
Scientia Iranica (2024) 31(22), 2088-2095

To cite this article:
N.N. Sheyanov, M.P. Sinev, D.O. Neshko, D.V. Pashchenko, D.A. Trokoz, and A.I. Martyshkin “Methods to synchronize data in a microservice
architectur”, Scientia Iranica (2024), 31(22), pp. 2088-2095. https://doi.org/10.24200/sci.2022.53164.3088

2345-3605 © 2024 Sharif University of Technology. This is an open access article under the CC BY-NC-ND license.

Sharif University of Technology

Scientia Iranica

Transactions E: Industrial Engineering

https://scientiairanica.sharif.edu

Methods to synchronize data in a microservice architectur
Nikolay Nikolaevich Sheyanov a, *, Mikhail Petrovich Sinev a, Darya Olegovna Neshko b, Dmitry Vladimirovich

Pashchenko a, Dmitry Anatolyevich Trokoz a, and Alexey Ivanovich Martyshkin a

a. Penza State Technological University, 440039, Penza, Russia.
b. Penza State University, 440026, Penza, Russia.

* Corresponding author: fedorovna.sl@mail.ru (N.N. Sheyanov)

Received 13 April 2019; received in revised form 22 February 2022; accepted 27 June 2022

Keywords Abstract

This article discusses the problem of data synchronization methods using microservice
architecture. Microservices is a popular and widespread software architecture today. The
article investigates three main ways of interaction of microservices. They are event-based
communication, interaction through direct HTTP requests and messaging, and also highlights
and analyzes their advantages and disadvantages. The main purpose of the article is to analyze
and make offer of the optimal option for solving the problem of synchronizing interacting
microservices in real time. The optimal solution involves using the Apache Kafka message
broker. It publishes data streams and subscriptions to them, as well as stores and processes
them. Mathematical modeling of the proposed data synchronization method was described by
constructing its state macine, as well as a system of canonical equations.

Microservice
architecture;
Microservice;
Message broker;
Apache Kafka;
State machine;
Finite-state machine.

1. Introduction
At the moment, microservice is the most popular way to
develop software. This approach involves splitting the
application into separate microservices, each of which
fulfills its own separate business purpose. For each
microservice, there are the following characteristic
requirements [1-6]. For example, it should be small and
independent, should fulfill a certain business requirement,
interact with other microservices using a pattern of smart
endpoints and dumb pipes and also adhere to decentralized
management [7]. One of the main parts of the microservices
is the interaction of microservices. This means data exchange
between them. An important element of the microservice
paradigm is the decentralization of data. It is often
implemented by allocating its own database for each
microservice. This allows you to isolate data from other
services, thereby maintaining data stability and security [8].
Let's consider a specific problem: we need to synchronize
user data between different microservices. For example, data
about the full name, address, contacts and date of birth. At
the same time, there are the following requirements. Namely,
it should be real time synchronization, the correctness of the

data and their delivery to the consumer microservice of the
data should be guaranteed [9]. There are several different
ways of such exchange, but each of them has its advantages
and disadvantages.
 The first way is to interact through direct HTTP-requests.
At the same time, requests can be executed both
synchronously and asynchronously, but it should be
understood that using synchronous HTTP-requests, we
violate the concept of weak connectivity of services [10].
This method is the simplest in execution, but it is not suitable
for scaling, since if several services need to receive the same
data from this service, then it will be necessary to implement
all communication channels. This approach will require
more and more resources to maintain the correct operation of
all information channels in case of big number of services in
the application (Figure 1).
 The second way of communication of microservices is
event communication [11]. In this case, a message broker is
used for interaction. At the same time, records of events that
were produced by separate services are sent between
services. Services must explicitly know how to respond to
each of the incoming events. Depending on the event, the

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://scientiairanica.sharif.edu/

 N. Nikolaevich Sheyanov et al./ Scientia Iranica (2024) 31(22), 2088-2095 2089

Figure 1. HTTP communication.

Figure 2. Event communication.

Figure 3. Message communication.

service performs the necessary logic. It allows you to
maintain a weak connection between services and at the
same time track only significant events. With this method,
useful data is not transmitted between services, then using
event communication is an impossible solution [12] (Figure
2).

