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Abstract. State Estimation (SE) of a power distribution network plays a vital role in
the Distribution Management Systems (DMSs). SE results can monitor and counteract
grid technical challenges like tracking the unbalanced operation condition. In this paper,
we propose a new approach for unbalanced distribution system SE which is based on the
decomposition of the original problem into three subproblems by applying the symmetrical
components. The subproblems are of lower dimensions and solved in parallel leading
to much less computation time. The convex relaxation method is applied to address
nonconvex ac power ow equations and formulate the distribution network SE problem
as a Semide�nite Program (SDP). Furthermore, an algorithm is proposed to detect and
attenuate bad data in measurements along with the SE solution. The proposed unbalanced
distribution system SE approach is applied to the IEEE 37- and 123-node distribution test
systems. The results are compared with those of three-phase SDP-based and linearized SE
methods. The superiority of proposed approach is veri�ed in terms of computation time
and accuracy.
© 2024 Sharif University of Technology. All rights reserved.

1. Introduction

The distribution network in its changing landscape
towards the smart grid has manifested challenges as-
sociated with the growing penetration of distributed
generation, power quality concerns, and system control
issues [1,2]. The situational awareness of the power
distribution systems, which utilizes State Estimation
(SE) analysis, can provide proper information to
address these challenges [3]. SE is the process of
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approximating the power system states based on the
network measurements. SE analysis has a crucial role
in the Distribution Management System (DMS) to
monitor the operating condition, analyze the security,
and control the network [4].

Although SE has been employed in transmission
systems for many years, it cannot directly be used
in distribution networks due to their special char-
acteristics. First, distribution networks are usually
being operated in an unbalanced condition; hence, a
single-phase equivalent model is no longer valid and
a three-phase SE model must be utilized. Second,
lack of su�cient measurements in distribution networks
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forces DMS to use pseudo and virtual measurements
for observability [5,6], which have extremely di�erent
accuracies. In addition, existing measurement devices
with very di�erent accuracies cause convergence issues
due to matrices ill-conditioning [5]. Third, the high
resistance to reactance ratio of power distribution lines
makes it impossible to use the decoupled power ow
equations in the distribution network SE analyses.
Furthermore, in a distribution network, a small amount
of power is usually transferred over a short distance
and the system states do not vary signi�cantly. The
SE analysis accuracy hence poses a great importance.
As a result, it is inevitable to use full ac power ow
equations. In recent years, the distribution network SE
analysis has attracted lots of research interests [7{ 9].

Distribution system SE can be divided into two
categories of dynamic SE [10,11] and static SE [12].
In terms of static SE, the earlier research papers on
distribution system SE focused on the conventional
Newton-Raphson method [13{15]. The iterative Gauss-
Newton solution faces convergence issues and numerical
instability due to distribution network aforementioned
characteristics. Haughton et al. [16] presented a
linear three-phase distribution system SE to avoid ill-
conditioning. Although linear methods have a fast
convergence rate, they are weak in terms of accuracy.
Recently, new approaches based on the convexi�cation
of distribution system SE equations were proposed in
literatures. Weng et al. [17] applied Semide�nite
Programming (SDP) to transmission system SE to con-
vexify the power ow equations. Zhu et al. [18] devised
a distributed SDP-based SE for transmission systems
to address computational challenges. Yao et al. [19]
proposed a SDP-based three-phase distribution system
SE, which incorporated the three-phase equations in
distribution network SE analysis for improving the
numerical features. SDP-based distribution network
SE su�ers from the high computation time while it
demonstrates better accuracy. To address the high
computation time, Refs. [20,21] proposed a symmet-
rical components-based decomposition for distribution
system SE problem. Lin et al. [22] proposed a
decentralized method to address the computational
e�ciency of distribution network SE.

It is worth mentioning that in the distribution
network SE literature, several methods have been
proposed to utilize branch current for SE analysis [23].
The drawback of the existing branch current-based SE
methods is numerical instability issue of the Gauss-
Newton solver driven by the ill-conditioned matrix
during the solution iteration.

In the light of the literature review, it is evident
that having a distribution network SE algorithm with
reasonable computational burden and decent accuracy
is still wanted. In addition, the robustness of the
proposed distribution network SE against the presence

of bad data is of great importance. In this paper,
we utilize the symmetrical component-based decom-
position and SDP-based convexi�cation approach for
the distribution system SE problem. The e�ciency
of SDP to address the numerical instability caused by
traditional SE methods and its accuracy has motivated
us to use this approach in solving the SE problem in
unbalanced distribution networks. The main contribu-
tions of this paper are listed as follows:

� Analysis of the convexi�ed symmetrical
components-based SE model: We examined a
new approach for the SE in distribution networks
based on decomposing the SE problem into three
positive, negative, and zero sequence components
by using a convex relaxation technique and trans-
forming the original nonconvex subproblems into an
SDP;

� Computation time reduction: The resultant SE
subproblems have lower dimensions in comparison
with the original problem; they are hence solved in
parallel to lessen the computation complexity while
maintaining accuracy;

� Bad data detection and mitigation: We propose
an algorithm to identify bad data along with the SE
process. The proposed algorithm reduces bad data
e�ects on �nal SE results where it is not required to
re-execute the SE after the elimination of bad data.

