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Abstract 

This study aims to identify and rank the performance influencing factors (PIFs), which cause 

errors in human operations, by analyzing the failure weights and ranks of the tasks performed by 

every operator. Assessing these factors can mitigate human errors and improve safety, efficiency, 

and job satisfaction. The linear programming techniques for multidimensional analysis of 

preference (LINMAP) and Bayesian belief networks were employed to analyze an aircraft tire 

manufacturing industry. In this method, all operators of workshops were evaluated. According to 

the data analysis, each operator’s tasks were weighted, and the potential error rate of each task 

was determined. PIFs for each workshop were then ranked and prioritized so that the most 

effective factors could easily be distinguished in order to identify the tasks where the operators 

had the highest rates of failure. The probability of human error was then obtained. In a predictive 

model, it is possible to determine when an error occurs and which factors are the most effective 

in its occurrence. This paper proposes an approach to the easy, inexpensive, and rapid 

classification of PIFs by determining their correlations through conditional possibilities. The 

proposed approach is capable of classifying not only PIFs but also the PIF-related tasks with the 

greatest effects.  
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1. Introduction 

According to various theories, a major cause of work-related accidents is the unsafe behavior 

of operators. Defined by various references, a human error is a deviation from the 

predetermined circumstances that would result in a reduction of accuracy and validity of 

performance on the part of an operator. The human reliability analysis (HRA) is now in one 

of the most critical phases of probabilistic risk assessment (PRA) in research and industry. In 

fact, the HRA consists of two steps: identifying the human error and determining the 

occurrence probability of that error. If implemented properly, it can enhance the human 

reliability and reduce the human error probability (HEP). The concept of HEP can be defined 

as the following formula. 

 

𝐻𝐸𝑃 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑖𝑚𝑒𝑠 𝑎𝑛 𝑒𝑟𝑟𝑜𝑟 ℎ𝑎𝑠 𝑜𝑐𝑐𝑢𝑟𝑒𝑑

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑝𝑝𝑜𝑟𝑡𝑢𝑛𝑖𝑡𝑖𝑒𝑠 𝑓𝑜𝑟 𝑎𝑛 𝑒𝑟𝑟𝑜𝑟 𝑡𝑜 𝑜𝑐𝑐𝑢𝑟
 

 

The HRA aims to predict the possibility of failure to fulfil a task (by the operator), the 

outputs of which are affected by different factors such as judgments of experts, simulation 

techniques, and problem-solving processes. The HRA methods are adopted in various fields 

such as power plants, transportation systems (e.g., trains, ships, aircraft and motor vehicles), 

medicine factories, nursing tasks, and so many other fields where operators are employed.  

Human error is also considered an outcome but not a cause. Errors are formed and provoked 

by the events occurring at workplaces as well as organizational factors. Humans cannot 

change circumstances but can change the conditions in which the operators work [1]. 

Human error (HE) can be related to various factors known and designated as performance 

shaping factors (PSFs), performance influencing factors (PIFs), influence factors (IFs), 

performance appraisal factors (PAFs), error producing conditions (EPCs), and common 

performance conditions (CPCs). 

Since 1950, many studies have been conducted on the identification and reduction of human 

errors and factors affecting the performance of operators.  

Hollnagdel [2] indicated that human factors played the most crucial role in industrial 

accidents by accounting for nearly 60% of accidents occurring as a direct result of human 

errors. In air transport, this rate reaches 70–90% [3]. 

There are various methods for identifying, evaluating, and reducing human error (HE) such 

as THERP, CREAM, SPAR-H, and IDAC. Most of the HRA methods provide an overview 

of tools and techniques for analysts where the sources of errors are easily discernible. Some 

scientific papers have adopted the MCDM (multiple-criteria decision-making) method and 

the AHP–SLIM technique [4]. Paolo and Trucco employed the ANP method [5]. 
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Generally, many methods have been developed to assess human reliability. They are 

classified as three generations, the first of which includes HRA methods. In this category, an 

analyst must divide a task into its components. The effects of such factors as pressure (work), 

time, equipment design, and stress can then be taken into account. Combining these methods, 

an analyst can determine the nominal potential for human error (HE). The methods of the 

first generation focus on an operator’s skills and activity roles. 

The HRA methods of the second generation tend to be conceptual. However, attaining such 

an objective requires a predictive model having sound theoretical foundations and 

experimental validations [6]. 

The methods of the third generation are mainly based on the first generation methods 

redefined as the third generation methods such as NARA (nuclear action reliability 

assessment) developed through the HEART (human error assessment and reduction 

technique) method. Most researchers working on the third generation try to bridge the 

existing gaps in the previous two categories. Alternative analysis is a new problem including 

different job spectrums, stability in teamwork, and use of the fuzzy logic to analyze 

reliability and human error. 

Some of the HRA methods discuss the interdependency issues between PIFs, some cases of 

which are the model of information decision and action in crew (IDAC), the cognitive 

reliability error analysis method (CREAM) [6], and the standardized plant analysis risk-

human reliability analysis (SPAR-H) [7]. 

A few studies have discussed how PIFs affect each other qualitatively (e.g., CREAM [8]). 

However, some others have tried to describe the analysis of mental interdependencies 

between different PIFs in addition to explaining the outcomes in very complex applications 

requiring excessive efforts by analysts (e.g., IDAC) [9]. Hallbert [10] addressed how 

experimental data could help determine the strength effects of factors and their interactions; 

however, they failed to provide analysts with the necessary procedures for guiding their 

analyses. 

