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Abstract 

During the past few years, there have been some turbulent events on world' economy, which 

have significantly influenced the performance of companies. Therefore, there is an urgent need 

to use a robust method to handle the existing uncertainties on the performance of the companies. 

This paper uses Evidence Theory to present an innovative and practical approach to consider the 

experts’ opinions which are based on the available evidence regarding the factors that influence 

the stock market. Subsequently, the study proposes a way to determine the changes in these 

factors from possible scenarios on historical data to find the return range of different investment 

alters to be used in robust optimization. Moreover, in a case study, the sensitivity of the Iranian 

stock market to exchange rate fluctuations is examined under a set of scenarios which was due to 

the ambiguousness of a unified viewpoint of that rate’s value midst experts as one of the noticed 

factors. The preliminary results of a real-life case study reveal that the proposed approach is 

useful practically and productively. 
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1. Introduction 
 

Portfolio optimization is one of the most critical subjects in financial issues, where the 

influential work of Markowitz (1952) provided the fundamental portfolio model that is used as 

the foundation for modern portfolio theory. However, the valuable function of this framework in 

the finance administration industry has been discouraging. The fundamental drawback of 

Markowitz's model is that the idea assumes the appraisals of each stock returns and the variances 

are accurate but also tends. This issue is analytically reported and empirically tested by many 

researchers (see[1], [2], [3]and [4]). While the capital market is affected directly or indirectly by 

numerous factors, making estimation of assets' value is uncertain. Thus, detecting behavioral 

scenarios and prioritizing influential factors in terms of practical aspects help us overcome some 

unwanted uncertainties. In addition, in cases where there are historical data, although the data 

can be used, they may not necessarily end up with an efficient outcome. The stock market is 

influenced by economic, political, and social elements. In this regard, using the opinion of 

experts for the process of decision making can be very useful. The present study uses Evidence 

Theory (ET) in a new manner in portfolio robust optimization problems. The expenses incurred 

and development time has been reduced considerably compared with other existing models due 

to repeated expert's interactions as well as the overall complexity of the model which was the 

chief problem in most of the recent researches. At the same time, we incorporate another level of 

uncertainty handling mechanism into the portfolio selection model.  

One of the most popular methods which can be utilized to deal with uncertainty is the 

Robust Optimization (RO) methodology [5]. In this regard, a novel robust portfolio selection and 

optimization approach is provided to deal with the vagueness of the data, boosting the robustness 

of investment procedure against uncertainty, declining computational complexity, and 

comprehensive assessments of stocks from various financial aspects and criteria are submitted. 

For this purpose, the outputs of the ET are been used as the inputs of the robust portfolio 

optimization model (RPOM) to create more stability in the efficiency of assets and to achieve the 

nominal portfolio optimization model in real-world conditions even when the empirical 

distribution of samples is deviated from the normal distribution. This paper is dealing with a 

hybrid uncertainty in portfolio optimization. After identifying investment options and 

determining the factors affecting stock returns, we first rank the stocks using the data 

envelopment analysis approach, filter them based on maximum return and minimum risk, and 

determine how stock prices are affected by influential factors according to the Sharp multi-factor 

model. In the portfolio optimization literature, many studies have been conducted to improve the 

performance of portfolio optimization different nominal models under various circumstances 

(see[6], [7], [8], [9], [10], [11], [12],[13]).      

  Furthermore, the current strategy in the investment portfolio might change when an 

unexpected event or an incident alters an investor's environmental situations. Such changes 

require a logical and comprehensive evaluation of the portfolio for striking a tradeoff [14]. In this 

case, various investigations have been conducted based on robust optimization (RO) to face 



uncertain conditions and parameters related to a portfolio. Ben-tal et al. [15]modeled a robust 

multi-objective portfolio selection problem using a linear programming approach. According to 

Moon and Yao [16] a robust absolute value of deviation from the mean model is determined. 

Kim and Fabozzi [17] discusses the use of robust factor investing in portfolio management. 

