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Abstract 

Earthquakes pose a constant threat to human communities. A key step in improving 

preparedness against such disasters is to determine the optimal location of temporary 

emergency stations (TESs) and allocate them to affected areas. Decisions in the preparedness 

phase ensure optimal performance by TESs and minimize potential delays in rescue 

operations. During crises, TESs have a significant role in minimizing human causalities. In 

this research, a robust simulation-optimization approach is proposed to ensure appropriate 

planning in the preparedness phase. We develop a mathematical model for simultaneous and 

hierarchical location-allocation of the injured to the available medical facilities under disaster 

conditions. Since natural disasters are inherently unpredictable, the uncertainty of the data 

should inevitably be taken into account. We thus employ a robust optimization technique to 

tackle the uncertainty in the number of the injured and use simulation to create the first seven 

days of the crisis and determine the optimal capacities of medical facilities. The findings 

indicate that by eliminating the unnecessary transfer of mildly-injured victims to high-level 

medical facilities, the model causes a 15% reduction in treatment costs. 

Keywords: Temporary emergency stations (TESs), Location-allocation, Simulation-based 

optimization, robust optimization method, Disaster Management. 

1. Introduction 
Natural disasters such as earthquakes, floods, landslides, volcanic eruptions, tsunami, etc. 

injure and kill thousands of humans each year and cause significant asset and habitat 

destruction [1]. Since the 1950s, the number and scope of disasters have been consistently on 
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the rise. In particular, since the 1990s, an average of 235 million individuals per year have 

fallen victim to disasters. In 2014, 324 natural disasters were recorded worldwide, incurring a 

total of $99.2 billion in damages [2]. According to statistics from the International Disasters 

Database, Americas and Asia have dealt with the most intense earthquakes, landslides, 

floods, and typhoons in recent decades [3]. 

One of governments' most serious concerns is the increasing frequency of natural disasters 

and this underlines the necessity of enhancing nations' ability to withstand destructive events 

[4]. Since it is only a matter of time before the occurrence of the next natural disaster, 

governments and communities should have the necessary plans and measures firmly in place 

to minimize the potential destruction and casualties [5]. Proper planning and public 

awareness are widely believed to be effective at minimizing the scope of casualties and lost 

assets, which is essentially the central objective of response and rescue operations [6].  

Given the increasing frequency of the disasters, researchers have recognized a vital need to 

efficiently assist the affected populations by placing greater emphasis on the theory and 

practice of disaster management (DM) [7]. Since emergency medical services (EMS) are in 

high demand in times of disaster, DM is classified into four stages to minimize the shock and 

prevent a state of chaos: mitigation, preparedness, response, and recovery. The first two 

phases are carried out pre-disaster, while the other two are reactive and conducted post-

disaster [8]. In this regard, Rebeeh et al. [9] addressed DM theory and performance in 

industrial cities. The research encompasses all the stages of DM, with particular focus on 

modeling, support systems, resources, and facilities.  

In the post-disaster phase, the existing hospitals and clinics cannot be expected to serve all 

the injured victims due to various technical difficulties and the overwhelming number of 

casualties [10]. Therefore, anticipating disasters and planning TESs in appropriate locations 

in disaster-prone cities could significantly mitigate the shortage of medical facilities.  

The purpose of emergency facility-location (EFL) problems is to determine the optimal 

geographical location of new facilities to provide various emergency services to the affected 

populations in the aftermath of a disaster. Location-allocation problems are classified into 

two broad categories: regular and hierarchical. In systems with hierarchical facilities, there 

are multiple service levels available to the injured [11]. 

Since there is strong uncertainty in crisis situations, the model's uncertain parameters are 

analyzed through techniques of coping with uncertainty. Studies on healthcare systems often 

deal with many types of uncertain data, factors, and parameters. Stochastic programming, 

robust optimization, and simulation software have been some of the most widely-used tools 

by researchers to address and counter uncertainty. Ahmadi-Javid et al. [12] reviewed 220 

research papers on this subject and concluded that few studies had worked on the uncertainty 

faced by temporary medical centers.  

Iran is located on one of the most active seismic belts in the world, with numerous faults 

identified across the country. Consequently, earthquakes are a real possibility in the country. 