There are two groups of challenges to PIFs, the first of which includes the prioritization of 

PIFs, whereas the second group — known as principal challenges — requires a modelling 

framework of PIFs in which the quantity and interdependence of factors are represented. 

This paper aimed to analyze the challenges related to the categorization of PIFs as well as the 

correlations between factors. The LINMAP method was then employed to rank the factors 

based on the opinions of experts and operators. Moreover, BBNs were adopted to propose a 

model that could to some extent measure the effect of each PIF on other factors as well as the 

effect of each PIF on the operators. Additionally, the proposed approach consists of no 

pairwise comparisons as in AHP and ANP methods, which are confusing, tedious, and time-

consuming for the operators. In fact, the implementation of the proposed approach requires 

less time and training. A Bayesian belief network can measure the presence probability of 
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each factor by using conditional probabilities in order to determine which PIFs were the most 

likely cause of the human error occurrence. 

 

This paper introduces the LINMAP (linear programming technique for multidimensional 

analysis of preference) for the prioritization of PIFs in conjunction with BBNs to determine 

the interactions of relevant factors. Section 2 reviews the recent literature on the human error, 

whereas section 3 presents the LINMAP and BBNs. In fact, the LINMAP is introduced as an 

MCDM technique in Subsection 3.1. After that, Subsection 3.2 discuses BBNs. The data 

collection methodology is discussed in Section 4. The PIFs and the research results are then 

analyzed. Finally, Section 5 draws the research conclusion. 

2. Literature Review 

Dragana [11] used statistical distributions to analyze the HRA. Employing questionnaires and 

statistical estimates, Dragana determined the parameters of statistical distribution and divided the 

human error into into two ergonomic and physical categories through statistical models of 

Markov, Goel–Okumoto, Jelinski and Jonson. 

The HEART is a method of showing that any reliability in task performance might be adjusted as 

long as EPCs are present. Identifying nine general tasks, this method proposes the nominal 

values of human unreliability. Moreover, 17 EPCs have been reported to have the greatest effects 

on an operator’s performance. The failure rate is defined as below: 

𝑃 = 𝑃0 {∏[(𝐸𝑃𝐶𝑖 − 1)𝐴𝑝𝑖 + 1]

𝑖

} 

Where P denotes the probability of human error, and P0 indicates the nominal human 

unreliability. Furthermore, 𝐸𝑃𝐶𝑖 represents the i
th 

error-promoting condition, whereas 𝐴𝑝𝑖 refers 

to an engineer’s assessment of the proportion effect (on a scale of 0 to1) for each i
th 

EPC [12]. 

Castiglia and Giardina [9] concluded that using the fuzzy concept could improve the results of 

the HEART. 

According to the research literature, the major disadvantage of the HEART is the negligence of 

correlations between errors. Due to the nature of this study, interpreter might end up calculating 

a variety of human errors within the context of similar tasks. Unlike the HEART, the IDAC 

method and the CREAM method seek to evaluate the correlations between errors and factors 

affecting the performance of operators but require a prolonged period of time for training and 

implementation. 

Chang and Mosleh [13] developed a model called the IDAC (information, decision, and action in 

the crew context) model to assess the responses given by the nuclear power plant operators. This 

model includes 50 interactive PIFs. The IDAC factor is classified as two macro categories (i.e., 

internal PIFs and external PIFs) and 11 hierarchically structured groups. The PIFs within each 
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group are independent; however, the PIFs between groups are dependent. Figure 1 demonstrates 

the high-level interdependencies of PIF groups in the IDAC [12]. 

Measuring an HEP estimate, Zhiqiang et al. [14] employed the CREAM method, in which the 

control degrees are presented in four manners. Given the intended field, they are determined by 

prevailing performance conditions. Zhiqiang then made an estimate between control and HEP 

ranges and used the method as a base to estimate the HEP points. Next, he collected the method 

characteristics and observed that the results corresponded to the registered human performance 

data. In his proposed model, PIFs were replaced by PSFs. Table 1 indicates how PSF groupings 

might affect each other [11]. 

The numbers within parentheses indicate the following PIFs. The model expresses that the 

presence of a specific PSF might adjust the impacts of other PSFs and HEPs. Furthermore, a “+” 

sign denotes a direct effect (increase–increase and decrease–decrease), whereas a “-” sign 

denotes an inverse effect (increase–decrease and decrease–increase) [8]. 

Park and Lee [4] proposed a method called AHP–SLIM to overcome the existing difficulties 

arising from the judgments of experts on the achievement of an accurate estimate. Their 

proposed method is a technique of making HEP estimates through the AHP method. Introducing 

the method in seven steps at 2 levels, the researchers drew a pairwise comparison between ten 

error factors and five human factors. Finally, nearly 225 pairwise comparisons were made. In the 

proposed method, Jae in Lee compared two groups of operators with high seniority and low 

seniority. 

Zhou Chong [15] demonstrated that the failure structure might bring about overall failure and 

consequently human errors. This structure is mainly aimed at analyzing human error. Their 

method estimated HEA and HEP in a structure close to the AHP method in which they 

introduced their method called AHP–FLIM to analyze the effects of expert judgments on the 

failure verification of the index model. 

Ambroggi and Trucco [5] evaluated the correlative factors in the aviation industry by analyzing 

10 influential factors in an air traffic control tower. Through the ANP, these factors were 

compared pairwise between the operators working at two airports. The factors were then 

weighted through the t-paired (t-student) method. The weights related to the air traffic towers 

were then tested. In this method, the normalized outputs of each factor weight were considered 

the HEP points. This study classified the factors to measure the dependent and independent 

effects. A nearly 95% confidence interval was considered for each factor that facilitated the 

analysis of results in each control tower. 