The third method is messaging. In this case, the services do
not interact with each other directly, but use message broker
is a special mechanism. All services have access to the
broker. Broker is the central link between microservices [13].
Services produce data in the corresponding topics, while
others receive this data. The messaging approach uses
publish-subscribe pattern in which multiple services can
receive data from a single publisher [14]. The difficulties of
this method are the lack of a guarantee of message delivery
[15], as well as the coordination of the structure of the
messages sent (Figure 3).

2. Methods
The problem of data synchronization between services can
be solved by using optimal messaging method. You may use

Figure 4. Apache Kafka message broker interaction architecture.

Apache Kafka to minimize the disadvantages of this method
(Figure 4) [10]. Apache Kafka is a streaming platform that
publishes data streams and subscriptions to them, as well as
stores and processes them. Kafka provides huge scaling
capabilities and provides a centralized platform for
microservices to interact. Another advantage of Kafka is the
possibility of customizing the storage time of messages,
which ensures replication, integrity and data storage for any
period of time. And finally, streaming processing increases
the level of abstraction, which in turn allows Kafka to
calculate derived streams and datasets dynamically based on
data streams [16].
 Thus, having considered the main options for
microservices interaction, we can conclude that the
messaging method is most suitable for solving the problem
of data synchronization between different services. At the
same time, the best implementation of this method is using
message broker [17-20]. For example, Apache Kafka, it
provides real time message sending and processing, and can
also guarantee message delivery [21].
In order to efficiently and quickly implement an application
using a programming language, first you need to build a
mathematical model describing the system [22]. In our case,
we will use a finite deterministic machine as follows (Figure
5):

S0 – Initial state of the system;
S1 – Receiving messages by the consumer;
S2 – Message package conversion;
S3 – Converting a specific message;
S4 – Deleting a message from a package during conversion;
S5 – Validation of the message package;
S6 – Validation of a concrete message;
S7 – Recording a validation error message and deleting a
message from a package during validation;
S8 – Generating a message map for processing;
S9 – Distribution of message handlers;
S10 – Processing a batch of messages;
S11 – Processing a concrete message and saving the message
data;
x1 – The presence of messages in the package;
x2 – The presence of messages for conversion in the package;
x3 – Successful conversion of a concrete message;
x4 – Availability of validation messages in the package;
x5 – Successful validation of a concrete message;
x6 – Availability of messages to be issued to the handler.

2090 N. Nikolaevich Sheyanov et al./ Scientia Iranica (2024) 31(22), 2088-2095

Figure 5. Automatic model of the algorithm for receiving messages
by the consumer application.

Let's construct a system of canonical equations for this state
machine [23-25]:

Formula 1: System of canonical equations

1 0 1 1 2 1 5 1 10 1

2 1 1 3 3 4

3 2 2 4 3 3

5 2 2 6 5 7

6 5 4 7 6 5

8 5 4 9 8 9 6

10 9 6 11 11 10 1

;
;

; ;
;

; ;
; ;

; .

S S S x S x S x S x
S S x S x S
S S x S S x
S S x S x S
S S x S S x
S S x S S S x
S S x S S S x

= ∪ ∪ ∪ ∪
= ∪ ∪
= =
= ∪ ∪
= =
= = ∪
= ∪ =

(1)
Using the constructed automaton model, we can build an
algorithm for processing incoming messages using the Java
programming language and the spring framework. Before

starting the development of the application, it is necessary to
decide and approve exactly what data we should receive
from the message broker, in what format this data will be
transmitted. After that, it is necessary to develop an
algorithm for processing this data in accordance with
business requirements and design a database table for their
final storage in our system [26-30].