This paper is organized as follows. Section 2 introduces
the system model. In Section 3, the distribution
network SE problem is formulated as a SDP. Section 4
proposes the distribution network SE algorithm. Sec-
tion 5 presents case studies and Section 6 concludes the
paper.

2. System model

Consider an unbalanced three-phase distribution net-
work comprising a set of nodes N = f1; : : : ; Ng and
a set of branches L = f(n; l) j n; l 2 Ng. In this
paper, we utilize �PMU measurement infrastructure.
Let NPMU � N and LPMU � L denote the sets
of nodes and lines containing �PMUs measurements
that directly calculate node voltage and line current
phasors, respectively. These measurements enable
us to perform vector decompositions using Fortescue
transformation. The limited number of measurements
requires pseudo and virtual measurements in DMS
for maintaining the distribution network observability.
Pseudo measurements are historical DMS data. Let
N psd � N and L psd � L denote sets of nodes and
lines, respectively, which provide pseudo measurements
in SE analyses. Also, virtual measurements are exact
measurements with zero power injections into nodes
and zero power ows in open lines. Let N vir � N and
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L vir � L denote the sets of nodes and lines with virtual
measurements in the SE analysis.

We apply the Fortescue transformation to the
three-phase voltages and currents to derive the associ-
ated symmetrical components. It is worth noting that
in four-wire distribution networks, three-phase compo-
nents are achieved by using Kron reduction method
[24]. We then decompose the three-phase distribution
network SE problem into three subproblems associated
with positive, negative, and zero sequences. It is
assumed that the power transmission lines have a
symmetrical con�guration. In this way, three symmet-
rical components are decoupled and can be analyzed
separately (in Section 5, sensitivity analysis has carried
out). Hereafter, we focus on the SE analysis for
positive sequence which is denoted by superscript +.
The SE for the negative and zero sequences can be
formulated in a similar fashion. For parts with a
single or two phases, virtual two or a single phase is
considered, respectively. In other words, for absent
phases, we assume virtual phases with zero current on
branches and hence the same voltage with upstream
node, which enables us to reach three-phase mode
to perform Fortescue transformation and symmetrical-
component based SE decomposition in these networks.

Let v+
n = v+

n;Re + jv+
n;Im denote the positive

sequence of voltage phasor at node n 2 N and i+nl
denote the positive sequence of current phasor at line
(n; l) 2 L. Utilizing the symmetrical components
of �PMU measurements, we determine the positive
sequence of power ow through line (n; l) 2 L as
P+
nl+jQ

+
nl = v+

n i
�+
nl , where � is the conjugate operation.

Also, we determine the positive sequence of the injected
power into node n 2 N as P+

n;inj + jQ+
n;inj =

v+
n
P
l2N i�+nl . Let M = f1; : : : ;Mg denote the set of

SE measurements in the sets NPMU, N psd, LPMU; and
Lpsd. Let z+ = (z+

m ;m 2 M) denote the vector of
positive sequence measurements where z+

m is equal to
either v+

n;Re, v
+
n;Im, P+

nl, Q
+
nl, P

+
n;inj , or Q+

n;inj . The SE
analysis will obtain the system state variable vector v+,
where v+ = (v+

n ; n 2 N ). For SE, each measurement
z+
m is expressed as:

z+
m = fm(v+) + "+

m 8m 2M; (1)

where "+
m is the measurement error m 2 M and

function fm(�) calculates the value measured by mea-
surement m in terms of the system state vector v+.
Function f(�) is obtained from the full ac power ow
equations and hence is nonlinear and nonconvex for
some measurements. To overcome the nonconvexities
of the distribution network SE, we formulate SE as a
SDP. Ref. [25] can be referenced by interested readers
to get an insight into the SDP-based optimization. To
derive f(�) and the objective function for SDP, we
de�ne the state vector for the positive sequence as

follows:

x+ = [Refv+gTImfv+gT]T: (2)

Also, we de�ne variable matrix W+ = x+x+T. For
n 2 N , let en denote the nth basis vector in RN . To
accommodate �PMU phase angle measurements in SE
analyses, we de�ne:

Rn =
�

eneT
n 0N�N

0N�N 0N�N

�
; (3a)