The methods based on ANP and AHP have their own weaknesses. In fact, they require a wide 

variety of pairwise comparisons, which are toilsome. This results in deviation from the 

development of more accurate solutions.  
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Peng-Cheng [16] employed a fuzzy Bayesian belief network (FBBN) to develop a method for 

improving the quantification of organizational effects on the HRA. The results indicated that 

their method was unable to quantify human factors and human reliability. However, it managed 

to measure human equipment reliability, determine the causes of errors, and prioritize these 

causes. 

BBNs were used in [17] to develop a “6-bubble model”, “9-bubble model”, and a “mixed 

expert/data model”. These models were developed through the levels and sources of data. The 

“6-bubble model’’ used the data obtained from an NRC (nuclear regulatory commission) 

workshop, whereas the “mixed expert/data model” employed a large set of over 30 PSFs. The 

“9-bubble model” was an intermediate one aimed at identifying the error context. 

Trucco [18] proposed a novel method for combining organizational human factors and risk 

analysis. This method was applied to a case study capable of being developed in other fields. The 

behavior of the maritime transport system was analyzed by modeling the interactions between 

different factors through BBNs. 

BBNs were also utilized to analyze the population variations of the endangered species. This 

type of study can develop a model for the habitats and the growth patterns of the species under 

investigation. The study further included the construction of a causal graph [19]. 

In a paper called Human Reliability Modeling for the Next Generation System Code, 

Sundaramurthi and Smidts [20] reviewed different methods of human reliability and analyzed the 

strengths and weaknesses of each technique based on the IDAC model in different scenarios. By 

modeling the PIFs, they managed to determine the scores of important factors. In the end, they 

provided an overview of complex factors through BBNs and dealt with the role of human errors 

in aviation and nuclear accidents. Figure 2 demonstrates a causal graph showing human factors 

in nuclear accidents [20]. 

Further details can help develop a complete model which could explain the relationships between 

different factors. The calculations, however, can become more complicated. The factors of 

highest importance are frequently identified and placed in the analyzed model.  

Kyriakidis et al. analyzed humans, their performance, actions, and decisions playing significant 

roles within a vast range of operations in complex sociotechnical systems. Numerous studies 

were then conducted to perceive people’s actions and/or inactions within their working 

environments in addition to identifying the other factors known as performance shaping factors 

(PSFs), which contribute either positively or negatively to the sociotechnical system performance 

[21]. 

Washington et al. analyzed challenges to the implementation of system safety assessments in 

unmanned aircraft systems (UASs). They intended to highlight the main advantages associated 

with the adoption of a risk-based framework in the system safety performance requirement 

(SSPR) compliance process, which is capable of considering the uncertainty associated with each 

of the outputs of the system safety assessment process. In another study, Washington et al. also 

proposed a novel system safety compliance process based on Bayesian methods [22] [23]. 
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In a recent paper, Washington et al. analyzed the significant uncertainty regarding the safety of 

novel or complex aviation systems such as remotely piloted aircraft systems (RPASs). The 

current aviation safety assessment and compliance processes do not account adequately for 

uncertainty. They sought to support more objective, transparent, systematic, and consistent 

regulatory outcomes in relation to the safety assessment of such systems. They aimed to provide 

the systematic means of accounting for the various uncertainties inherent to any system safety 

assessment (SSA) processes [24]. 

Steijn et al. implemented the quantification of human factors in a quantitative risk analysis 

(QRA), which they called the QRA+. The quantitative knowledge concerning the technological 

parameters was obtained from the officially documented SIL statistics, whereas the standardized 

plant analysis risk–human reliability analysis (SPAR-H) was employed to quantify the human 

factors. Beta distributions were then utilized to model the failure probability distributions 

accounting for the uncertainty inherent in dealing with human reliability. For the seamless 

integration of existing qualitative knowledge and quantitative knowledge, they utilized a 

Bayesian belief network. The resultant model provides an integrated and more accurate 

estimation of failure probabilities for both technological and human factors as well as the 

uncertainty surrounding such probability estimates [25]. 

Golestani et al. proposed a methodology for quantifying the effects of harsh environmental 

conditions on the reliability of human actions in performing complex physical operations. 

According to a review of current human reliability techniques, there is a lack of methodology for 

quantifying human errors while conducting complex physical operations in extreme 

environments. The proposed methodology is based on a hierarchical Bayesian network 

accounting for causal dependencies among environmental factors, human error modes, and 

scenario-based activities. A novel model was also developed with three reference points (i.e., 

awareness of situation, system access, and action) to derive human error modes (HEMs) from 

physiological failure mechanisms and help analysts identify the root causes of human errors [26]. 

Zhao and Smidts proposed a novel cognitive modeling and simulation environment (CMS-BN) 

by introducing Bayesian networks to represent the human knowledge and the Monte–Carlo 

simulation to address uncertainties in the cognitive process. Arguments and responses are 

modeled by traversing the human knowledge represented as a Bayesian network to retrieve 

knowledge and update human beliefs and attention distribution accordingly. Uncertainties in the 

cognitive process are characterized as the Monte–Carlo simulation. The proposed environment 

also models the interplay between the cognitive process and two PSFs, i.e., stress and fatigue, 

although additional factors can be further considered. The proposed environment is expected to 

be beneficial to human reliability analysis and human performance improvement [27]. 