There are four major faults in Tehran which are feared to activate. Ahmadzadeh et al. [13] 
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assessed the response to the 2017 Kermanshah earthquake, the most recent major earthquake 

in Iran. 

Given the necessity of pre-disaster planning, we propose a network of emergency healthcare 

facilities with hierarchical allocation. We first develop a robust bi-objective optimization 

model to determine the locations of TESs and allocate the injured to the nearest TES. In the 

second phase, the simulation model incorporates the uncertainty in the response and rescue 

operation, treatment of the injured, and accessibility of TESs. The model mainly simulates 

the behavior of the injured and the congestion forming in hospitals after an earthquake and 

helps determine the optimal capacity of the three types of medical facilities in the hierarchical 

structure. Both the mathematical and simulation models minimize the distance traveled and 

the cost of establishing TESs. 

The contributions of this study to the literature are as follows: 

 Location and allocation are done simultaneously; 

 Demand is the key parameter in the mathematical model which is solved using robust 

optimization; 

 A hybrid model (mathematical + simulation) is developed; 

 The mathematical model features both direct and hierarchical allocation strategies; 

 The model incorporates urban infrastructure parameters such as the Richter scale, urban 

quality building coefficient urban areas, etc.; 

 Preparing backup TESs. 

 

The remainder of this paper is organized as follows: Section 2 reviews the literature on EFL 

models. Section 3 presents the modeling assumptions and mathematical programming 

formulas. Section 4 introduces the solution method to determine the optimal locations and 

allocations using robust optimization and describes the process of simulating the onset of an 

earthquake. The computational results are detailed in Section 5. Finally, section 6 includes a 

brief conclusion and a number of recommendations for future research. 

2. Literature Review 
Selecting suitable locations for emergency facilities can increase the speed and efficiency of 

relief efforts and accelerate the response to disasters. EFL is considered a strategic decision. 

Prior research has often addressed deterministic and stochastic problems [14]. Most studies 

on deterministic problems have aimed to minimize transport costs, facility construction, and 

relief supply storage. In case of a crisis, the demand for medical assistance, casualties, 

response time, and scope of asset losses are uncertain [15]. Logistical strategies are various 

but all have the same objectives: maximizing coverage, minimizing the distance between 

affected areas and treatment centers, and selecting the most appropriate locations, all of 

which affect the process of identifying and prioritizing the decision criteria [16]. 

2.1. Relief logistic networks and emergency facility location  

In the case of relief logistics networks, Beikia et al. [17] investigated an inverse logistical 

programming problem involving the response, recovery, and reconstruction phases after an 
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earthquake using a case study. Ghasemi et al. [18] proposed a multi-objective stochastic 

programming model for evacuation and logistical supply distribution following an 

earthquake. Stage 1 decisions in the model concern the post-disaster phase, including the 

location of relief distribution centers and the quantity of stored relief supplies. Stage 2 

decisions determine the optimal location of TMCs such that the process of treating the 

casualties and relief distribution is accelerated. Li et al. [19] examined the demand 

uncertainty caused by major disasters, proposing a cooperative maximal covering model and 

pointing to financial productivity and coverage of appeal as the criteria according to which 

humanitarian logistics performance should be evaluated.  Khorsi et al. [20] worked on 

operational and logistical decisions in relief operations, including planning, routing, and 

resource allocation, using the ε-constraint and rolling horizon algorithms. Safaei et al. [21] 

developed an optimization model for logistical relief operations under disaster conditions by 

defining two sets of upper-echelon and lower-echelon objectives. Boonmee and Kasemset 

[22] addressed the location, inventory, and distribution of relief supplies during a crisis and 

developed a fuzzy model to minimize the response time and budget, and to determine storage 

locations, maximum stock in each storage, distribution management, and inventory holding. 

Fazli-Khalaf et al. [23] developed a multi-objective model to design an emergency blood 

supply chain (BSC) in the aftermath of a disaster with the goal of minimizing SC costs and 

delivery times between the facilities, as well as to maximize the reliability of lab tests 

performed on the blood received from donors. Due to the uncertainty of some input variables, 

two variations of the robust possibilistic ε-constraint method were used to solve the model. 