In =
�

0N�N 0N�N
0N�N eneT

n

�
: (3b)

In Appendix A, we show that:

jv+
n;Rej =

p
TrfRnW+g; 8n 2 N ; (4a)

jv+
n;Imj =

p
TrfInW+g; 8n 2 N ; (4b)

where Tr is matrix trace operator. We use the �-
equivalent line model for transmission lines [26]. Let
Y denotes the system admittance matrix using the
line series and shunt impedances, represented by ynl
and �ynl, respectively. We de�ne Yn = eneT

nY and
Ynl = (�ynl + ynl) eleT

l � (ynl) eneT
l . In addition, for

n 2 N and (n; l) 2 L, we de�ne matricesYn, �Yn, Ynl,
and �Ynl as follows:

Yn =
1
2

�
RefYn + Y T

n g ImfY T
n � Yng

ImfYn � Y T
n g RefYn + Y T

n g
�
; (5a)

�Yn =
�1
2

�
ImfYn + Y T

n g RefYn � Y T
n g

RefY T
n � Yng ImfYn + Y T

n g
�
; (5b)

Ynl =
1
2

�
RefYnl + Y T

nlg ImfY T
nl � Ynlg

ImfYnl � Y T
nlg RefYnl + Y T

nlg
�
; (5c)

�Ynl=
�1
2

�
ImfYnl + Y T

nlg RefYnl � Y T
nlg

RefY T
nl � Ynlg ImfYnl + Y T

nlg
�
: (5d)

Accordingly, we have [17]:

P+
n;inj = TrfYnW+g; 8n 2 N ; (6a)

Q+
n;inj = Trf�YnW+g; 8n 2 N ; (6b)

P+
nl = TrfYnlW+g; 8(n; l) 2 L; (6c)

Q+
nl = Trf�YnlW+g; 8(n; l) 2 L: (6d)

In Eqs. (4) and (6), it is shown that all measurements
can be derived out of variable matrix W+ using de�ned
matrices. Let fm(W+) denote the function that relate
matrix W+ to the measurement m 2 M. The vector
of measurements z+ used in SE comprises �PMU
and pseudo measurements. In contrast, exact virtual
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measurements appear in SDP as constraints for the SE
analyses. These constraints are stated as follows:

TrfYnW+g = 0; 8n 2 N vir; (7a)

Trf�YnW+g = 0; 8n 2 N vir; (7b)

TrfYnlW+g = 0; 8(n; l) 2 Lvir; (7c)

Trf�YnlW+g = 0; 8(n; l) 2 Lvir: (7d)

Eqs. 7(a) and 7(b) correspond to the zero-injection
active and reactive powers in node n, respectively. Eqs.
7(c) and 7(d) are related to the active and reactive
power ows on the open line (n; l) 2 L, respectively. In
the following section, we discuss the objective function
and the constraints of the SDP-based SE analysis.

3. Proposed SE formulation

We use the Weighted Least Square (WLS) criterion
to solve the distribution network SE problem. In this
method, the objective is to minimize sum of the squares
of di�erences between estimated variables and available
measurements. We de�ne �m as the standard deviation
of measurement m. A measurement with a smaller �m
will have high trustworthy and a larger weight during
SE. The objective function for SE is stated as follows:

F obj+ =
X
m2M

1
�2
m

�
z+
m � fm �W+��2: (8)

Schur complement theory is used [25] to convert the
quadratic objective function Eq. (8) to the linear
weighted one. We de�ne an auxiliary variable vector
b+ 2 RM�1. Accordingly, the distribution network SE
problem is formulated as follows:

minimize
W+;b+

F obj+ =
X
m2M

1
�2
m
b+m; (9a)

subject to:�
b+m z+

m � fm (W+)
z+
m � fm (W+) 1

�
� 0; (9b)

Eqs: 7(a)� 7(b) (9c)

W+ � 0; (9d)

rank(W+) = 1: (9e)

Constraint 9(d) forces matrix W+ to be positive
semide�nite and Constraint 9(e) determines that ma-
trix W+ is rank-one. Solving problem (9) is challenging
since the rank-one Constraint 9(e) makes problem (9)
to be nonconvex. Moreover, in practice, bad data
measurements can a�ect the SE results. Hence, a
simultaneous bad data detection and attenuation in
SE will be of great value. In the following, we focus
on addressing the aforementioned challenges.