Zhao and Smidts reported that human operators played a critical role in the operation of complex 

engineered systems, in particular under abnormal conditions. It is important to assess human 

performance under the conditions of interest and improve the performance by taking effective 

measures. They presented the application of a previously developed cognitive modeling and 

simulation environment to address these two problems. The developed environment simulates 
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how a human operator dynamically interacts with the external system with focus on the 

operator’s cognitive activities. They also demonstrated how the developed environment could be 

used for human reliability analysis and human performance improvement [28]. 

Wu et al. reviewed the existing human reliability techniques and confirmed that there was a lack 

of quantitative analysis of human errors in the high-temperature operating environments. They 

proposed a model to support the human rfieliability analysis of high-temperature operation based 

on the cognitive reliability and error analysis method (CREAM), the fuzzy logic theory, and a 

Bayesian network (BN). They employed the fuzzy CREAM to consider uncertainties and 

adopted a BN to determine the control mode and measure human error probability (HEP) [29]. 

Greco et al. analyzed a model adopted in human reliability analysis (HRA) to characterize 

personnel tasks and performance conditions through the categories of tasks and effective factors 

(e.g., task types and PSF) [30]. 

 

3. Methods 

This section proposes the LINMAP for determining the priority of each operator’s tasks and 

PIFs. After that, BBNs are discussed in order to analyze the interplay between PIFs. The 

significant correlation coefficients of different factors are also determined. 

In the studied industry, the proposed method managed to eliminate the need for many pair 

comparisons and the long time required for training and implementation. Additionally, the 

relationships between factors were not ignored in this study. Finally, Bayesian belief networks 

were utilized to determine the effects of every PIF on human error. 

 

3.1. LINMAP 

In this method, m denotes the number of PIFs, whereas n refers to the number of operator’s tasks 

existing in an n-dimensional space. The decision-makers are assumed to select the points which 

are closest to the ideal point. A decision-maker’s subjective judgments on the comparison of 

paired options are shown as S={(k,l)}, which represents the pairwise comparisons between 𝐴𝑘 

options and 𝐴𝑙 options. Therefore, the decision-maker prefers 𝐴𝑘 options. The procedure can 

define weights (𝑤𝑗) — j
th

 task weight — and determine the optimal value (𝑥𝑗
∗) —the ideal value 

of the i
th

 index. The definitions of these vectors (𝑊, 𝑋∗) are given based on regular pairs in the S 

set. The distance of the 𝐴𝑖 option from the ideal option is defined as below: 

𝑡𝑖 = 𝑑𝑖
2 = ∑ 𝑤𝑗(𝑥𝑖𝑗 − 𝑥𝑗

∗)
2

  ,   𝑖 = 1,2, … , 𝑚𝑛
𝑗=1   (1) 

If 𝑡𝑙 ≤ 𝑡𝑘, the solution (𝑊, 𝑋∗) to (k,i)S is compatible.  

The answer to (𝑊, 𝑋∗) should be determined in a way that the exceeding condition 𝑡𝑙 ≥ 𝑡𝑘 

happens within the least range possible. If 𝑡𝑙 ≤ 𝑡𝑘, then 𝑡𝑙 − 𝑡𝑘 represents the deviation degree 

where the intended condition is infringed. Hence, the definition given in Equation (2) can be 

considered in general. 

(𝑡𝑙 − 𝑡𝑘)− = 𝑚𝑎𝑥{0, (𝑡𝑙 − 𝑡𝑘)}                                                                                                        

(2) 
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Generally, the total incompatibility of whole (P) on the S set is expressed as Equation (3): 

𝑃 = ∑ (𝑡𝑙 − 𝑡𝑘)−
(𝑘,𝑙)∈𝑆                                                                                                                      

(3) 

Where P (i.e., the incompatibility degree) is not negative because index (𝑡𝑙 − 𝑡𝑘)− is always 

non-negative. Therefore, P should be minimized to determine the answer to (𝑊, 𝑋∗). Against P, 

a new value is selected as G (whole compatibility degree) defined through Equation (4).  

𝐺 = ∑ (𝑡𝑙 − 𝑡𝑘)+
(𝑘,𝑙)∈𝑆                                                                                                                    

(4) 

Where index (𝑡𝑙 − 𝑡𝑘)+ is 𝑚𝑎𝑥{0, (𝑡𝑙 − 𝑡𝑘)}. Therefore, G should be greater than P. Since index 

t is the greatest value {0, (𝑡𝑙 − 𝑡𝑘)}, G>P. It is then possible to write G-P=h, in which h is an 

arbitrary positive constant value. 

{
𝐺 > 𝑃

𝐺 − 𝑃 = ℎ
                                                                                                                                 (5) 

Since the goal is to minimize the incompatibility degree, the answer to (𝑊, 𝑋∗) is obtained by 

solving a problem in Equation (6). 

𝑚𝑖𝑛: 𝑃 = ∑ (𝑡𝑙 − 𝑡𝑘)− =(𝑘,𝑙)∈𝑆 ∑ 𝑚𝑎𝑥{0, (𝑡𝑙 − 𝑡𝑘)}(𝑘,𝑙)∈𝑆   

𝑠. 𝑡  𝐺 − 𝑃 = ∑ (𝑡𝑙 − 𝑡𝑘) 
(𝑘,𝑙)∈𝑆 = ℎ                                                                                           (6) 

In light of Equation 5, the mathematical programing model Equation 6 can be converted into a 

linear programming model depicted in (7). 

