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Keywords  Abstract 

This article discusses the problem of data synchronization methods using microservice 
architecture. Microservices is a popular and widespread software architecture today. The 
article investigates three main ways of interaction of microservices. They are event-based 
communication, interaction through direct HTTP requests and messaging, and also highlights 
and analyzes their advantages and disadvantages. The main purpose of the article is to analyze 
and make offer of the optimal option for solving the problem of synchronizing interacting 
microservices in real time. The optimal solution involves using the Apache Kafka message 
broker. It publishes data streams and subscriptions to them, as well as stores and processes 
them. Mathematical modeling of the proposed data synchronization method was described by 
constructing its state macine, as well as a system of canonical equations. 
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1. Introduction 
At the moment, microservice is the most popular way to 
develop software. This approach involves splitting the 
application into separate microservices, each of which 
fulfills its own separate business purpose. For each 
microservice, there are the following characteristic 
requirements [1-6]. For example, it should be small and 
independent, should fulfill a certain business requirement, 
interact with other microservices using a pattern of smart 
endpoints and dumb pipes and also adhere to decentralized 
management [7]. One of the main parts of the microservices 
is the interaction of microservices. This means data exchange 
between them. An important element of the microservice 
paradigm is the decentralization of data. It is often 
implemented by allocating its own database for each 
microservice. This allows you to isolate data from other 
services, thereby maintaining data stability and security [8]. 
Let's consider a specific problem: we need to synchronize 
user data between different microservices. For example, data 
about the full name, address, contacts and date of birth. At 
the same time, there are the following requirements. Namely, 
it should be real time synchronization, the correctness of the 

data and their delivery to the consumer microservice of the 
data should be guaranteed [9]. There are several different 
ways of such exchange, but each of them has its advantages 
and disadvantages.  
      The first way is to interact through direct HTTP-requests. 
At the same time, requests can be executed both 
synchronously and asynchronously, but it should be 
understood that using synchronous HTTP-requests, we 
violate the concept of weak connectivity of services [10]. 
This method is the simplest in execution, but it is not suitable 
for scaling, since if several services need to receive the same 
data from this service, then it will be necessary to implement 
all communication channels.  This approach will require 
more and more resources to maintain the correct operation of 
all information channels in case of big number of services in 
the application (Figure 1). 
      The second way of communication of microservices is 
event communication [11]. In this case, a message broker is 
used for interaction. At the same time, records of events that 
were produced by separate services are sent between 
services. Services must explicitly know how to respond to 
each of the incoming events. Depending on the event, the  
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Figure 1.  HTTP communication. 

 

Figure 2.  Event communication. 

 

Figure 3.  Message communication. 
 

service performs the necessary logic. It allows you to 
maintain a weak connection between services and at the 
same time track only significant events. With this method, 
useful data is not transmitted between services, then using 
event communication is an impossible solution [12] (Figure 
2). 

The third method is messaging. In this case, the services do 
not interact with each other directly, but use message broker 
is a special mechanism. All services have access to the 
broker. Broker is the central link between microservices [13]. 
Services produce data in the corresponding topics, while 
others receive this data. The messaging approach uses 
publish-subscribe pattern in which multiple services can 
receive data from a single publisher [14]. The difficulties of 
this method are the lack of a guarantee of message delivery 
[15], as well as the coordination of the structure of the 
messages sent (Figure 3). 

2. Methods 
The problem of data synchronization between services can 
be solved by using optimal messaging method. You may use  

 
Figure 4.  Apache Kafka message broker interaction architecture. 
 