Using a robust approach, Goldfarb and Iyengar [18] introduced a conic programming model for 

single-period portfolio selection problems by taking advantage of the factor model in portfolio 

efficiency. Ling and Xu [19] concentrated on giving option contracts in a portfolio using an 

ellipsoidal uncertainty set with a joint margin. In their method, the risk is controlled by an option 

contract and existing strategies. Carvalho et al. [20] find the limiting portfolios of RO, 

formulated with different uncertainty matrices, for the highest and lowest uncertainty levels. 

Quarant et al. [21] used the Ben-Tal and the Nemirovski's approach to develop a conditional 

value-at-risk robust model that was a non-linear model. 

Bertsimas and Pachamanovab [22] provided a robust optimization for multi-period 

portfolio selection problems under a number of scenarios. In this case, subsequent portfolio 

efficiency is considered uncertain coefficients in the optimization problem and an investor's risk-

aversion level as the fluctuation level of total efficiency estimation error. Chen and Tan [23] 

developed a nominal mean variance model using the stochastic optimization method and robust 

optimization. They assumed that the assets’ efficiency was uncertain and used the Bertsimas and 

Sim approach for RO development. Ghahtarani and Najafi [24] developed a robust multi-

objective portfolio selection model for which they used goal programming. Using ellipsoidal 

uncertainty sets, Pinar and Paç [25] developed their modeling for the single-period and multi-

period mean-semi variance model. Ling et al. [26] investigates robust multi-period portfolio 

selection based on downside risk with asymmetrically distributed uncertainty. 

Considering mean vector components and covariance matrix in distance regions, Tütüncü 

and Koenig [27] solved the portfolio selection problem to achieve a robust answer with non-

linear programming. Unlike most researchers in this field, Bertsimas and Sim [28] examined 

optimization under an uncertain condition with models in which the parameters were not 

modeled by polygonal sets other than ellipsoidal sets. Afterward, Bertsimas and Thieley [29] 

provided a model where polygonal uncertainty sets are used instead of ellipsoidal sets. Dimmock 

et al. [30]  provided a different work in uncertainty modeling and created a problem in robust 

portfolio selection, where certainty explained the probability of asset efficiency distribution. Ji 

and Lejeune [31] study a class of distributionally robust optimization model with Sharpe, 

Sortino–Satchel, and Omega ratios. Sharma et al. [32] consider a robust formulation of their 

respective models under discrete distribution of returns since the true distribution of returns is 

unknown. In addition, they evaluated the relationships between risk, robustification, and 

portfolio efficiency. They concluded that as robustness increases, portfolio risk and efficiency 

declines, diversifying the portfolio. Peykani et al. presented a robust bi-objective model for 

portfolio selection, which is capable to be used under uncertainty of financial data and also a 

NSGA-II meta-heuristic algorithm to solve the suggested model of research due to the 

complexity of the proposed model [33]. Georgantas et al. [34] conducted a comprehensive 



empirical evaluation of various robust models performance for popular risk criteria in robust 

portfolio optimization. They also provided a broad comparative analysis of their performance 

using the US market, where more efficiency was observed in this type of model than nominal 

models. Ghahtarani et al. [35] provided a comprehensive review of recent advances in robust 

portfolio selection problems and their extensions, from both operational research and financial 

perspectives. Incorporating future returns scenarios in the investment decision process and 

developing a conventional minimax regret criterion formulation, in multi-objective programming 

problems, Mohammadi et al. [36] verify the validity of the proposed approach through an 

empirical testing application on the top 75 companies of Tehran Stock Exchange Market. 

Peykani et al. [37] presented six robust data envelopment analysis (RDEA) models based on the 

most widely cited and popular classic data envelopment analysis models in the first phase and 

two robust portfolio optimization models including robust mean-semi variance-liquidity and 

robust mean-absolute deviation-liquidity in the second phase. Finally, Xidonas et al. [38] 

provides a categorized bibliographic review which has a broad scope, yet is limited in technical 

details. 