3.1. Rank reduction
The problem expressed by Constraint (9) is nonconvex
due to the rank-one Constraint 9(e). We apply the
convex relaxation technique to transform Constraint
(9) into a convex optimization problem. Subsequently,
we apply the rank reduction technique to achieve a
rank-one solution. In [19], a projection method for rank
reduction was deployed, where the rank-one results
were obtained using the largest eigenvalue decompo-
sition. Mathematically speaking, in projection method
we have:

W+opt = �1K1K1
T; (10)

where �1 is the largest eigenvalue of W+, and K1 is
the corresponding eigenvector. This method is fast
but has a low accuracy drawback. Since the network
states in distribution networks do not vary signi�cantly,
the accuracy of SE analyses is of great importance
and cannot be sacri�ced. As a result, a technique
which o�ers more accurate results even with a higher
computational burden is preferred. Complying with
these features, the convex iteration optimization-based
rank reduction approach is proposed in [19] to achieve
low-rank solutions. This method �nds a matrix ~W with
a lower rank than the original solution matrix W+0 . In
other words,

null(W+0) � null( ~W): (11)

The convex iteration method is derived using
Theorem 1:

Theorem 1 [19]: If SDP problem is feasible, the
solution with the lowest rank must be an extreme point
of its feasible set.
According to Theorem 1, a penalty term is added to
the objective function of Constraint (9) to reach the
extreme point of W+. This term forces the results
toward the lowest rank W+ by the direction matrix
D+, which is the solution of another SDP in Constraint
(13). Thus, the distribution network SE problem is
stated as:

minimize
W+;b+

X
m2M

1
�2
m
b+m + �+TrfW+TD+�g; (12a)

subject to:�
b+m z+

m � fm (W+)
z+
m � fm (W+) 1

�
� 0; (12b)

Eqs: (7a)� (7d); (12c)

W+ � 0; (12d)

where �+ is a positive weight and D+� is the direction
matrix derived from the following SDP-based optimiza-
tion problem:



A. Dadashzade et al./Scientia Iranica, Transactions: D Computer Science & ... 31 (2024) 1517{1529 1521

minimize TrfW+�TD+g; (13a)

subject to:

0 � D+ � I; (13b)

TrfD+g = 2N � 1: (13c)

In Constraint13(a), W+ refers to the solution of Prob-
lem (12). Constraints 13(b){13(c) force the direction
matrix to be in the convex hull of all rank 2N � 1
orthogonal matrices and by optimization, we look
for extreme points of the set. This iteration will
continue until the rank-one condition is achieved. In
calculations, we consider it as:

TrfW+TD+�g = 0: (14)

Eq. (14) implies that the 2N � 1 eigenvalues of matrix
W+ should be zero to obtain the rank-one solution.
The rank-one solution derives the positive sequence
voltage components using W+. We use the following
equations to extract the system states:

v+
n =

p
TrfRnW+g+ TrfInW+g; (15a)

�+
n = tan�1

 p
TrfInW+gp
TrfRnW+g

!
: (15b)

The proof is given in Appendix B.
For negative and zero sequences SE, voltage phase

angles are sometimes greater than 90 degrees which
correspond to the negative real part of the solution. To
detect this condition, we use the non-diagonal compo-
nents of W� and W0, respectively. These components
consist of the products of real and imaginary voltages.
If this value for a given node of the system is negative,
its angle is greater than 90 degrees. In order to
calculate the system states using the proposed opti-
mization problem, we �rst use Eqs. 15(a) and 15(b) to
calculate the system positive, negative, and zero states
separately from W+, W�, and W0. Then, we apply
the inverse Fortescue transform to the symmetrical
component SE to determine the three-phase system
states. Using the symmetrical components, we reduce
dimension of W+ from 6N�6N to 2N�2N ; hence, the
calculation of rank-one results by the direction matrix
D+ leads to a lower approximation error [27].

In the zero sequence SE, some sorts of distribution
network transformer connection, say wye, force zero
sequence components to be zero. These values are
incorporated in the models as virtual measurements.

3.2. Bad data detection
In this section, we show that the system states in nodes
with �PMUs can be extracted before the iterative rank
reduction process. To do so, we build the principal

submatrix W+
(s), where set S relates to the row

numbers in the matrix W+ that are associated with
measurement nodes. The principal submatrix is made
by retaining the liked-numbered rows and columns in
set S. By building the principal submatrix, we divide
W+ into W+

(s) and W+
(k) where set K is associated

with row numbers in the matrix W+ that do not have
measurement devices. According to proposition on the
rank decomposition [28], rank (W+) = rank (W+

(s)) +
rank (W+

(k)). In the following, we focus on the principal
submatrix W+

(s) rank.
Su�cient conditions in which a rank-one result

can be achieved are [19]:

(i) The network operates in balanced mode;
(ii) Measurements are without noise;
(iii) All nodes have voltage measurements.