3. Results
The sequence of data synchronization from the producer
service to the consumer service consists of the algorithm
shown in Figure 6.
 Initially, the service producer, in accordance with certain
requirements, performs the formation and processing of data
on its side. After that, it converts them into JSON format and
sends this message to the Kafka broker. The message is saved
to the commit log. Each record contains additional
information, such as the partition name, topic name, message
offset. It allows further manipulation of data collection from
the broker. At this time, the service consumer listens to the
topics to which he is subscribed for the presence of new
messages. From this moment, message processing begins in
the consumer service.
 As soon as new messages are published, the listener
subtracts a message packet, the size of which is configurable,
and passes it for processing to the Message Service message
processing service. Messages are divided into Linked Hash
Map < Integer, Person>, where the key is the global identifier
of the person in system, and the value of map is the person
with all her data by addresses and contacts. Each message is
converted from JSON to person, address, and contact
objects. After that, using the Validator class, the person is
checked for the correctness of the data, if the data is
incorrect, then a corresponding message is output to the log,
and this message is not processed. Later, the person's data is
placed in the card [31]. This algorithm makes it possible not
to process intermediate data of a person within a given
message package. This allows you to reduce the number of
calculations, because if there are 10 records in the message
package concerning the same person, it will be processed
only 1 time.
 As soon as the final map of all processed messages is
formed, it is passed to Thread Pool Task Executor, a class
implementing parallel data processing management. Each
message from the map is passed to the Message Processor,
where it is processed, in parallel with the processing of other
messages. The size of the Thread Pool Task Executor is set
via the settings file [32-34].
 In Message Processor, all further processing of the message
takes place, matching the global attributes of the person and the
local ones, calculating some parameters, etc. At the end, the final
data is stored in the database of our system. As soon as processing
of all messages of the packet is finished, the listener is ready to
receive a new packet of messages.
 In order to get maximum efficiency, we need to
choose the most suitable work parameters, both from the
point of view of the effectiveness of the solution and
from an economic point of view (see Figure 7). Let's
consider the main parameters that will appear in the
testing process:

 N. Nikolaevich Sheyanov et al./ Scientia Iranica (2024) 31(22), 2088-2095 2091

Figure 6. Application activity diagram.

• Number of threads – the number of threads processing a
batch of incoming messages;

• Time (ms)–the time taken to process the entire message
pool;

• Queue size–the maximum number of messages in the
queue (async.max.pool.records parameter);

• Batch size–the number of messages deducted in one poll
operation (max.poll.records parameter);

• Relative gain ratio–the performance gain ratio relative to
the previous result;

• Absolute gain coefficient–the performance gain
coefficient relative to the base value.

In order to calculate the relative and absolute growth rate, we
use the following formulas:

Formula 2: Calculation of the relative growth rate
-1 , 1, 1,OTH OTHi

i i
i

TK i aK
T

= ≥ = (2)

where 𝐾𝐾𝑖𝑖отн is the relative growth rate; Ti the time spent
processing the message pool.

2092 N. Nikolaevich Sheyanov et al./ Scientia Iranica (2024) 31(22), 2088-2095

Table 1: Processor messages specification based on proposed method.
Number of threads Time

(ms)
Messages Queue

size
Batch
size

Relative
growth rate

Absolute
growth rate

8 1262392 10000 128 512 1,000 1,000

16 636132 10000 128 512 1,984 1,984

32 320190 10000 128 512 1,987 3,943

56 199883 10000 128 512 1,602 6,316

64 162848 10000 128 512 1,227 7,752

128 83221 10000 128 512 1,957 15,169

Formula 3: Calculation of the absolute growth rate

0 , 1, 1a c a c
i i

i

TK i aK
T

σ σ= ≥ = , (3)

where 𝐾𝐾𝑖𝑖абс is the absolute growth rate; Ti the time spent
processing the message pool.
 We will perform testing with the number of processed
messages equal to 10000 (Table 1).

As a result, we get that the best performance under real
resource and technology constraints is observed when

Figure 7. Graph of message processing time depending on the
number of handler threads.

Figure 8. Graph of the relative growth rate.

Figure 9. Graph of the absolute growth rate.

working on 64 threads (Figures 8 and 9). At the same time,
acceptable performance is also observed when working on
32 threads. Let's consider possible variants of processors on
the market for January 2021.
 As shown in Figures 10 and 11, thus, the difference in
the average cost of processors with 32 and 64 threads is
303,248 rubles, and the ratio of the cost of a processor for
64 threads and 32 is 2.849.
 This means that with a 1.602-fold increase in
productivity, we spend 2.849 times more in resources. This
amount of financial costs is impractical, and therefore it
turns out that the best processor option for the task of
synchronizing data between services, taking into account
the price-performance ratio, is a 32-stream processor. This
processor meets the performance limitations and performs
the required task in full for the time we need, while it is an
adequate option on the part of financial costs for the
company.