Naghipour and Bashiri [24] dealt with an emergency BSC with the goal of minimizing total 

supply chain cost in disaster situations and considered donors, blood transfusion centers, 

hospitals, and casualties, simultaneously. 

Li et al. [25] reviewed the literature on facility-location and planning in emergency response 

with the emphasis on optimization methods and models. Liu et al. [26] developed a bi-

objective mathematical model to maximize the projected survival rate, define a medical 

service allocation plan, and locating temporary medical centers by minimizing the operational 

costs of deploying ambulances and helicopters. Kumar et al. [27] developed a model to 

maximize demand coverage, paying attention to urban space details, urban infrastructure, and 

social elements such as internal compactness. Memari et al. [28] developed model for 

location-allocation of ambulances and helicopters with multiple paramedics. The first 

objective function (OF) minimized the costs of EMC response and the second OF minimized 

the treatment time of the injured. Baharmand et al. [29] proposed a multi-layer bi-objective 

location-allocation model for the consequences of natural disasters and used the augmented ε-

constraint method v2. Chen et al. [30] designed a two-level programming model with 

multiple warehouses and damaged structures. Level 1 involves distribution and Level 2 

focuses on repairing damaged roads. Verma and Gaukler [31] assessed a deterministic and a 

stochastic model to determine secure locations for emergency facilities.  

2.2.Facility location models considering uncertainty 

A common technique of tackling uncertainty, also adopted in our model, is robust 

optimization [32]. The approach is especially effective when there is insufficient information 
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on probability distributions [33]. Given the uncertainty of DM, researchers have worked 

extensively on EFL. Alinaghian et al. [34] developed a robust mathematical model for 

location-allocation of medical facilities under normal and crisis conditions. The authors used 

the harmony search algorithm, tabu search technique, variable neighborhood search, and a 

lower bound to solve the problem using the Lagrangian method. Mamashli et al. [35] 

proposed an uncertain model for post-disaster conditions to minimize the cost, adverse social 

impact, environmental damage, and transportation risks, while maximizing the logistical 

system. Yu [36] developed a two-stage pre-disaster location model to improve preparedness. 

First, the warehouses are located and the emergency supplies are stored, then a robust 

stochastic optimization technique is employed to cope with the randomness of disaster-

stricken areas and the disaster's severity. Tirkolaee et al. [37] proposed a robust mixed-

integer linear model for allocation and scheduling of rescue units to minimize the weighted 

time of completing the emergency response operation and tardiness. Du et al. [38] introduced 

a three-stage mixed-integer linear optimization model to solve a HEL problem. The service 

levels increased over the three stages, with one rising from 88.53% to 96.44%. 

Sun et al. [39] developed a robust optimization model to combine facility-location and the 

transfer of the injured. Finally, a robust optimization approach was adopted to counter 

uncertainty and create the robust equivalent of the proposed model. Ramezanian and 

Ghorbani [40] proposed a two-stage stochastic model to assist pre- and post-disaster 

decisions regarding the distribution of relief supplies to survivors. The model consisted of a 

scenario-based robust optimization approach to cope with demand uncertainty. Eshghi et al. 

[41] worked on a robust location-allocation and emergency response problem following a 

disaster, developing a mixed-integer nonlinear programming model to maximize equity and 

minimize total logistics costs. Sotoudeh-Anvari et al. [42] developed a stochastic model to 

allocate resources and search for people lost in disaster-stricken areas. A dynamic stochastic 

programming approach was employed to solve the problem. Velasquez et al. [43] proposed a 

two-stage stochastic optimization model to preposition relief supplies. First, the location and 

quantity of pre-disaster relief supplies are determined. Next, some emergency equipment is 

procured and distributed in the affected areas. Lastly, Makui et al. [44] produced a multi-

objective model considering uncertainty in the number of casualties and transfer of the 

injured to healthcare facilities; a single-objective linear mathematical model for allocation 

and distribution of medical equipment from suppliers to healthcare facilities under 

emergency; and a hybrid two-stage model to minimize the total relief and rescue time and 

total cost, and maximize the extent to which the severity of injuries matched the specialty 

level of healthcare facilities.  