Among the aforementioned conditions for the principal
submatrix, the �rst condition is met in our formula-
tion since we utilize a Fortescue transform to convert
an unbalanced network into three balanced positive,
negative, and zero sequence networks [29]. For the
second, we used a method proposed in [30,31] to extract
the rank-one matrix out of noisy measurements. For
the third, according to Ref. [19], one of the su�cient
conditions for obtaining rank-one result is the availabil-
ity of voltage magnitude measurements in all nodes.
We know that it is not the case in real distribution
networks to have measurement at all nodes of the
distribution network. So, some rows and columns of
the matrix W+ do not contain measurements. To solve
this problem, we create matrix W+(s) which contains
just the rows and columns of the matrix W+ that
contain the measurement facilities. In this condition,
we met one of the su�cient conditions to achieve the
rank one output results. Mathematically speaking, the
principal submatrix contains only the nodes that have
measurement equipment. The principal submatrix
W+

(s) covers all the above three conditions and has a
rank-one characteristics which enables us to extract
power system states in nodes with �PMU measure-
ments before the rank reduction process [32].

Using the states obtained from Eqs. 15(a) and
15(b) and its corresponding negative and zero sequence
states, we perform the inverse Fortescue transform to
calculate the residual for a given measurement m 2M.
The residual is the di�erences between measurements
and their estimated values, and its normalized value is
calculated as follows:

Rm =
����zm � zestm

�m

���� ; (16)

where zestm is the estimated value associated with the
measured value zm of the distribution network.
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The imprecise network model and inexact mea-
surements cause nonzero residuals in SE analyses. The
presence of bad data, which could be due to intrusions
or faults within measurement infrastructures, increases
the related residual, which can seriously a�ect the
SE results. We assume the errors have a Gaussian
Probability Density Function (PDF) with zero mean.
Along with the calculation of SE and before rank
reduction process, we construct W+

(s) and calculate the
residuals. If the measurement residualm 2M is higher
than the threshold (�3�m), it is known as bad data
with a con�dence level of 99% [4]. By extracting the
measurement residuals before rank reduction process,
we determine bad data in measurements and reduce
their weights in SE.

The innovation of the proposed method in com-
parison to the available bad data detection methods
is that it can detect and attenuates the bad data
simultaneously with SE analysis. In available methods,
if any bad data is detected, it should be removed from
the input data and SE needs to be re-executed and
this process might be iterated several times until no
suspected bad data is agged. In this paper, using
the characteristics of the rank reduction algorithm,
we calculate the normalized residuals of the network
measurement along with solving SE problem, and we
can detect the presence of bad data simultaneously.
Thereafter, the weights of suspected measurements are
adjusted to diminish their e�ects.

4. Proposed algorithm design

Algorithm 1 depicts the proposed three-phase unbal-
anced distribution network SE for the positive se-
quence. The algorithm for the other negative and
zero sequences are the same. In Line 1, we form the
SE analysis positive sequence measurement vector z+

which consist of pseudo and �PMU measurements. In
Line 2, using the SDP SE formulation, we relax the
nonconvex rank-one Constraint 9(e) and solve Problem

Algorithm 1. Proposed SE algorithm.

(9) for the positive sequence component. We next
form W+

(s) to derive normalized residuals in Line 4
using Eq. (16). Using the residuals from Line 4, we
search for bad data based on the threshold discussed
in Section 3 and assign new standard deviations to
suspicious measurements in Line 5. The weights of
related measurements alleviate the adverse e�ects of
bad data on �nal results. In Line 6, we perform
the rank reduction process. We solve Problem (13)
to calculate the direction matrix D+ so long as the
penalty term in the objective function is not zero, and
solve Problem (12) to reach lower rank result. In Line 9,
we use Eq. (15) to calculate positive sequence states.
Finally, using the three positive, negative, and zero
sequence SE results, we apply the inverse symmetrical
component to calculate the distribution network three-
phase states.

5. Numerical studies

In this section, we demonstrate performance of the
proposed method on the IEEE 37- and 123-node test
distribution networks. The test systems data can
be found in [33]. The only measurement data that
we use in the distribution system SE formulation are
�PMUs measurements. The accuracy of the measured
values is extracted from the datasheet of a Micro-
�PMU product, and the associated uncertainties are
calculated via the technique presented in [34]. Virtual
measurements are supposed to be absolutely exact
and managed in the SDP formulation as constraints.
In contrast, pseudo measurements are driven from
historical data and is used to enhance observability
of the SE analysis. These measurements are assumed
to have 50% error in the numerical studies. In the
simulations, ten percent of nodes are supposed to have
pseudo-measurements.