𝑚𝑖𝑛: ∑ 𝛼𝑘,𝑙(𝑘,𝑙)∈𝑆   

𝑠. 𝑡   𝛼𝑘,𝑙 ≥ 𝑡𝑘 − 𝑡𝑙     , ∀(𝑘, 𝑙) ∈ 𝑆 

∑ (𝑡𝑙 − 𝑡𝑘)(𝑘,𝑙)∈𝑆 = ℎ                                                                                                               (7) 

The equation can also be simplified by  𝑤𝑗 × 𝑥𝑗
∗ = 𝜇𝑗  and 𝑡𝑙 − 𝑡𝑘 : 

𝑡𝑙 − 𝑡𝑘 = ∑ 𝑤𝑗(𝑥𝑖𝑗 − 𝑥𝑗
∗)

2
−𝑛

𝑗=1 ∑ 𝑤𝑗(𝑥𝑘𝑗 − 𝑥𝑗
∗)

2𝑛
𝑗=1 =  

∑ 𝑤𝑗(𝑥𝑖𝑗
2 − 𝑥𝑘𝑗

2 ) − 2 ∑ 𝑤𝑗𝑥𝑗
∗(𝑥𝑖𝑗 − 𝑥𝑘𝑗)𝑛

𝑗=1
𝑛
𝑗=1                                                                            (8)                                                 

Equation 7 and Equation 8 can be merged and rewritten as follows: 

𝑚𝑖𝑛: ∑ 𝛼𝑘,𝑙(𝑘,𝑙)∈𝑆   

𝑚𝑖𝑛: ∑ 𝛼𝑘,𝑙(𝑘,𝑙)∈𝑆   

∑ 𝑤𝑗
𝑛
𝑗=1 ∑ (𝑥𝑙𝑗

2 − 𝑥𝑘𝑗
2 ) − 2 ∑ 𝑢𝑗

𝑛
𝑗=𝑙(𝑘.𝑙)∈𝑆 ∑ (𝑥𝑙𝑗 − 𝑥𝑘𝑗)(𝑘,𝑙)∈𝑆 = ℎ                                               (9) 
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Where 𝛼𝑙𝑘 ≥ 0, 𝑤𝑗 ≥ 0, and 𝑢𝑗  are without any signs (unlimited). Equation 9 can be solved in a 

linear programing form. The optimal value of the target function is related to parameter h; 

however, it causes no changes in preference prioritization [31]. 

The linear programming of Equation 9 can be solved to calculate 𝑤𝑗 and 𝑥∗ (i.e., the Euclidean 

distance of each PIF). Higher weights indicate the possibility of higher errors in each operator’s 

performances. However, T works in a reverse direction. In other words, Euclidean distances that 

are shorter than the ideal point indicate that PIFs have the greatest effects on each operator’s 

performance. The linear programming problem was solved in MATLAB. 

 

3.2. Bayesian Belief Networks 

The term “Bayesian network (BN)” was first used by Judea Pearl in 1985. In fact, a Bayesian 

belief network (BBN) represents the graphic relationships of a model in which the relationships 

are shown as variables [32]. In fact, BBNs are similar to a group of graphic models known as the 

directed acyclic graphs (DAGs). Figure 3 demonstrates the steps taken in creating and applying a 

model of BBNs. Having specifications for a BBNs allows for the calculation of the next 

probability distribution for each of the nodes (designated as beliefs).  

Selecting a model for the representation of relationships between PSFs largely based on machine 

learning can most accurately model the causal graph structure. Prospective models include 

decision trees, artificial neural networks (NNs), support vector machines (SVMs), and BBNs. 

Decision trees are developed by splitting source data based on some data characteristics. They 

are used best in instances of attribute-value pairs; therefore, they do not accurately model the 

causal graph structure [33]. 

Today, BBNs have found diverse applications in engineering, medicine, aeronautics, computer 

sciences, geology, education, communication sciences, military strategy, and reliability analysis.  

Suppose that E and F are non-dependent or independent events, respectively. If the possibility of 

E happening is not completely related to the occurrence or non-occurrence of F, E and F are 

considered independent. Based on probability laws, if E and F are independent, the possibility 

that both occur simultaneously can be calculated through the following equation: 

𝑃(𝐸 ∩ 𝐹) = 𝑃(𝐸). 𝑃(𝐹)  

However, when E depends on F, the above equation does not apply, and the relevant law changes 

through the following equation:  

𝑃(𝐸) = ∑ 𝑃(𝐸|𝐹𝑖)𝑃(𝐹𝑖)
𝑛
𝑖=1                                                                                                            

(10) 
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Figure 4 demonstrates the Bayesian network diagram for four nodes, displaying the conditional 

dependence and independence relationships between nodes A, B, C and D. In this study, 

MSBNX was employed to solve BBNs and probabilities.   

4. Case Study (Data) and Research Procedures 

This section discusses the use of the proposed method in the aircraft tire production (ATP) 

industry. The study was conducted in two categories of operators at two workshops. The first 

group performed such tasks as Banbury mixer, extruding, calendaring, and beach-off cooling 

machine (in the first workshop). The second group carried out such tasks as bead assembling, 

cutting, tire building, and tire curing (in the second workshop). There were four and 11 operators 

in the first and second workshops, respectively. All the operators were included in a statistical 

study, where they completed worksheets (questionnaires). The worksheets consisted of two 

sections, the first of which contained scores within the range of 0–10 for each PIF (0 for the 

lowest value and 10 for the highest value) (see Figure 5).  