Apache Kafka to minimize the disadvantages of this method 
(Figure 4) [10]. Apache Kafka is a streaming platform that 
publishes data streams and subscriptions to them, as well as 
stores and processes them. Kafka provides huge scaling 
capabilities and provides a centralized platform for 
microservices to interact. Another advantage of Kafka is the 
possibility of customizing the storage time of messages, 
which ensures replication, integrity and data storage for any 
period of time. And finally, streaming processing increases 
the level of abstraction, which in turn allows Kafka to 
calculate derived streams and datasets dynamically based on 
data streams [16].  
      Thus, having considered the main options for 
microservices interaction, we can conclude that the 
messaging method is most suitable for solving the problem 
of data synchronization between different services. At the 
same time, the best implementation of this method is using 
message broker [17-20]. For example, Apache Kafka, it 
provides real time message sending and processing, and can 
also guarantee message delivery [21]. 
In order to efficiently and quickly implement an application 
using a programming language, first you need to build a 
mathematical model describing the system [22]. In our case, 
we will use a finite deterministic machine as follows (Figure 
5): 
 
S0 – Initial state of the system;  
S1 – Receiving messages by the consumer;  
S2 – Message package conversion;  
S3 – Converting a specific message;  
S4 – Deleting a message from a package during conversion;  
S5 – Validation of the message package;  
S6 – Validation of a concrete message;  
S7 – Recording a validation error message and deleting a 
message from a package during validation;  
S8 – Generating a message map for processing;  
S9 – Distribution of message handlers; 
S10 – Processing a batch of messages;  
S11 – Processing a concrete message and saving the message 
data; 
x1 – The presence of messages in the package;  
x2 – The presence of messages for conversion in the package;  
x3 – Successful conversion of a concrete message;  
x4 – Availability of validation messages in the package;  
x5 – Successful validation of a concrete message;  
x6 – Availability of messages to be issued to the handler.  
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Figure 5. Automatic model of the algorithm for receiving messages 
by the consumer application. 
 
Let's construct a system of canonical equations for this state 
machine [23-25]: 

Formula 1: System of canonical equations 
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(1) 
Using the constructed automaton model, we can build an 
algorithm for processing incoming messages using the Java 
programming language and the spring framework. Before 

starting the development of the application, it is necessary to 
decide and approve exactly what data we should receive 
from the message broker, in what format this data will be 
transmitted. After that, it is necessary to develop an 
algorithm for processing this data in accordance with 
business requirements and design a database table for their 
final storage in our system [26-30]. 

3. Results 
The sequence of data synchronization from the producer 
service to the consumer service consists of the algorithm 
shown in Figure 6. 
       Initially, the service producer, in accordance with certain 
requirements, performs the formation and processing of data 
on its side. After that, it converts them into JSON format and 
sends this message to the Kafka broker. The message is saved 
to the commit log. Each record contains additional 
information, such as the partition name, topic name, message 
offset. It allows further manipulation of data collection from 
the broker. At this time, the service consumer listens to the 
topics to which he is subscribed for the presence of new 
messages. From this moment, message processing begins in 
the consumer service. 
       As soon as new messages are published, the listener 
subtracts a message packet, the size of which is configurable, 
and passes it for processing to the Message Service message 
processing service. Messages are divided into Linked Hash 
Map < Integer, Person>, where the key is the global identifier 
of the person in system, and the value of map is the person 
with all her data by addresses and contacts. Each message is 
converted from JSON to person, address, and contact 
objects. After that, using the Validator class, the person is 
checked for the correctness of the data, if the data is 
incorrect, then a corresponding message is output to the log, 
and this message is not processed. Later, the person's data is 
placed in the card [31]. This algorithm makes it possible not 
to process intermediate data of a person within a given 
message package. This allows you to reduce the number of 
calculations, because if there are 10 records in the message 
package concerning the same person, it will be processed 
only 1 time. 
        As soon as the final map of all processed messages is 
formed, it is passed to Thread Pool Task Executor, a class 
implementing parallel data processing management. Each 
message from the map is passed to the Message Processor, 
where it is processed, in parallel with the processing of other 
messages. The size of the Thread Pool Task Executor is set 
via the settings file [32-34].  
       In Message Processor, all further processing of the message 
takes place, matching the global attributes of the person and the 
local ones, calculating some parameters, etc. At the end, the final 
data is stored in the database of our system. As soon as processing 
of all messages of the packet is finished, the listener is ready to 
receive a new packet of messages. 
        In order to get maximum efficiency, we need to 
choose the most suitable work parameters, both from the 
point of view of the effectiveness of the solution and 
from an economic point of view (see Figure 7). Let's 
consider the main parameters that will appear in the 
testing process:
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Figure 6. Application activity diagram.