The allocation of �PMU locations in distribution
networks is highly discussed in the literature [35{38]. It
should be considered that that the locations of Micro-
PMUs in the distribution network are mainly deter-
mined based on satisfying the minimum accuracy re-
quired to estimate the voltage pro�le and the visibility
of the network is provided using pseudo-measurements.
However, a dependable SE bad data detection function
needs an extensive set of input data (more than
observability requirement) to be overdetermined and to
be able to support bad data detection capability. This
data is a combination of real measurements, pseudo
measurements, and virtual measurements but the more
pseudo measurements we have, the less possibility
for bad data detection is realized. In the proposed
methodology, the simultaneous bad data detection (as
opposed to cumbersome convectional approach to run
bad data detection/rejection sequentially after the �rst
iteration of SE) is focused as one of the contributions.
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Figure 1. The 37-node distribution system.

As a result, we used the placement scheme proposed in
reference [39].

The OpenDSS software [40] is used to perform
the power ow and generate system measurements.
�PMU precision is 0.05% [41]. We add a normal dis-
tribution probability with a zero mean and a variance
which is twice the �PMU precision to accommodate
transducer errors. The zero injection nodes are virtual
measurements in SE analyses and their locations are
shown in Figure 1. The proposed distribution network
SE problem is solved using MATLAB/CVX [42] with
Mosek 7 [43] solver in a PC with Intel (R) Core (TM)
i7-4710HQ CPU@2.5 GHz.

5.1. Accuracy analysis
In order to evaluate the accuracy of the proposed
distribution network SE method, we compare the
resulting SE errors with three-phase SDP-based and
linear distribution network SE solutions. Percentage
form index-based errors are de�ned as:

Amplitude error =

jvestimated � vtrue statej
jvtrue statej ; (17a)

Angle error =

j�estimated � �true statej
j�true statej : (17b)

Figure 2(a) and (b) depict the SE amplitude and angle
errors for the proposed, three-phase SDP-based, and
linear methods. Also, the maximum magnitude and
angle errors of node voltages are given in Tables 1 and

Table 1. Comparison of SE amplitude errors.

Method Index 37-node 123-node

Proposed method Mean error 0.0053 0.0072
Max error 0.0066 0.0092

Three-phase SDP Mean error 0.0061 0.0081
Max error 0.0073 0.011

Linear method Mean error 0.0068 0.0091
Max error 0.0062 0.012

Table 2. Comparison of SE amplitude angle errors.

Method Index 37-node 123-node

Proposed method Mean error 0.1971 0.2615
Max error 0.5976 0.7863

Three-phase SDP Mean error 0.3209 0.4231
Max error 0.6597 0.9745

Linear method Mean error 0.5441 0.6789
Max error 0.8596 1.3718

2. It is deduced that the proposed method is superior
in terms of accuracy which is due to the fact that the
full ac power ow model is applied. Furthermore, the
decomposition of the distribution network SE problem
by symmetrical components provides the opportunity
of utilizing single-line equivalent models of distribution
network. Hence, the dimension of W+ is lower than
that of the three-phase model and the rank reduction
leads to a higher accuracy (Section 3.1). Referring to
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Figure 2. Estimation error for the IEEE 37-node system:
(a) Amplitude; (b) Angle.

Table 3. Comparison of computation times.

Method 37-node 123-node

Proposed method 63 sec 263 sec
Three-phase SDP 1623 sec 6185 sec

Linear method 20 sec 64 sec

Table 1, the linear method is the least accurate one
due to the approximations in the power ow model.
In distribution system SE analysis, accuracy is our
�rst priority. The reason is that in the distribution
network, a small amount of power is usually transferred
over a short distance and system states do not hence
vary signi�cantly, and the SE analyses accuracy poses
vital importance. In this paper, we convexi�ed the
nonconvex distribution system SE problem to reduce
the computation time while maintaining the accuracy.
Di�erent SE methods have various characteristics in
terms of computation times and accuracy. DSO should
decide based on associated preferences.

5.2. Computational e�ort
Table 3 compares the SE analysis computation times
using the three methods for the 37- and 123-node
test systems. Our proposed method reduces the SE
process time signi�cantly. For instance, the distri-
bution network SE on the 37-node network takes 63
seconds while for three-phase SDP based-SE takes 27
minutes. Similarly, for 123-node network, the proposed

method decreases the computation time by over 100
minutes. This reduction is due to the decomposition of
the distribution network SE problem into symmetrical
components which reduce the problem dimension and
allow parallel processing. Moreover, since we consider
the single line network model in symmetrical compo-
nents, the W+ rank will not increase due to unbalanced
operating conditions. Hence, rank reduction is done
faster. In Table 3, the computation time of the
proposed method is more than the linear method
because the proposed method applies the full ac power
ow. This cost is however justi�ed by the higher
accuracy gained.