Having utilize the Fuzzy Delphi method in the first stage for crucial factors identification, 

Thakur et al. [39] hierarchically arranged the stocks by main factors and historical data based on 

ET. Finally, Ant Colony Simulation for portfolio optimization was used. Skoruchi and 

Mohammadi [40] examined the high reaction of the Iranian stock market to the dollar value 

perturbation in the diverse scenarios because of the vagueness of a unified opinion of the amount 

of that rate among experts and obtained its rate utilizing ET. As seen, the robust model's 

uncertainty parameters are given without acceptable justification and no admissible mechanism 

is used to ascertain range. To the best of our knowledge, it is the first time that ET is used to 

determine this interval according to the available evidence. 

The rest of the paper is organized as follows: after a general investigation of the research 

subject, the fundamental aspects of investment choices based on financial ratios will be analyzed. 

In section three, ET will be further introduced to receive experts' view under uncertain situations. 

In section four, we will review the Symbiotic Organisms Search algorithm to answer the problem 

numerically. Section five will explore how to conduct a portfolio utilizing actual datasets 

extracted from Tehran capital market. In section six, the obtained results will be provided as well 

as suggestions for further studies. Fig. 1 illustrates the conceptual flow chart. 

(Insert Fig.1 almost here) 

2. Fundamental analysis of investment alternatives based on DEA 

   Fundamental analysis is the process of evaluating a public firm for its investment 

worthiness by looking at its business at the basic or fundamental financial level, see for example, 

Thomsett[41]. Moreover, financial ratios are created with the use of numerical values taken from 

financial statements to gain meaningful information about a company. To begin with, liquidity 

ratios attempt to measure a company's ability to pay off its short-term debt obligations. This is 

https://www.sciencedirect.com/science/article/pii/S1319157816300465#f0005


done by comparing a company's most liquid assets (or those that can be easily converted to cash) 

and its short-term liabilities. Profitability indicator ratios profitability Indicator Ratios much like 

the operational performance ratios, give users a good understanding of how well the company 

utilized its resources in generating profit and shareholder value. Debt ratios are the third series of 

ratios. A general idea of the company's overall debt load and its mix of equity and debt are given 

to users by these ratios. Debt ratios can be utilized to define the total level of financial risk an 

institute. As a result, the greater quantity of debt held by a company the greater risk of 

bankruptcy. 

   Operating performance ratios basically, determine how efficiently and effectively a 

firm is using its assets to generate sales and boost shareholder value. Generally, the better these 

ratios are, the better it is for shareholders. Cash flow indicator ratios indicators focus on the cash 

being generated in terms of how much is being generated and the safety net that it provides to the 

company. These ratios can give users another look at the financial health and performance of a 

company. Investment Valuation Ratios can be used by investors to estimate the attractiveness of 

a potential or existing investment and get an idea of its valuation. 

3. Analysis of the effective factors based on Evidence Theory (Dempster–Shafer 

theory) 

   In the late 1960s, Dempster provided a new viewpoint regarding probability size in his 

famous paper Dempster [42].  He acknowledged that the classic structure of probability theory 

does not properly provide the possibility of demonstrating the lack of knowledge. However, in 

real-world conditions, decision-makers face a type of lack of knowledge in expressing their own 

subjective probability. In addition, objective probabilities can be aggregated, while empirical 

investigations do not demonstrate such a property regarding subjective probabilities, and it seems 

that these probabilities have sequential size. Despite providing a new concept, related researchers 

neglected this theory for a long time due to its weakness in explaining and establishing its own 

viewpoints in the mathematics form. Nevertheless, it was provided and redefined in the late 

1970s in the form of a proper framework by a famous mathematician named Shafer [43]. One of 

the important instruments in defining uncertainty is ET, offering the opportunity for a decision-

maker (DM) to realize new probabilities. This theory endures with the consultation with regard 

to existing beliefs of a situation or a system of situations. Beliefs of individuals are dissimilar 

when dealing with a single type of occurrence, though they can be inspected and combined by a 

particular method. Indeed, a number of beliefs caused by observation and perception of evidence 

has shaped Dempster–Shafer theory (DST). 