Now, let us examine the applications of simulation in EFL and health network design. As a 

principle, longer waiting times in the emergency ward lowers the service level to patients, 

causes dissatisfaction, and in some cases, increases the mortality rate. Sepehri et al. [45] 

developed a simulation model with two scenarios to simulate the emergency ward during a 

disaster. Sajadi et al. [46] proposed a simulation-optimization algorithm to schedule the 

working hours of emergency ward nurses to reduce waiting times and increase overall 

satisfaction with the medical service in disaster conditions.
 
Salehi et al. [47] developed a two-

stage stochastic model to simulate the BSC in case of a possible earthquake in Tehran. The 
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model was evaluated by Monte Carlo simulations. Gul et al. [48] proposed an integrated 

framework of artificial neural networks in five districts of Istanbul and used discrete-event 

simulation to enhance earthquake preparedness and estimate the number of casualties in 

emergency wards. Kamali et al. [49] minimized the response time to emergency requests by 

integrating optimization and simulation techniques, identifying several locations as suitable 

for setting up TESs based on indicators such as each district's population density and number 

of calls requesting assistance. Karatas and Yakıcı [50] investigated the effects of backup 

service level, demand assignment policy, demand density, number of facilities, and locations 

on the solution's performance, employing discrete-event simulation to assess the performance 

of the layout obtained from the deterministic model.  

3. Problem definition and formulation 
This study focuses on designing a hierarchical network of healthcare facilities that gets 

activated in case of a disaster. The goal is to minimize the distance traveled to transfer the 

injured to TESs and the total cost. A key aspect of this network is determining the optimal 

locations of TESs to minimize the post-disaster congestion at higher-level medical facilities 

i.e., clinics and hospitals. Figure 1 illustrates the structure of the research. 

The diagram shows 30 urban districts. In calculating the distances between the areas, we use 

the center of each district. In our model, the intensity of the hypothetical earthquake is the 

same in all districts. Table 1 details the data. 

3.1.   Assumptions 

The proposed model's underlying assumptions are as follows: 

 The injured are classified based on triage assessment into three groups of mildly-, 

moderately-, and severely-injured victims. 

 All victims are immediately transferred to the nearest TES first. 

 Depending on the severity of the injury and distance to the nearest healthcare facility, 

some victims may be directly transferred to a clinic or hospital. 

 Severely-injured victims are transferred directly to hospitals. 

 A number of schools, mosques, and squares are selected as candidate locations to 

establish TESs. 

 Three factors were considered in selecting the locations of TESs: resistance to 

potential damages, safe distance from potentially hazardous facilities, and adequate 

accessibility for vehicles. 

In this subsection, we define the terms used in the mathematical model. 

 

3.2.Sets and indices 

 
areas i  

TESs e  

clinics c  
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hospitals h  

Triage 
1 2 3( , , )T t t t  

 

3.3.Parameter 

Distance between clinic c and hospital h 
chd  

Distance between TESs e and clinic c 
ecd  

Distance between areas i and TESs e 
ied  

Set up cost TESs e    os ec t  

The Total budget for the construction of a TESs B  

Population of urban areas i   
iP  

Damage coefficient of urban infrastructure i 
i  

Emergency severity coefficient r  

Urban quality building coefficient urban areas i 
iS  

Percentage of emergency severity index t in urban areas i 
itT  

The number of casualties in urban areas i in with emergency severity index t 

level 

itP  

capacity of hospital h 
hcap  

capacity of TESs e 
ecap  

capacity of clinic c 
ccap  

a very big number M  

the percent of casualties referred to Clinic c need more hospital-level services C  

the percent of casualties referred to TESs e need more hospital-level services 
e  

The average cost of treatment for each casualty in the hospital h 
hAC  

The average cost of treatment for each casualty in the Clinic c 
cAC  

The average cost of treatment for each casualty in the TESs e 

 

eAC  

 3.4.Variables 
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1, If the TESs is activated; and 0, otherwise. 
ea  

1, If the of casualties in urban area i with grade t severity index, first taken to 

e, then to c, and then to h; and 0, otherwise. 

itechx  

1, If the of casualties in urban area i with grade t severity index, are 

transferred to e; and 0, otherwise. 