5.3. Bad data detection
It should be noted that for the detection of bad data,
the redundancy of measured data must be granted.
According to Figure 1, we add two �PMUs at nodes
3 and 13. In order to evaluate the proposed bad data
detection approach, we use the 37-node network and
add 0.2 (p.u.) to voltage measurements at node 2,
active power measurement at node 13, and reactive
power measurement at node 23. Utilizing the nor-
malized measurement residuals with a 99% con�dence
level, the bad data threshold is set to 3. The bad data
are represented by absolute measurement residuals that
exceed the threshold. The measurements in the 37-
node network are numbered as outlined in Table 4.
Figures 3 and 4 depict the normalized residuals of
voltages and active and reactive powers in the absence
of bad data, presence of bad data, and with the
bad data removal, respectively. Also, Tables 5 to 7
show the maximum and the aggregation of normalized
residuals of voltage, active power, and reactive power
measurements, respectively. As shown in Figures
3(a) and 4(a), the normalized measurement residuals
without bad data is less than the prescribed threshold.
After the bad data injection on nodes 2, 13, and 23,
the residuals exceed the threshold. The maximum
normalized residuals for voltage, active power, and
reactive power are 18.1, 10.91, and 10.9, respectively,
which shows signi�cant increase of SE residuals. They
are hence treated as bad data in the following rank
reduction process.

According to Figures 3(b) and 4(b), bad data
measurements increase voltage measurement residuals
and boost residual in nearby nodes. To attenuate the

Table 4. Measurments number

Node# Phases Node# Phases Node# Phases

2 1{3 11 16{18 23 31{33
3 4{6 13 19{21 25 34{36
5 7{9 16 22{24 27 37{39
6 10{12 19 25{27
8 13{15 21 28{30
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Figure 3. Residuals of node voltages for the IEEE
37-node system: (a) Absence of bad data; (b) Presence of
bad data; (c) With the bad data removal approach.

Table 5. Normalized residuals of node voltages in SE
analysis.

Condition Max residual Residual sum

Without bad data 1.43 32.75

With bad data 18.1 79.8

After bad data

attenuation
2.3 47.58

Table 6. Normalized residuals of active powers in SE
analysis.

Condition Max residual Residual sum

Without bad data 1.22 40.5

With bad data 10.91 101.5

After bad data

attenuation
1.28 45

Table 7. Normalized residuals of reactive powers in SE
analysis.

Condition Max residual Residual sum

Without bad data 1.2 38.6

With bad data 10.9 99.7

After bad data

attenuation
1.4 41.3

Figure 4. Residuals of active power (triangle markers)
and reactive power (diamond markers) for the IEEE
37-node system: (a) Absence of bad data; (b) Presence of
bad data; (c) With bad data removal approach.

bad data e�ect on the distribution network SE results,
we divide the measurement weights by 100 and then
start the rank reduction process. Figures 3(c) and
4(c) illustrate the normalized residuals after the bad
data attenuation process for voltage, active power, and
reactive power. According to Table 5, the maximum
and the sum of voltage measurement residuals after
bad data attenuation are reduced by 15.8 and 32.22,
respectively. Also, according to Tables 6 and 7, the
maximum normalized active and reactive powers are
decreased by 9.63 and 9.5, respectively, which shows
that the proposed method can e�ciently detect and
attenuate the bad data in SE analysis.

In other scenario, we use the 37-bus network
and add 0.4 (p.u.) to voltage measurements at bus
2, active power measurement at bus 13, and reactive
power measurement at bus 23. According to Table 8,
the maximum and the sum of voltage measurement
residuals after bad data attenuation are reduced by
32.15 and 108.35, respectively. Also, according to
Tables 9 and 10, the maximum normalized active and
reactive powers are decreased by 19.75 and 18.37,
respectively.

5.4. Untransposed lines
In developing the proposed method, we supposed distri-
bution network lines have symmetrical con�gurations
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Table 8. Normalized residuals of BUS voltages in SE
analysis.

Condition Max residual Residual
sum

Without bad data 1.43 32.75

With bad data 34.6 158.3

After bad data attenuation 2.45 49.95

Table 9. Normalized residuals of active powers in SE
analysis.

Condition Max residual Residual
sum

Without bad data 1.22 40.5

With bad data 21.1 189

After bad data attenuation 1.35 48

Table 10. Normalized residuals of reactive powers in SE
analysis.