   In the following, DST for multi-criteria decision-making analysis with respect to 

uncertainty conditions will be briefly examine by Mohammadi and Makui [44]. Assume 

 1 2, , , mX x x x  is a set of options,  1 2  , , , nW w w w  a set of weights,  1 2, , , nA a a a  a 

set of benchmarks, so that 0 1jw  , 1  j n  , 
1

1
n

j
j

w


 . Let assume P is the evaluation rank of 

1 2, , , pH H H  for multi-criteria evaluation of options. Assume  ,q j ix  indicates a belief degree 

of the fact that ja  criterion has been assessed for ix  with qH  degree,  ,0 1q j ix  and   



 ,
1

1
p

q j i
q

x


 .  Assume   j iS a x indicates criterion evaluation value ja  for ix  option, 

presented as follows. 

     ,,j i q q j iS a x H x  
(

1) 

   Where qH  is an evaluation degree, so that 1 q p  , 1 i m  , 1 j n  . Criteria 

evaluation for options is defined in the form of a decision matrix D, demonstrated as follows. 

   j i
n m

D S a x


  (

2) 

   Where 1 i m  and 1 j n  . Thereby, according to decision matrix D, we can collect 

criteria evaluation value for ix  option as follows Mohammadi and Makui [44]. 

   Initially, we convert belief degree  ,q j ix  about assessment degree qH  regarding ja  

criterion of ix  option to basic probable mass  ,  q j im x . Such that:  

   , ,q j i j q j im x w x  (

3) 

Where, 1 q p  , 1 i m  ,1 j n  .  

   Now, assume that  ,H j im x  indicates the probable residual mass of ja  criteria 

regarding the assessment of ix  option, which is defined as follows: 

     , , ,H j i H j i H j im x m x m x   (

4) 

 , 1H j i jm x w   (

5) 

   , ,
1

1
p

H j i j q j i
q

m x w x


 
   

 
  

(

6) 

   Where, 1 q p  , 1 i m  , and 1 j n  . Probable residual mass that is not devoted to each 

assessment degree consists of two parts: The section pertaining to the violation in the assessment 

process and the part pertinent to relative weights of criteria [45]. 

 ,    H j im x  is the first part of probable residual mass, which is not yet devoted to assessment 

degrees. According to the fact that ja  criterion plays a part in the assessment process according 

to its weight, that is jw ,  ,H j im x  is a descending function of jw  [46].  ,H j im x  will be equal to 

1, if the weight of ja  is equal to zero or 0jw  .  ,H j im x  will be zero if ja  dominates the 

assessment or 1jw  . In other words,  ,H j im x represents the degree to which other criteria 

could contribution in the assessment process. 



The second part of the probable Hesitancy mass is  ,  H j im x , not yet devoted to an 

assessment degree, and due to violation in the assessment procedure of   j iS a x will result.

 ,H j im x   will be zero if   j iS a x  is complete or  ,
1

1
p

q j i
q

x


 , otherwise  ,H j im x  would be 

a positive value.  ,   H j im x will be proportional to jw , whose positive quantities will lead to the 

next constraint’s violation.  

 I lG , a subset of l number of first criteria, will be proposed as follows: 

   1 2, , , lI lG a a a   (

7) 

   Assume that    , iq I lm x  is a probable mass that represents the support degree of a 

belief that all touchstone existing in  I lG  subset emphasize that ix  option with qH  degree is 

evaluated.    , iH I lm x presents the probable hesitancy mass that is not devoted to assessment 

degrees after all criteria in  I lG   subset are assessed.    , iq I lm x  and    , iH I lm x  can be obtained 

combining basic probable mass of  ,q j im x  and  ,H j im x  for all 1, 2, ,q p  and 1, 2, ,j l  . 

   According to the definitions and subjects mentioned above, evidence-based reasoning 

recursive algorithm can be summarized as follows: 

                         , 1 , 1 , 1, 1 1 , , ,: ,q i i q l i i q l i i H l iq I l I l q I l H I l q I lH m x K m x m x m x m x m x m x   
   
 

 
(8) 

           , 1 , 1 , 1 ,i i iH I l H I l H I lm x m x m x      (9) 

 

             , 1, 1 1 ,: ,i i H l iH I l I l H I lH m x K m x m x 
 
 

 
(10) 

