.0418 2.9103 3.2864 3.2832 4.273 3.281 4.201 4.393 4.3882 4.2041 

HRDPSO

A 

2.7581 2.6418 3.1082 4.3821 3.032 3.928 3.2837 2.382 3.2034 2.9231 

 
SNS 

PSO 23086 20882 3021 3998 4294 3092 3892 3278 5305 3902 

RDA 21495 18045 4046 4263 5021 4397 3617 3822 5220 4201 

HRDPSO

A 
26041 30166 3604 4833 4374 4822 4903 4318 4683 4520 

 
MS 

PSO 19844 25028 22884 20743 23289 24931 22041 27031 21302 22033 

RDA 18655 20814 24015 26032 26042 25041 28403 27832 22033 24392 

HRDPSO

A 
20184 30219 28918 28943 25043 22041 28732 23012 25044 26032 

 327 

Table 5. Sensitivity analysis on the shelf life of products 328 

 329 
 

Number 

of cases 

Shelf life of 

the products in 

the average 

 
First scenario 

 
Second scenario 

Z1 Z2 Z3 Z1 Z2 Z3 

C1 3 days 25739.7 2242.56 461.25 3677

1 

2803.2 512.5 

C2 5 days 25219.6 836.24 228.87 3602

8 

1045.3 254.3 

C3 10 days 25076.8 660.72 158.58 3582

4 

825.9 176.2 

C4 20 days 24383.1 651.6 101.16 3483

3 

814.5 112.4 

C5 25 days 22103.2 571.76 74.07 3157

6 

714.7 82.3 

C6 1 month 21728 558 69.75 3104

0 

697.5 77.5 

C7 2 

months 

20058.5 460 57.87 2865

5 

575 64.3 
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C8 3 

months 

13058.5 261.6 43.47 1865

5 

327 48.3 

C9 5 

months 

8460.9 228.8 38.34 1208

7 

286 42.6 

C10 6 

months 

7549.5 203.2 35.55 1078

5 

254 39.5 

 330 

Table 6. Sensitivity analysis on the diversity of products 331 
 332 

 333 
 

 
Number 

of cases 

 

 

Number of products 

 
First scenario 

 
Second scenario 

Z1 Z2 Z3 Z1 Z2 Z3 

C1 1 2185 29.7 6.7 1844 32.4 7.6 

C2 3 7855 105.6 18.4 9435 108.3 27.4 

C3 5 13822 323.1 42.1 16073 303.5 48.3 

C4 7 16954 456.9 57.3 21065 547.2 60.4 

C5 10 21728 558 69.75 31040 697.5 77.5 

C6 15 36293 854.9 85.4 38724 865.5 97.4 

C7 20 42766 982.4 98.2 44036 1054.3 115.2 

 334 

 335 

 336 
 337 
 338 

Figure 1. Schematic view of the studied S-EPQ model 339 
 340 
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 341 
 342 

Figure 2. Flow chart of the production plan 343 
 344 

 345 

 346 
 347 

Figure 3. non-dominated solutions for the first problem 348 
 349 
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(d) 

 353 

Figure 4. Interval plots for NPS(a), MID(b), SNS(c) and MS(d) 354 
 355 

 356 

 357 
 358 

Figure 5. Sensitivity analysis on the shelf life of products 359 
 360 
 361 

 362 

Figure 6. Sensitivity analysis on the diversity of products 363 
 364 
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