Figure 6 depicts the sample worksheets of the ATP industry in which the operators are ranked 

from zero to ten in vacant cells. The worksheets also include pairwise comparisons (among PIFs) 

drawn for as many required times as the operator deems fit. Table 2 demonstrates the 32 PIFs 

analyzed in the current study. The PIFs are determined with respect to the following criteria: 

 - The literature review of PIFs and pertinent research papers 

 - The comparison of different PIFs to check any lack of overlaps 

 - The judgments/opinions of experts 

Table 3 gives an overview of the approach to this study. The advantage of the LINMAP over 

other MADM methods is that it needs a very few number of pairwise comparisons. It is also not 

time-consuming. Moreover, the LINMAP prioritizes PIFs and tasks simultaneously. The 

intended frequencies are extracted from the first section of the questionnaires including the tasks 

common to all operators. The second section of the worksheet is used for each individual 

operator. Tables 4 and 5 report the results of analyzing tasks. The first column indicates the tasks 

in each workshop, whereas the second column displays the weight of each task (wj). The third 

one indicates the normalized weight of each task where the potential error percentage of each 

task is represented. Tables 6 and 7 demonstrate the priorities of PIFs having the greatest effects 

on an operator’s performance. The first column displays the ranks of factors arranged on the 

basis of the highest scores demonstrating which factors have the greatest effects on an operator’s 

performance in each workshop. The second column provides the designations of PIFs sorted 

according to their average distances from the ideal points (Ti). Moreover, the third column 

depicts average Ti. As discussed earlier, there are four operators in the first workshop where four 

values of Ti are obtained. Therefore, their average is reported in this paper. A similar procedure 

was adopted for the second workshop. There are 11 operators in the second workshop; thus, an 

average of 11 values of Ti is considered and calculated. The fourth column demonstrates the 

normalized values of Ti which can measure the effect probability each PIF. Furthermore, the 

PIFs are ranked to a sensitivity of two decimal digits.  
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Hence, calendaring task had the highest (wj) value equal to 0.01667 or 38% indicating that it had 

the greatest impact on PIFs in the first workshop. The PIFs were also assigned from the highest 

to lowest on such tasks as extruding (27%), beach-off (18%), and Banbury (17%). In other 

words, the possibility rates of human error in calendaring, extruding, beach-off, and Banbury 

were reported at 38%, 37%, 18%, and 17% in the mentioned order. Alternatively interpreted, 

Table 6 arranged PIFs such as environmental factors, visual impacts on task, inadequate 

supervision on the task, time-constrained load, obsolete technology, lack of confidence, poor 

interaction, impact of physical abilities, lack of adequate tools, and inadequate access to tools 

and equipment in order of priority. They can affect calendaring, extruding, beach-off, and 

Banbury tasks with the relevant probabilities obtained. For instance, the PIFs having ranking 1 

with the value or probability of 13.11% affected the tasks in Workshop 1. 

Workshop 2 can be analyzed in the same manner. The highest occurrence probabilities of errors 

in performance respectively (from the highest to the lowest) belonged to cutting, tire curing, tire 

building, and bead assembling. Table 5 demonstrates the PIFs arranged in order of priority 

affecting the tasks in the second workshop. Cutting with a value of 47.2% received the greatest 

impact from the factors. After that, tire curing with 15.6% and tire building and bead assembling 

with 18.6% were affected by the stated factors. The factors had identical effects on tire building 

and bead assembling. Table 7 listed inadequate supervision, workplace cleanliness, time-

constrained load, bad planning, improper equipment layout, personal grooming, doing two or 

more simultaneous tasks, environmental factors, and work complexity in order of importance. 

They had the greatest effects on the above four tasks in the second workshop. 

Figure 7 and Figure 8 demonstrate the Pareto histograms related to the weight (wj) of Tables 4 

and 5, respectively. They also illustrate the plotted curves of cumulative normalized weights. 

Figure 9 and Figure 10 separately demonstrate the details of weights for each individual operator 

in either workshop. In fact, the analyst can detect which operators are prone to error probability 

in different tasks. For example, Figure 8 indicates that the factors had the greatest effects on 

extruding (42.1%) and Bannury (31%) for Operator A1. For Operator B1, the factors had the 

greatest effects on calendaring (70.2%). In addition, extruding for Operator C1 and Banbury for 

Operator D1 showed the greatest potential of error. The last bar in the histogram displays the 

average weights of the four operators in Figure 8. Furthermore, Figure 10 indicates that a similar 

analysis can be provided for the second workshop. 

In Figure 10, “Ave” shows the mean weights of operators. Bead assembling for Operator A2 

displays a value of 86% (the highest value in second workshop), whereas the same value for 

“Ave” is the lowest (15.6%). Considering the prioritization of PIFs to mitigate the effects of the 

latter factors, it is advisable to implement such methods and measures as training operators to 

compensate for their lack of self-confidence, improving environmental factors (i.e., light, 

temperature, noise), concentrating on tasks, purchasing new equipment and gears, recruiting new 
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operators to make up for the time-constrained load, designing and locating a new site for the 

workshop, cleaning or executing 5S at the workplace, and further cooperation among workers. 