                         , 1 , 1 , 1, 1 1 , , ,: ,i i H l i i H l i i H l iH I l I l H I l H I l H I lH m x K m x m x m x m x m x m x   
   
 

 
(11) 

       

1

, 11 ,
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1
p p

i f l iI l u I l
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f u
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   (12) 

 

 1    I lK    is a normalization factor through which        , 1 , 1
1

1
p

i iq I l H I l
q

m x m x 


  . Note 

that        ,1, 1   1, 2, ,i q iq Im x m x q p    and      ,1, 1  i H iH Im x m x . Besides, it should be 

considered that the criteria existing in G are numbered randomly, that is the results of

   ,  iq I lm x ,  1, 2, ,q p  , and    , iH I lm x  are independent of the sum order of criteria [47]. 



   In the evidence-based reasoning approach, after that all n criteria are aggregated, the 

combined belief degree q  is directly calculated from the below equation: 

   
   

   

,

,

: ,
1

iq I n

q q i
iH I n

m x
H x

m x
 


 (13) 

   
   

   

,

,

: ,
1

iH I n

H i
iH I n

m x
H x

m x
 


 (14) 

H is a belief degree that is not devoted to any assessment degree after all n criteria are 

appraised. Indeed, this parameter defines the violation degree existing in the assessment 

procedure. Therefore, we will have:     
1

1
p

q i H i
q

x x 


  . 

Ultimately, utility functions that actually indicate the relative importance of possible 

exchange rate values based on an aggregation of experts' opinions are indicated in the form of

[ , ]min maxu u , and are indicated by  nu H and calculated as follows: 

       
P 1

max q q 1 H 1
q 1

u x B .u H B B .u H




    (15) 

       
P

min N H N q q
q 2

u x B B .u H B u H


     (16) 

 
   max min

Avg

u y u y
u y

2


  (17) 

 

Where, 1 q p  and NH  have the minimum preference degree and 1H  has the maximum 

preference degree. Besides, NB  is allocated the maximum belief degree, and 1B  is allocated the 

minimum belief degree. Notice that if the main assessment of    j iS a x is complete, we will 

have H B 0  [48]. 

 

4. Description of portfolio optimization approach 

   Portfolio optimization is the process of selecting the best portfolio (asset distribution) 

among the set of all portfolios being considered, according to the specific objective. The risk 

level and yield of invested assets are two essential parameters in deciding on an investment. 

Most investors want maximize their efficiency at a specific level of risk or minimize risk for a 

certain efficiency level. The individuals invest according to their expected utility and in the hope 

of more gaining in the future, ignore today's consumption. The utility function of each investor is 

ascertained according to that individual's preferences [49]. Proposing the mean-variance model, 

Markowitz indicated that selecting a portfolio makes it possible to reduce investment risk at a 

certain efficiency level. This possibility is attributed to a lack of thorough correlation between 

the efficiencies of different stocks. Optimal portfolio selection is often carried out by exchange 

between risk and yield such that the more investors' expected efficiency, the more risk of a 

portfolio. Accordingly, identifying the efficient frontier pertinent to the portfolio enables 



investors to obtain their maximum expected efficiency according to the utility function and risk-

aversion and risk-taking. Our main model based on the primary framework submitted by 

Markowitz is developed. On the other hand, as presented by Markowitz, the classical portfolio 

selection problem completely disregards the uncertainty of the expected asset’s returns and the 

covariance matrix of assets’ returns. It is assumed that these parameters are capable of 

representing the inherent uncertainty associated with the investment returns. Actually, as these 

parameters are, most of the times, calculated from past data, they are themselves subject to 

uncertainty. Not acknowledging the uncertainty in the models’ parameters substantially degrades 

the performance of the optimal solution calculated using these Models. The robust formulation of 

an optimization problem considers the nominal values of the uncertain parameters and the 

deviations from these nominal values. 
4.1. Conventional portfolio model  

   In 1952, proposing the portfolio optimization problem-solving model (mean-variance 

theory) for the first time, Markowitz [14] expressed the issue as a Quadratic Programming to 

minimize portfolio risk when the expected efficiency is a constant value. The main assumption 

of this model is that all investors are risk-avert. This problem consisted of two applied 

constraints, according to which the sum of stock weights must be equal to one, and also the 

weight of each stock in the selected portfolio must be a non-negative number. The standard form 

of the mean-variance model is as follows: 