• Number of threads – the number of threads processing a 
batch of incoming messages; 

• Time (ms)–the time taken to process the entire message 
pool; 

• Queue size–the maximum number of messages in the 
queue (async.max.pool.records parameter); 

• Batch size–the number of messages deducted in one poll 
operation (max.poll.records parameter); 

• Relative gain ratio–the performance gain ratio relative to 
the previous result; 

• Absolute gain coefficient–the performance gain 
coefficient relative to the base value. 

In order to calculate the relative and absolute growth rate, we 
use the following formulas: 

Formula 2: Calculation of the relative growth rate 
-1 , 1,      1,OTH OTHi

i i
i

TK i aK
T

= ≥ =  (2) 

where 𝐾𝐾𝑖𝑖отн is the relative growth rate; Ti  the time spent 
processing the message pool.
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Table 1: Processor messages specification based on proposed method. 
Number of threads Time 

(ms) 
Messages Queue 

size 
Batch 
size 

Relative 
growth rate 

Absolute 
growth rate 

8 1262392 10000 128 512 1,000 1,000 

16 636132 10000 128 512 1,984 1,984 

32 320190 10000 128 512 1,987 3,943 

56 199883 10000 128 512 1,602 6,316 

64 162848 10000 128 512 1,227 7,752 

128 83221 10000 128 512 1,957 15,169 
 
 
Formula 3: Calculation of the absolute growth rate 

0 , 1,       1a c a c
i i

i

TK i aK
T

σ σ= ≥ = , (3) 

where 𝐾𝐾𝑖𝑖абс is the absolute growth rate; Ti  the time spent 
processing the message pool. 
       We will perform testing with the number of processed 
messages equal to 10000 (Table 1). 

As a result, we get that the best performance under real 
resource and technology constraints is observed when 

 

Figure 7. Graph of message processing time depending on the 
number of handler threads. 

 
Figure 8. Graph of the relative growth rate. 

 

Figure 9. Graph of the absolute growth rate. 

working on 64 threads (Figures 8 and 9). At the same time, 
acceptable performance is also observed when working on 
32 threads. Let's consider possible variants of processors on 
the market for January 2021. 
        As shown in Figures 10 and 11, thus, the difference in 
the average cost of processors with 32 and 64 threads is 
303,248 rubles, and the ratio of the cost of a processor for 
64 threads and 32 is 2.849.  
       This means that with a 1.602-fold increase in 
productivity, we spend 2.849 times more in resources. This 
amount of financial costs is impractical, and therefore it 
turns out that the best processor option for the task of 
synchronizing data between services, taking into account 
the price-performance ratio, is a 32-stream processor. This 
processor meets the performance limitations and performs 
the required task in full for the time we need, while it is an 
adequate option on the part of financial costs for the 
company. 
 
4. Conclusion 
In the course of the research work, the analysis of existing 
methods of data synchronization in the microservice 
architecture in real time was carried out. The optimal method 
for solving the problem was identified, a mathematical 
model was constructed describing the mechanism of data 
synchronization using the messaging approach using the 
Apache Kafka message broker, and a range of parameters 
acceptable for the effective operation of the application was 
selected, both from the point of view of system performance 
and from an economic point of view. 
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Figure 10. Price chart of processors with 32 threads. 

 

Figure 11. Price chart of processors with 56 or 64 threads. 
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