4. Conclusion
In the course of the research work, the analysis of existing
methods of data synchronization in the microservice
architecture in real time was carried out. The optimal method
for solving the problem was identified, a mathematical
model was constructed describing the mechanism of data
synchronization using the messaging approach using the
Apache Kafka message broker, and a range of parameters
acceptable for the effective operation of the application was
selected, both from the point of view of system performance
and from an economic point of view.
Acknowledgments
The research was conducted at the expense of a grant from
the Russian Science Foundation № 21-71-00110,
https://rscf.ru/project/21-71-00110/.

https://rscf.ru/project/21-71-00110/

 N. Nikolaevich Sheyanov et al./ Scientia Iranica (2024) 31(22), 2088-2095 2093

Figure 10. Price chart of processors with 32 threads.

Figure 11. Price chart of processors with 56 or 64 threads.

References
1. Richardson K., Microservices, Patterns of Development

and Refactoring, St. Petersburg: Peter, p. 544 (2019).
2. Whitesell, S., Richardson, R., and Groves, M.D.,

Decentralizing Data. In Pro Microservices, NET 6
Apress, Berkeley, CA, pp. 137-170 (2022).
https://doi.org/10.1007/978-1-4842-7833-8_6

3. Qazani, M.R.C., Asadi, H., Khoo, S., et al. “A linear time-
varying model predictive control-based motion cueing
algorithm for hexapod simulation-based motion
platform”, IEEE Transactions on Systems, Man, and
Cybernetics: Systems, 51(10), pp. 6096-6110 (2021).
DOI: 10.1109/TSMC.2019.2958062

4. Akhir, E.A.P., Bachok, R., Arshad, N.I., et al.
“Conceptual framework for SIDS alert system”, 4th
International Conference on Computer and Information
Sciences (ICCOINS), pp. 1-5, IEEE (2018).
DOI: 10.1109/ICCOINS.2018.8510596

5. Modoni, G.E., Caldarola, E.G., Sacco, M., et al.
“Synchronizing physical and digital factory: benefits and
technical challenges”, Procedia Cirp, 79, pp. 472-477
(2019). https://doi.org/10.1016/j.procir.2019.02.125

6. McNally, B., Lu, Y., Shively-Ertas, E., et al. “A simple
and effective methodology for generating bounded
solutions for the set K-covering and set variable K-
covering problems: A guide for or practitioners”, Review
of Computer Engineering Research, 8(2), pp. 76–95

https://doi.org/10.1007/978-1-4842-7833-8_6

2094 N. Nikolaevich Sheyanov et al./ Scientia Iranica (2024) 31(22), 2088-2095

(2021).
https://doi.org/10.18488/journal.76.2021.82.76.95

7. Girrbach, P. “The metaphorical culturalistic approach to
technology assessment”, Tehnički Glasnik, 15(4), pp.
554-561 (2021). DOI:10.31803/tg-20210628194103

8. Al-Masri E. and Mahmoud Q.H. “A broker for universal
access to web services”, Seventh Annual Communication
Networks and Services Research Conference, pp. 118-
125 (2009). DOI: 10.1109/CNSR.2009.27

9. Qazani, M.R.C., Asadi, H., Bellmann, T., et al. “Adaptive
washout filter based on fuzzy logic for a motion
simulation platform with consideration of joints’
limitations”, IEEE Transactions on Vehicular
Technology, 69(11), pp.12547-12558 (2020).
DOI: 10.1109/TVT.2020.3023478

10. de Toledo, S.S., Martini, A., and Sjøberg, D.I.
“Identifying architectural technical debt, principal, and
interest in microservices: A multiple-case study”. Journal
of Systems and Software, 177, 110968 (2021).
https://doi.org/10.1016/j.jss.2021.110968

11. Pashchenko, D.V., Jaafar, M.S., Zinkin, S.A., et al.
“Directly executable formal models of middleware for
MANET and cloud networking and computing”, J. Phys.
Conf. Ser., 710(1), p. 12024 (2016), DOI: 10.1088/1742-
6596/710/1/012024

12. Qazani, M.R.C., Asadi, H., Mohamed, S., et al. “An
optimal washout filter for motion platform using neural
network and fuzzy logic”, Engineering Applications of
Artificial Intelligence, 108, 104564 (2022).
https://doi.org/10.1016/j.engappai.2021.104564

13. Narhid, N., Shapira, G., and Pavlino, T. “Apache Kafka.
Streaming Data Processing and Analysis”, St.
Petersburg: Peter, 320 (2019).
 DOI: 10.1109/ICICET.2018.8533771

14. Irandoost, A. and Kargar, S. “An integrated optimization
of routing and scheduling of liner ships in offshore
logistics management”, Journal of Research in Science,
Engineering and Technology, 9(02), pp. 17-35 (2021).
DOI: 10.24200/jrset.vol9iss02pp17-35.