Condition Max residual Residual
sum

Without bad data 1.2 38.6

With bad data 19.87 192

After bad data attenuation 1.5 41.8

(i.e., impedance matrices of symmetrical components
are diagonal). However, in practice this condition may
not hold. Hence, the symmetrical components of the
distribution network are coupled [44]. Mathematically
speaking, the voltage drop equation for a branch in
general form is as follows [45]:24 �Va

�Vb
�Vc

35 =

24 Z11 Z12 Z13
Z21 Z22 Z23
Z31 Z32 Z33

35� 24 Ia
Ib
Ic

35 : (18)

Converting above equation into symmetrical compo-
nents [45], we have:

Z012=

24(Zs0+2ZM0) (Zs2�ZM2) (Zs1�ZM1)
(Zs1�ZM1) (Zs0�ZM0) (Zs2+2ZM2)
(Zs2�ZM2) (Zs1+2ZM1) (ZS0�ZM0)

35(19)

where:

Zs0 =
1
3

(Z11 + Z22 + Z33) ;

Zs1 =
1
3
�
Z11 + aZ22 + a2Z33

�
;

Zs2 =
1
3
�
Z11 + a2Z22 + aZ33

�
; (20)

ZM0 =
1
3

(Z12 + Z23 + Z13) ;

ZM1 =
1
3
�
Z12 + aZ23 + a2Z13

�
;

ZM2 =
1
3
�
Z12 + a2Z23 + aZ13

�
: (21)

When the branch is transposed, the symmetrical
components-based impedance can be demonstrated as
follows:

ZM0 = A; ZM1 = ZM2 = 0;

Zs0 = B; Zs1 = Zs2 = 0;

Z012 =

24 (B + 2A) 0 0
0 (B �A) 0
0 0 (B �A)

35 : (22)

In an ideally transposed con�guration, di�erent se-
quence components are decoupled, and the symmet-
rical component current of each type (positive, neg-
ative, and zero) will cause the voltage drop of the
same kind [46]. In our proposed method, by assuming
the lines as transposed ones, we have neglected the
o�-diagonal elements of the impedance matrix. To
analyse the error of this assumption, �rst, we perform
the SE analysis on a distribution network that has
untransposed line con�gurations. In the second step,
we change the line parameters into a transposed line
con�guration and execute the SE analysis. In the third
step, we calculate the associated SE errors of desired
case with transposed branches against the real case
having untransposed lines. This way, we will have
insight into the errors introduced by the assumption
of transposed branch con�gurations.

Figure 5(a) and (b) depict the magnitude and
angle errors of node voltages, respectively. In Figure 5,
the proposed method o�ers a negligible error in the
magnitude and angle of untransposed node voltages in

Figure 5. Estimation errors for the IEEE 37-node
system: (a) Amplitude; (b) Angle.
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comparison with the transposed mode. This is because
the o�-diagonal elements of the impedance matrices
of symmetrical components are negligibly small in
comparison with the diagonal terms.

6. Conclusion

In this paper, we examined the performance of the sym-
metrical component-based approach for State Estima-
tion (SE) analysis in unbalanced distribution networks.
A convexi�ed approach based on the Semide�nite
Program (SDP) method was developed to tackle the
distribution network SE problems associated with the
positive, negative, and zero sequence circuits. The
relaxation technique was taken in use to accommodate
the only nonconvex rank one constraint. Finally, a
novel approach was proposed for bad data detection
and attenuation. The simulation results on both
IEEE 37- and 123-node distribution networks and the
comparison with those of three-phase SDP-based SE
showed that the SE computation time in the proposed
method is drastically lower. In terms of accuracy, the
proposed method is superior to the three-phase SDP
method. Also, according to the simulation results, it
was shown that the proposed method can wisely detect
the existence of bad data and attenuate its e�ects along
with solving the distribution network SE problem. This
feature relaxes the need for time-consuming multiple
SE executions as prescribed in the conventional SE
packages.
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Appendices

Appendix A:
In this subsection, we show that how real and imagi-
nary parts of node voltages calculated using the matrix
W+. we have de�ned matrix W+ as:

W+ = x+x+T

=
�
Refv+gRefv+g Refv+gImfv+g
Imfv+gRefv+g Imfv+gImfv+g

�
; (A.1)

=Tr
��

eneT
n 0N�N

0N�N 0N�N

�
�
�
Refv+gRefv+g Refv+gImfv+g
Imfv+gRefv+g Imfv+gImfv+g

��
;
(A.2)

= Tr
��

eneT
n �Refv+gRefv+g 0N�N

0N�N 0N�N

��
;
(A.3)

jv+
n;Rej =

p
TrfRnW+g: (A.4)

For the imaginary part, we have:

jv+
n;Rej2

= Tr
��

eneT
n �Refv+gRefv+g 0N�N

0N�N 0N�N

��
;
(A.5)

jv+
n;Rej =

p
TrfRnW+g: (A.6)

Appendix B:
Based on Appendix A, having both real and imaginary
parts of the voltage phasors at node n 2 N , we derive
system states as follows:

v+
n =

q
jv+
n;Rej2 + jv+

n;Imj2

=
p

TrfRnW+g+ TrfInW+g; (B.1)

�+
n =tan�1

0@qjv+
n;Imj2q
jv+
n;Rej2

1A
=tan�1

 p
TrfInW+gp
TrfRnW+g

!
: (B.2)
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