itex  

1, If the of casualties in urban area i with grade t severity index, are 

transferred to e then to c; and 0, otherwise. 

itecx  

The number of casualties in urban area i with grade t severity index, are 

transferred to e 

itey  

The number of casualties in urban area i with grade t severity index, are 

transferred to e then to c 

itecy  

The number of casualties in urban area i with grade t severity index, are 

transferred to e then to c and then to h. 

itehy  

The number of casualties in urban area i with grade t severity index, are 

transferred direct to c. 

itcy  

The number of casualties in urban area i with grade t severity index, are 

transferred direct to h. 

itehy  

The number of casualties from the urban area i with the severity of index t 

have referred to the TESs e and are calling for services at the clinic level. 

iteD  

The number of casualties from the urban area i with the severity of index t have 

referred to the TESs e and are calling for services at the hospital level. 

itecD  

The number of casualties in urban district i with emergency severity index t level who have 

been affected by the Richter scale ( 𝑟), considering the damage coefficient of urban 

infrastructure i (𝛼𝑖) and urban quality building coefficient urban areas i (𝑆𝑖) is obtained as 

follows: 

3.5.Mathematical model 

  

(1 )

0 1, 0 1, 0 1

it i i i it

i i

P P r S T

S r





     

     
 

 

(1) 
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(2)   

 

 

 

1min ch itech ec itec

i t e c h i t e c

ie ite ic itc th ith

i t e i t c i t h

z d y d y

d y d y d y

   

     

 

   

 

2min Cos e e h itech

a i t e c h

c itec e ite

i t e c i t e

c itc h ith

i t c i t h

z t a AC y

AC y AC y

AC y AC y

   

    

  

 

 

 

 

 

(3) ,ite itc ith it

e c h

y y y P i t      

(4) , ,ite e itey D i t e   

  

(5)  
, ,itec ite

c

y D i t e  

(6)  , , ,itec c itecy D i t e c   

(7)   , , ,itech itec

h

y D i t e c  

(8)   , ,ite itey M x i t e   

(9) , ,ite itey x i t e  

(10) , , ,itec itecy M x i t e c   

(11) , , ,itec itecy x i t e c  

(12) , , , ,itech itechy M x i t e c h   

(13) , , , ,itech itechy x i t e c h  

(14) 

 
, , ,itec itex x i t e c  

 (15) , , , ,itech itecx x i t e c h   
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(16) , ,ite ex a i t e  

(17) 
itech ith h

i t e c i t

y y Cap h    

(18) 
itec itc c

i t e i t

y y Cap c    

(19)  
ite e

i t

y Cap e  

(20) , , , , , , 0ite itec itech itc ith iec itey y y y y D D  

(21)  , , , 0,1ite itec itech ex x x a   

 

Relation 2 expresses the OFs of the problem. OF 1 (Z1) states the distance traveled to 

transport the injured from disaster-stricken areas to TESs in the proposed hierarchical 

structure, and then from TESs to hospitals and/or clinics. The fourth and fifth expressions 

define the distance traveled to directly transfer some of the injured to hospitals and/or clinics 

in case the victims are either critically injured or very close to said healthcare facilities. 

Expression 1 in OF 2 (Z2) addresses the costs of establishing TESs and expressions 2-6 set 

the costs treating the injured. Specifically, expressions 2-4 address the costs of treating the 

injured individuals whom get transferred first to TESs and then to healthcare facilities, while 

expressions 5 and 6 involve victims whom get directly transferred from the affected areas to 

hospitals or clinics. 

Relation 3 ensures all the injured individuals in the affected areas are transferred to a TES, 

clinic or hospital, and no victim remains unattended. Relation 4 expresses that a number of 

injured individuals visiting TESs are in such serious conditions that it is vital to transfer them 

to a clinic or hospital immediately. Variable iteD  is defined for such situations. Hence, 

(1 )e refers to injured individuals who receive treatment at a TES and do not need to be 

transferred to a clinic or hospital. Relation 5 compels the model to respond to all the victims 

iteD who attend TESs and need higher-level medical attention, ensuring their immediate 

transfer to an available clinic. 