15. Sun, X., Liang, Y., and Huang, H. “Design and
implementation of internet of things platform based on
microservice and lightweight container”, IEEE 9th Joint
International Information Technology and Artificial
Intelligence Conference (ITAIC), 9, pp. 1353-1357
(2020). DOI: 10.1109/itaic49862.2020

16. Božić, D. “Applying Simulation Modelling in
Quantifying Optimization Results”, Tehnički Glasnik,
15(4), pp. 518-523 (2021). https://doi.org/10.31803/tg-
20210326111551

17. Nagothu, D., Xu, R., Nikouei, S.Y., et al. “A
microservice-enabled architecture for smart surveillance
using blockchain technology”, IEEE International Smart
Cities Conference (ISC2), pp. 1-4 (2018).
10.1109/ISC2.2018.8656968

18. Seng, J.L. and Chen, T.C. “An analytic approach to select
data mining for business decision”, Expert Systems with
Applications, 37(12), pp. 8042-8057 (2018).
https://doi.org/10.1016/j.eswa.2010.05.083

19. Chang, C.I., Hyperspectral Data Processing: Algorithm
Design and Analysis, John Wiley and Sons, London, UK
(2013). DOI: 10.1002/9781118269787

20. Jia, C., Tan, C.Y., and Yong, A. “A grid and density-based
clustering algorithm for processing data stream”, Second

International Conference on Genetic and Evolutionary
Computing, IEEE, pp. 517-521 (2008).
DOI: 10.1109/WGEC.2008.32

21. Srinivasareddy, S., Narayana, Y., and Krishna, D. “Sector
beam synthesis in linear antenna arrays using social
group optimization algorithm”, National Journal of
Antennas and Propagation, 3(2), pp. 6-9 (2020).
DOI: 10.31838/NJAP/03.02.02

22. Prokofiev, O.V. and Savochkin, A.E. “Additive noise
effect on the error of time interval forming”, Proceedings
Global Smart Industry Conference, GloSIC, pp. 255–
258, 9267820 (2020).
DOI: 10.1109/GloSIC50886.2020.9267820

23. Deinum, M., Java Enterprise Services, Spring Boot 2
Recipes, Apress, Berkeley, pp. 239-256 (2018).
https://www.springerprofessional.de/en/spring-boot-2-
recipes/16301616

24. Esmaeeli, J., Amiri, M., and Taghizadeh, H. “A new
approach in the DEA technique for measurement of
productivity of decision-making units through efficiency
and effectiveness”, Scientia Iranica, 30(2), pp. 822-832
(2023), DOI: 10.24200/sci.2020.54858.3961.

25. Salehi, S.M., Farrahi, G.H., and Sohrabpour, S. “A new
technique of the first and second limits”, Scientia Iranica,
24(3), pp. 1171-1180 (2020). 10.24200/sci.2017.4098

26. Sarvestani, E. and Khayati, G.R. “An integrated model
for predicting the size of silver nanoparticles in
montmorillonite/chitosan bionanocomposites: A hybrid
of data envelopment analysis and genetic programming
approach”, Scientia Iranica, 28(3), pp. 1871-1883,
(2021). DOI: 10.24200/sci.2020.52510.2748

27. Dhivya, S., Iswariyalakshmi, B., Banumathi, V., et al.
“Image integration with local linear model using
demosicing algorithm”. International Journal of
Communication and Computer Technologies, 5(1), pp.
36-42 (2023).
https://ijccts.org/index.php/pub/article/view/60

28. Barzamini, H. and Ghassemian, M. “Comparison
analysis of electricity theft detection methods for
advanced metering infrastructure in smart grid”,
International Journal of Electronic Security and Digital
Forensics, 11(3), pp. 265-280 (2019).
DOI:10.1504/IJESDF.2019.10020548

29. Alkawaz, M.H., Veeran, M.T., and Bachok, R. ``Digital
image forgery detection based on expectation
maximization algorithm’’, In 2020 16th IEEE
International Colloquium on Signal Processing and Its
Applications (CSPA), pp. 102-105, IEEE (2020).
DOI: 10.1109/CSPA48992.2020.9068731

30. Dahmardeh, H., Zareh, M., Mirzadeh, A., et al. “Brain
emotional learning basic intelligent control for
congestion control of TCP networks”, J Basic Appl Sci
Res, 3(1), pp. 345-349 (2013).