As discussed earlier, the second phase can be started as follows. In this section, not all factors are 

utilized to determine the relationships between different PIFs. Although we used significant 

correlation coefficients between PIFs, the relationships of factors in the IDAC model and the 

special relationships of factors in the ATP industry were determined through the calculations 

made by the industry experts. In fact, this model is a simplified version in which the important 

factors are taken into consideration. Evidently, the factors affect an operator’s performance. The 

numbers next to each arrow in Figure 11 represent the correlation coefficients of two related 

factors. Also Figure 11 show the factor “fatigue” with a probability of 0.606 affects not only the 

operator’s total performance (human error) but also the input on non-alertness. This factor with a 

correlation coefficient of 0.49 affects “alertness” and directly impacts an operator’s performance 

(human error). The factors connected to “operator” directly affect an operator’s behavior. 

Moreover, each factor exists in two states: “present” and “non-present”, i.e., the factor in 

question having a specified probability can be “present” or “absent”. In this model, the factors 

having the greatest ability are used with respect to the factors that directly or indirectly affect an 

operator’s performance. The “operator” in this model having a probability of 0.630 is affected by 

the factors, there is an occurrence possibility of error. With the probability of 0.369, the operator 

can be error-free, whereas “stress”, “non-alertness”, and “fatigue” play the most crucial roles in 

an operator’s performance. 

Figure 12 demonstrates what share is allotted to each factor in case human errors occur. For 

example, if the probability of human error is 1, the probability of lack of alertness is 0.747. 

Moreover, if there is an error or the operator commits an error, this model has the capability of 

predicting conditional probabilities of each factor. According to the data in Figure 12, the factors 

related to “lack of confidence, bias, complexity, fatigue, doing two or more simultaneous tasks, 

lack of alertness, inadequate supervision, and stress” are the ones undergoing the most changes 

in the form of probability escalation. 

 

5. Conclusion 

The LINMAP and BBNs can provide useful information regarding PIF ranking and the 

occurrence probability of PIFs. As planned, the factors were ranked and the operators’ tasks were 

prioritized. In other words, the error potential percentage of each task was determined. 

Therefore, it is easy to determine what factors had the greatest effect on the performance of 

operators (Tables 6 and 7). In addition, Tales 4 and 5 reported the error potential percentages. 

The method also separately obtained the operators’ error percentages in delivering their tasks. 

The BBNs helped better perceive the relationships between PIFs and the mutual effects of 

factors. By means of BBNs, a predictive model like that of Figure 12 can be developed. 

LINMAP and BBNs are used in lieu of ANP or AHP. The latter techniques contain too many 
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pairwise comparisons. This study aimed to provide the rankings of the assigned tasks towards 

determining the error potential possibilities and prioritizing PIFs. According to the literature, it is 

essential to prioritize factors and the assigned tasks with the aim of improving operators’ 

performance and developing a more proper layout for instructions and work conditions. 

Moreover, establishing a relationship between factors and the degrees of their mutual effects can 

greatly help manage this complex set skillfully. 

There was no need for many confusing pairwise comparisons. The methods required short-time 

training, fast implementation, and observation of the relationships between factors and their 

mutual effects. Finally, factors and activities were simultaneously ranked. 

 

 

 

6. Limitations/Shortcomings and Development of Future Studies 

This is the first ever study to employ LINMAP to rank human factors. However, the methods 

were non-integrated in this study, and it was essential to adopt a BBN to estimate the presence 

probability of each factor in human error. Henceforth, for the development of future studies, it is 

necessary to compare this model with other models of human error assessment. It is also 

desirable to measure and discuss the validity, reliability, and accuracy of this model. PIFs can be 

classified similarly to the IDAC model, and similar groups can be ranked on the basis of factors. 

Therefore, overlapping can be prevented. 
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Figure 1. The organization of PIF groups and high-level interdependencies within the IDAC  

 

 

 

Table 1. Effects between PSFs within CREAM  

 (1) (2) (3) (4) (5) (6) (7) (8) (9)   

(1)           1- Adequacy of organization 

2- Working conditions 

3- Adequacy of MI and operational support 

4- Availability of procedures/plans 

5- Number of simultaneous goals 

6- Available time 

7- Time of day 

8- Adequacy of training and experience 

9- Crew collaboration quality 

(2) +  +   + + +   

(3) +          

(4) +          

(5)  - - -       

(6)  + + + -  +  +  

(7)           

(8) +          

(9) +       +   
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Figure 2. The causal graph for the BBN analysis in  

 
 

Figure 3. The steps in the BBN development 
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Figure 4. The BBN diagram for four PIFs 
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Figure 5. Scores 0 to 10 for PIFs and tasks 
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Figure 6. The worksheet sample 
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Table 2. PIFs used in the ATPI 

No. Corresponding PIFs No. Corresponding PIFs 

1 Environmental factors 17 Bias 

2 Organizational Culture 18 Hurry 

3 Inadequate supervision on the task 19 Leaving work 

4 Cleaning workplace 20 Personal Grooming 

5 Complexity 21 
Impact of personal protective equipment on 

the task 

6 Lack of adequate tools for tasks 22 Impact of physical abilities on the task 

7 Adverse physical conditions (cold, etc.) 23 Visual impact on the task 

8 Fatigue 24 Lack of transparency in work guidelines 

9 Stress 25 Time-Constrained Load 

10 Lack of alertness 26 Workload 

11 The possibility of a deliberate error 27 Bad planning production 

12 Functional errors (inadvertent error) 28 Doing two or more tasks simultaneously 

13 Lack of confidence 29 
Inadequate access to tools and equipment at 

work 

14 Lack of training and experience 30 Improper layout equipment 

15 Responsibility and commitment to task 31 Improper maintenance of equipment 

16 
Poor interaction and collaboration with 

colleagues 
32 Obsolete technology 

 