  

 

1

   
n

p i i
i

Max x 


  (18) 

Subject to:  

2

1 1

n n

ij i j p
i j

x x 
 

   (19) 

1

1,
n

i
i

x


  
(

20) 

 0,      1, ,ix i n    
(

21) 

 0.      1, ,jx j n    (

22) 

 

   In the Markowitz model, the primary point is that the general risk criterion is variance 

or standard deviation. This criterion that is generally distributed for stock and exchanged in an 

efficient market is acceptable. Now, suppose these two features do not exist for a store, for any 

reason, including ambiguities or severe and unpredictable fluctuations in the influential factors to 

the stock market. In that case, the variance will not be a suitable index for stock risk. Therefore, 

another solution must be found. 

4.2. Robust optimization  

   Over the past few years, due to the ever-increasing attention paid to taking account of 

uncertainty in decision-making processes, many investigations have been conducted in this field, 

and various approaches have been employed. One of the most efficient methods used in this field 



is RO [50]. RO is one of the approaches employed to deal with uncertainty in optimization 

problems and aims to model optimization problems with uncertain data to make the obtained 

results suitable for all (or most) of the imaginable cases of uncertain parameters, Cornuejols and  

Tütüncü [51]. A robust answer consists of robustness in terms of optimality and robustness in 

terms of feasibility. Robustness in terms of feasibility means that the desired response for all (or 

most) of the imaginable cases remains feasible for uncertain parameters. Robustness in terms of 

optimality implies that the preferred solution for all (or most) potential cases for uncertain 

parameters remains close to optimal value or has the minimum standard deviation from the 

optimal value, Pishvaee et al.[52]. 

   Soyster [53] was the first one investigating the linear optimization problem with 

uncertain datasets. He generated extremely cautious answers on the basis of the assumption that 

uncertain datasets are within a certain range. Afterward, Mulvey et al. [54] and Yu and Li [55] 

proposed scenario-based robust models. El Ghaoui et al. [56] proposed a robust counterpart 

programming for semidefinite linear and quadratic problems based on the ellipsoidal uncertainty 

set assumption. Ben-tal and Nemirovsk [57] i indicated that if datasets of a linear optimization 

problem with uncertainty belong to a semi-ellipsoidal set (conic, quadratic, semidefinite), its 

robust counterpart or an approximation of it can be solved in polynomial time. Ben-tal and 

Nemirovski [58] investigated linear programming problems with inaccurate datasets and 

enumerated the features of an uncertain convex set for the robust counterpart to be exactly 

equivalent to the initial problem. Ben-tal and Nemirovski [57, 58] indicated that the robust 

counterpart is conic and quadratic when the uncertainty set is ellipsoidal. Ben-tal and Nemirovski 

[59] investigated the impact of uncertainty on optimization problems. Considering the semi-

ellipsoidal set as the uncertainty set, they proposed a robust counterpart for linear optimization 

and a relationship for the probability of the problem constraints violation due to uncertainty. 

   Bertsimas and Sim [60] investigated optimization problems for discrete problems and 

proposed a robust counterpart model that is computable and capable of being adjusted in terms of 

robustness, and examined the probability of constraints' violation. Bertsimas and Sim [28]  

proposed a robust linear counterpart for linear programming problems with an uncertain dataset, 

which can be adjusted in terms of cautiousness and balanced between acceptability and 

optimality. They also developed the proposed model for discrete programming problems and 

examined the probability of constraints' violation. Now, given that the robustification approach 

employed in this investigation is of Bertsimas and Sim type, this model will be explained in the 

following. In order to examine this method, the general form of the linear optimization problem 

can be considered as follows: 

 

  i i
i

Max c x  (23) 

 

,   ij i j
i

a x b j   
(24) 

0,     ix i   (25) 

 

    ix is the decision variable, j is the number of constraints. ic and jb  have certain 

values, while ija  is uncertain. Uncertainty of ija  is defined as follows: 



ˆ
ij ij ij ija a a   (26) 

    ija is the nominal value of data, îja is a positive constant uncertainty value that indicates 

disruption value. ˆ
ij ija is a random value within  1,1  range and is pertinent to uncertainty, which 

is indicated as a set. 