31. He, S., Zhao, L., and Pan, M. “The design of inland river
ship microservice information system based on spring
cloud”, 5th International Conference on Information
Science and Control Engineering (ICISCE), pp. 548-551
(2018). DOI: 10.1109/ICISCE.2018.00120

32. Elfaki, A.O., Abouabdalla, O.A., Fong, S.L., et al.
“Review and future directions of the automated

https://dx.doi.org/10.24200/sci.2020.54858.3961
https://scholar.google.com/scholar?oi=bibs&cluster=8458792572795536208&btnI=1&hl=en
https://scholar.google.com/scholar?oi=bibs&cluster=8458792572795536208&btnI=1&hl=en
https://scholar.google.com/scholar?oi=bibs&cluster=8458792572795536208&btnI=1&hl=en

 N. Nikolaevich Sheyanov et al./ Scientia Iranica (2024) 31(22), 2088-2095 2095

validation in software product line engineering”, Journal
of Theoretical and Applied Information Technology,
42(1), pp. 75-93 (2012).
https://citeseerx.ist.psu.edu/document?repid=rep1&type
=pdf&doi=8e587c553d8c2ed6133a929a6712718b38ed7
c73

33. Arzo, S.T., Scotece, D., Bassoli, R., et al. “MSN: A
playground framework for design and evaluation of
micro services-based sdN controller”, Journal of
Network and Systems Management, 30(1), pp. 1-31
(2022). https://doi.org/10.1007/s10922-021-09631-7

34. Ahmadi, Z., Haghighi, M., and Validi, Z. “A novel
approach for energy optimization in distributed databases
in wireless network applications”, Journal of
Management and Accounting Studies, 8(3) (2020).

Biographies

Nikolay Nikolaevich Sheyanov is the student of the
Department of programming, He works in Penza State
Technological University, 440039, Russia, Penza,
BaydukovProyezd / Gagarin Street, 1a/11. The main field of
activity are: development of parallel algorithms for expert
systems; hardware and software implementation of high-
performance computing systems.

Mikhail Petrovich Sinev is Associate Professor of
Programming Department, Penza State Technological
University, 440039, Russia, Penza, BaydukovProyezd/
Gagarin Street, 1a/11. The main field of his activity are
development of parallel algorithms for expert systems;
hardware and software implementation of high-
performance computing systems.

Darya Olegovna Neshko is student of the Department of
Computer Engineering, Penza State University, 440026,
Russia, Penza, Krasnaya Street, 40. The main field of activity
are development of parallel algorithms for expert systems;
hardware and software implementation of high-
performance computing systems.

Dmitry Vladimirovich Pashchenko is the Rector of Penza
State Technological University, Penza State Technological
University,440039,Russia,Penza,BaydukovProyezd/Gagarin
Street, 1a/11. The main areas of activity are modeling and
formalization of models of multi-threaded computing systems
using the mathematical apparatus of Petri nets; development
of parallel algorithms for expert systems; hardware and
software implementation of high-performance computing
systems.

Dmitry Anatolyevich Trokoz is Vice-Rector for scientific
work of Penza State Technical University. He is in the Penza
State Technological University, 440039, Russia, Penza,
BaydukovProyezd / Gagarin Street, 1a/11. The main areas of
activity are modeling and formalization of models of multi-
threaded computing systems using the mathematical apparatus
of Petri nets; development of parallel algorithms for expert
systems; hardware and software implementation of high-
performance computing systems.

Alexey Ivanovich Martyshkin is Head of the Programming
Department of Penza State Technical University. The main
areas of activity are modeling of models of multi-threaded and
multiprocessors computings systems using the mathematical
apparatus of systems and Queuing networks; development of
parallel algorithms for expert systems; hardware and software
implementation of high-performance computing systems.

	1. Introduction
	2. Methods
	3. Results
	4. Conclusion