Relation 6 is the same as relation 5, except those hospitals replace the clinics. Thus, (1 )c

represents injured victims who receive treatment in a clinic and get discharged. Relation 7 

allocates the victims discharged from clinics to the available hospitals itecD  . Relations 8 and 

9 determine the link between the positive variable a and binary variable b in a way that when 

any value is assigned to variable a, variable b equals 1; otherwise, 0. Relations 10-13 

determine the interaction of binary and positive variables.  



11 
 
 

 

Relations 14 and 15 connect variable a and variable b to make sure that the hierarchical 

structure of the problem remains intact. Relation 16 expresses that when a value is assigned 

to variable a, the TES is operational and the OF takes its establishment cost into account. 

Relations 17-19 determine each TESs capacity. Relations 20 and 21 define the type of each 

variable. 

4. Solution Approach 

The solution approach in this paper proceeds over two steps. First, demand uncertainty for 

injured victims who should be transferred from TESs to a clinic and hospital during the crisis 

is obtained by robust optimization. In the second step, the simulation model is used for the 

other uncertain parameters, including the rescue operation, treatment and transfer of the 

injured, availability of TESs and optimal capacity of the healthcare facilities. 

4.1.Robust optimization model 
Robust optimization (RO) is one of several techniques of dealing with uncertainty. RO 

searches for near-optimal solutions to maintain their feasibility. Bertsimas and Sim [51] 

introduced an efficient approach based on linear distance to control the level of conservatism 

in solutions under uncertainty. The model proposed in this research is developed based on 

Bertsimas and Sim's approach with the objective of coping with demand uncertainty. In this 

study, only parameter 
itP  is considered uncertain. As a result, only constraint 3 in the 

mathematical model is formulated using Bertsimas and Sim's approach. The mathematical 

model obtained here is a mixed-integer linear programming model. 

Robustness variables: 

itZ  

itr  

Modified variables: 

(22) ,ite itc ith it it it it

e c h

y y y P Z r i t          

(23) ,it it itZ r P i t    

(24) , 0it itZ r   

4.2.Simulation model 

We use Arena v14 to perform the simulations. In this section, we use simulation to describe 

the behavior of the injured and the system's performance in case of a disaster. The simulation 

model considers uncertainty in three areas: response and rescue operation, treatment and 

transfer of the injured, and availability of TESs. The other objective of the model is to 

determine the optimal capacity of each healthcare facility in the three-layer hierarchical 

structure. 
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The simulation model aims to reduce the cost of providing hospital beds and the injured 

victims' waiting times. Lastly, the simulation model only covers the first 7 days (168hr) of the 

crisis. In the second part, the optimization-based simulation is performed with to determine 

the optimal capacity of the service provided to the injured in a hypothetical crisis to achieve 

maximum coverage in the targeted districts. In this section, the cost is optimized and the 

average waiting time is minimized. Thus, we use OptQuest to test various time and cost 

combinations.  

 

5. Computational results 

In this section, the validity of the main model is examined through some numerical examples. 

After solving the model using robust optimization in the modeling software GAMS v24., the 

pareto-optimal solution obtained per each protection level (ta = 0, 1, 2, 3) based on Table 2 

are reported in Figure 2. Higher values of the protection level (an uncertain parameter) 

indicate a more pessimistic state and thereby a higher cost of establishing TESs.  

In this study, the protection level is realistic (ta=0). Thus, the most suitable candidate 

locations were selected for the establishment of TESs, with five stations remaining inactive 

on stand-by mode. Next, the structure for the allocation and transfer of the injured, both 

directly and hierarchically, from the 30 urban districts to the designated healthcare facilities 

was determined.  

The allocation method adopted in the rest of the urban districts are detailed in Figure 3. 

 

The values of the OF obtained from solving the first phase of the simulation model are listed 

in Table 3. 

As can be seen, the estimated interval for the average OF is [559303 ± 2567] i.e 

[556736 , 561870]. The OF is equal to the weighted sum of the costs of establishing TESs, 

treatment costs, and waiting times. The results of the optimization model, obtained from Opt 

Quest, are as follows in Figure 4.  

The optimal value of the OF is reported in Table 4. The results indicate that the OF has 

improved by 35%. 

In the end, the optimal capacities of TESs are obtained using simulation-based optimization. 