 

Table 3. The approach to LINMAP and BBNs in an ATP industry 

Phase Step Description of steps 

F
ir

st
 p

h
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(P
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o
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es

 o
f 

ta
sk

s 
an

d
 

P
IF

s)
 

1 Defining the problem and reviewing the literature 

2 Identifying 66 PIFs 

3 
Selecting PIFs in the ATP industry (32 PIFs selected) in the light of 

experts’ opinions 

4 
Identifying task assignments and classifying the individuals 

performing the same task  

5 Dedicating relevant scores to each factor (first section of worksheet) 

6 Selecting preferences and advantages of factors to others by 
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Table 3. The approach to LINMAP and BBNs in an ATP industry 

Phase Step Description of steps 

operators (second section of worksheet) 

7 Loading data into software constructing linear programming 

8 
Determining the weight of each task (wj) and each factor’s distance 

from the ideal point (ti) 

9 Normalizing data  

S
ec

o
n

d
 p

h
as

e 

(I
n

te
rp

la
y
 b

et
w

ee
n

 P
IF

s)
 

10 
Determining correlations between PIFs and determining their 

significance 

11 
Reviewing the literature and analyzing results in consultation with 

industry experts to present a model showing interplay between PIFs 

12 Proposing a predictive BBN model 

 

 

Table 4. The weights of tasks in the first workshop 

Percentage of potential 

Error (Normal weight) 
Weights of tasks (wj) Tasks 

38% 0.01667 Calendaring 
27% 0.011755 Extruding 
18% 0.007729 Beach-off 
17% 0.007313 Banbury 

 

 

Table 5. The weights of tasks in the Second workshop 

Percentage of potential 

Error (Normal weight) 
Weight of tasks (wj) Tasks 

47.2% 0.0258 Cutting 
18.6% 0.0102 Tire curing 
18.6% 0.0102 Tire building 
15.6% 0.0085 Bead assembling 
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Table 6. The priorities of PIFs for Banbury, extruding, 

calendaring and beach-off tasks 

Rank PIFs 
Ave. 

Ti 

Normal 

Ave. Ti 

1 

Environmental factors 0.573 

0.1311 

Visual impact on the task 0.573 

Inadequate supervision of 

task 
0.573 

Time-Constrained Load 0.573 

Obsolete technology 0.573 

2 

Lack of confidence 0.594 

0.1264 

Poor interaction 0.594 

Impact of physical 

abilities 
0.594 

Lack of adequate tools 0.594 

Inadequate access to tools  0.594 

3 

Responsibility 0.637 

0.1177 
Improper layout 

equipment 
0.637 

Hurry 0.637 

4 

workload 0.702 

0.1068 Stress 0.702 

Leaving work 0.702 

5 
Organizational culture 0.788 

0.0953 
Bad planning production 0.788 

6 

Complexity 0.896 

0.0839 Adverse physical 

conditions 
0.896 

7 Bias 0.901 0.0832 

8 

Personal protective  1.026 

0.0733 Doing two or more tasks 1.026 

Improper maintenance  1.026 

9 

Cleaning workplace 1.178 

0.0637 

Lack of alertness 1.178 

Functional errors  1.178 

Lack of training & 

experience 
1.178 

10 deliberate error 1.185 0.0634 

11 

Fatigue 1.359 

0.0553 Personal Grooming 1.359 

lack of guidelines 1.359 
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Table 7. The priorities of PIFs for bead assembling, 

cutting, tire building, and tire curing tasks 

Rank PIFs 
Ave. 

Ti 

Normal 

Ave. Ti 

1 

 

Inadequate supervision of 

task 
2.510 

0.0987 

Cleaning workplace 2.510 

Time-Constrained load 2.510 

Bad planning production 2.510 

Improper layout equipment 2.510 

Personal Grooming 2.510 

Doing two or more tasks 2.510 

2 
Environmental factors 2.525 

0.0981 
Complexity 2.525 

3 

Organizational Culture 2.550 

0.0972 Improper maintenance 2.550 

Obsolete technology 2.550 

4 
Lack of alertness 2.563 

0.0966 
Lack of confidence 2.563 

5 
Responsibility 2.605 

0.0951 
workload 2.605 

6 

Lack of adequate tools 2.625 

0.0945 

Fatigue 2.625 

Stress 2.625 

personal protective 2.625 

Impact of physical abilities 2.625 

lack of guidelines 2.625 

Inadequate access to tools 2.625 

7 

Adverse physical 

conditions 
2.710 

0.0915 

Functional errors 2.710 

Lack of training & 

experience 
2.710 

Poor interaction 2.710 

Leaving work 2.710 

8 Bias 2.818 0.0879 

9 Hurry 2.950 0.0840 

10 Visual impact on the task 3.059 0.0810 

11 deliberate error 3.284 0.0755 
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Figure 7. The Pareto histogram for the potential error percentage in Workshop 1 

 

 

Figure 8. The Pareto histogram for percentage of potential errors in Workshop 2 
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Figure 9. The analysis of individual operators A, B, C, and D in Workshop 1 

 

 

  

 

Figure 10. The analysis of individual operators A, B, C, D, E, F, G, H, I, G, and K in Workshop 2 
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Figure 11. The BBN of PIFs for the ATP industry 
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Figure 12. The occurrence probability of PIFs in case of human errors 

 

 

 

 

  

 