   Therefore, using multi-dimensional uncertainty set and duality theorem, Bertsimas and 

Sim formulated a robust counterpart of linear optimization problems, which can be adjusted in 

terms of cautiousness and balanced between feasibility and optimality. This formulation can be 

employed for discrete optimization problems. Robust counterpart formulation of equations (23) 

to (25) using this approach are as follows, Bertsimas and  Sim [28]: 

 

  i i
i

Max c x  (27) 

Subjected to: 

 

Γ ,      

j

ij i j j ij j
i i J

a x z p b j


     (28) 

 ˆ ,      ,j ij ij i jz p a y j i J     (29) 

,      i i iy x y i     (30) 

0,       ,ij jp j i J    (31) 

0,      iy i   (32) 

0,      jz j   (33) 

   The cautiousness of each constraint can be determined by Γ j , whose maximum value is 

equal to the number of 0i   value or jJ .   

   After pointing out the necessary subjects, we will address our model and explain it 

thoroughly in the following section. 

5. Case study 

In order to analyze any real issue with a mathematical modelling tool, a combination of 

assumptions with regard to the behavior of system must be considered. In this regard, the return 

fluctuates within a symmetric range, and all investors have an identical single-period time 

horizon. Moreover, personal incomes are tax-free, that is investors do not distinction between 

dividend profit and capital profit, and trade in the market is costless. Furthermore, this problem is 

not affected by inflation. Moreover, the stock price cannot be solely impacted by any capital 

according to sell and buy decisions. Ultimately, investors prefer a higher efficiency level at a 

certain level of risk, and for a certain level of efficiency seek a minimum level of risk. 

 



 

5-1 symbols of the problem  

Parameters   

iR  Expected efficiency 

i  Measurement unit of systematic risk 

mR  Index efficiency rate  

ie  Random error 

ir  The expected value of asset efficiency 

îa  Maximum possible deviations 

Γ Robustness cost 

n The number of stocks 

t A unique upper bound for all stocks 

Variables:   

ix  The weight value of the stock i if selected 

 

   Thereby, we have:  

 

1

n

p i i
i

MaxR r x


    
 

(34) 

Subjected to:  

1

1
n

i
i

x


  (35) 

0 Uix   (36) 

    ix is the variable of i decision, and ir  is uncertain. Additionally, constraint (1) 

ascertains that the whole budget must be devoted to different alternatives, it is not allowed to use 

additional budget. Constraint (2) or sign constraint expresses that using short sell is impossible.  

   Furthermore, in a linear programming problem in the form mentioned above, the 

uniform distribution assumption for efficiency can be considered as follows, according to the 

stated assumption and ignoring the correlation between stocks: 

  , ˆ~ ˆ
i i i i ir U r a r a   (37) 

   Ultimately, robust counterpart formulation of equations (34) to (36) using Bertsimas 

and Sim approach are as follows: 



Max U (38) 

Subjected to:  

1 1

0ˆ
n n

i i i
i i

U r x z P
 

                                          (39) 

                  1, ,ˆ
i i iz P a y i n      (40) 

                1, ,   i i iy x y i n       (41) 

1

1                      1, ,
n

i
i

x i n


     (42) 

tix                         1, ,i n    (43) 

,   ,   0            1, ,i i ix y P i n     (44) 

 

In the proposed formulation, as mentioned earlier, it is assumed that the uncertain 

coefficient ˆ  ia is a uniform random value within the range of     ,ˆ ˆ
i i i ir a r a  . In this case, if the 

number of coefficients with uncertainty, that is  Γi , changes in the raw  i th in which 1  i n  , the 

answer will still be feasible, and if more than number of coefficients change, the constraint will 

probably be rejected. In addition, the parameter Γi  might not be integer and can have a value 

within range of   0,  Γi   . 