The results reveal a 15% reduction in costs because the injured individuals whom can be 

treated in lower-level healthcare facilities are no longer unnecessarily transferred to higher-

level, overqualified healthcare facilities. Table 5 compares the values of the objective 

function before and after optimization. 

6. Conclusion and future research 

In this study, we proposed an integrated DM model that is a combination of a mathematical 

programming model and a simulation-based optimization model. We first investigated the 

location-allocation of TESs to minimize the total cost and distance traveled. In the 
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mathematical model, the injured victims are transferred to healthcare facilities both 

hierarchically (first to TESs, then to clinics or hospitals if necessary) and directly (to clinics 

or hospitals). Because of the uncertainty in the number of disaster-stricken people, we also 

solved the mathematical model using robust optimization in order to obtain pareto-optimal 

solutions. In the second stage, the output of the mathematical model is used as the input of 

the simulation-based model. A number of uncertain parameters are introduced to make the 

model more applicable under real-world conditions. In the end, the simulation-based 

optimization approach determines the optimal capacity of TESs. The results indicate that 

preventing the unnecessary transfer of mildly-injured patients to high-level facilities results in 

a 15% reduction in treatment costs. 

For future research, it is recommended that location, allocation and storage of relief supplies 

under disaster conditions be added to the model developed in this study. The problem may 

also be solved at large scales using metaheuristics and the results can be compared. Since 

natural disasters often damage roads and significantly hamper rescue and relief efforts on the 

ground, it may be useful to consider aerial routing and relief systems in similar problems and 

models. 
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Figure 1. Dispersion of urban districts, TESs, clinics and hospitals 
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Figure 2. Pareto diagram of solutions  
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  Figure 3. Allocation of urban districts to TESs, clinics and hospitals 
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 Figure 4. Reduction in value of the OF in simulation-based optimization 

 

Table 1. Population of urban districts 

Urban 

districts 

 Urban 

population 

Areas Damage Coefficient  Hospitals       Clinics TESs 

Northern 20000 12 0.01 1 3 4 

Central 40000 7 0.04 1 1 5 

Southern 60000 11 0.08 1 2 6 

 

Table 2. Solutions obtained from robust optimization 

Z1 Z2 

ta=0 ta=1 ta=2 ta=3 ta=0 ta=1 ta=2 ta=3 

23205 25765 28712 30854 1195324 1317642 1437095 1557117 

23396 26581 28209 31386 1180000 1300670 1416246 1537310 

23941 27001 28825 31732 1140000 1254168 1369783 1487162 

24887 27985 29954 32813 1120000 1238885 1349207 1459512 

25438 28706 30753 33116 1100000 1217393 1322303 1437898 

25872 29200 31058 33866 1080000 1196281 1301132 1409562 

26003 29594 31761 34254 1060000 1170399 1275854 1381292 

26295 29827 32118 34984 1040000 1144666 1249091 1357565 

26972 29765 32556 35483 1020000 1128355 1230442 1334720 

27375 30925 33743 35727 1000000 1104275 1202286 1305762 

28484 31964 34679 37151 980000 1079770 1181631 1283076 

28850 32274 35429 37727 975000 1080179 1173714 1275669 

32420 36503 39089 42229 960000 1057909 1159480 1251976 

32820 36620 40184 43258 940000 1034841 1131588 1231075 

33220 37462 40670 44085 920000 1012499 1106899 1198965 
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Table 3. Value of the OF in simulation   

Expression Average Half Width Minimum 

Average 

Maximum 

Average 

Minimum 

Value 

Maximum 

Value 

(OF) 559303.34 2567.16 555479.93 565945.54 555479.93 565945.54 

 

Table 4. Value of the OF after optimization by OptQuest 

Expression Average Half Width Minimum 

Average 

Maximum 

Average 

Minimum 

Value 

Maximum 

Value 

(OF) 534125.71 2500.48 526941.42 537054.89 526941.42 537054.89 

 

Table 5. Comparison of pre- and post-optimization values of the OF 

Value of OFs before optimization [556736,561870] 

Optimal capacity of healthcare facilities 783293 

Value of OFs after optimization [531625,536625] 

Optimal capacity of healthcare facilities 532880 
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