6. Computational results  

In this investigation, the collected data belong to 10 firms active in Tehran capital market 

between 2019, April to 2021, July. The following constraint is applied for the selection of stock 

sets: A) In the study period, they do not face trading halt for more than half of the year B) Their 

financial year ends on 20 March C) They have the lowest risk compared to the rest, and their 

monthly returns are not less than 10%. D) They have clear and complete financial statements and 

information. 

As discussed earlier, the correlation coefficient between dollar rate and each stock's 

prices plays a pivotal role in the success or failure of the investment, particularly in our country's 

stock market, and therefore, has captured more interest nowadays than before. Analyzing the 

correlation coefficient between stock price and stock exchange index, researchers employed the 

Beta coefficient in order to appraise the rank of stocks. In the present study, due to the impact of 

dollar rate on the stock market index and the rest of Iran financial markets, the dollar exchange 

rate is employed as a pivotal factor. As a result, in this section, the quantity of the dollar 

exchange rate which is an uncertain parameter will be computed by using DST. Afterward, based 

on the robust Bertsimas and Sim model, the result of solving the model and optimal values of the 

stock portfolio for different values of Γ will be presented. Accordingly, experts ascertain the 

belief degree about the dollar exchange rate, depicted in Table 1. 

 

(Insert Table 1 almost here) 

 



   It is seen that, the rate of dollar exchange which includes (Scenario A, Scenario B, 

Scenario C, Scenario D) with values (150000, 200000, 250000, 300000) is predicted using DTS 

in the [19.607, 25.500] range. Therefore, its percentage of deviation from the mean is in the [-

0.130, 0.130] range. Consequently, considering the value of β between stock returns and dollar 

returns and utilizing this information, the uncertain amount of stock returns is computed 

intermittently to use the Bertsimas and Sim robust optimization approach to model the stock 

portfolio represented in Table 2. 

 

 (Insert Table 2 almost here) 

   Finally, due to the linearity of the achieved model, it is solved by GAMS 24.1.3 on a 

personal computer based on 2.8 GHz at 0.016 seconds with the CPLEX solver. The results are 

shown in Table 3.  

(Insert Table 3 almost here) 

Solving the model with the software Gams, we formed an optimal stock portfolio. It is 

worth mentioning that by increasing the value of Γ due to adding the number of parameters with 

uncertainty, the return of the optimal portfolio of stocks decreases. If Γ=0, the model is 

completely certain, and if Γ=10, the relevant parameters can indeed have the maximum 

fluctuation from central limitation. In other words, when the model is deterministic, due to the 

higher average returns relative to the other stocks, stock 1, stock 4, stock 6, and stock 8 are 

selected with the optimal portfolio return of 0.194. Accordingly, the return of the optimal 

portfolio remarkably declines to 0.104 when uncertainty embraces all of the parameters. 

The logic of this model is that the probability that all uncertain coefficients have their worst 

value in nature is less, and usually, some of them face variation. The results are represented in 

Figure 2. 

 (Insert Fig.2 almost here) 

7. Conclusions 
 

An inherent feature in human mental judgments that should be given special attention to 

in decisions is Uncertainty.  In this study, a novel approach for the portfolio construction 

problem is proposed in order to deal with data uncertainty, increasing conservatism levels of the 

investment process, decreasing computational complexity, and assessing comprehensive of 

stocks. Accordingly, the present study presents a stock portfolio optimization model which is 

considering the dollar exchange rate, and seeks to consider information deficiencies to improve 

performance using the logic based on DTS and RO. It is also formulated in a given atmosphere. 

Finally, in this paper, in order to demonstrate the applicability of the submitted model and 

exhibit the efficacy and effectiveness of the presented method, a real-life case study from the 

Tehran stock exchange is implemented. Though this model is implemented here for Iran Stock 

Market, it can be applied for constructing portfolios in any Stock Exchanges around the world 

but selection of critical factors can vary in different stock exchanges. 

For future studies, to enhance the robustness of the model researchers can think of hybridizing 

DS evidence theory with other uncertainty handling tools like soft sets and rough sets. Moreover, 



data-driven robust optimization (DDRO) approach can be employed for proposing data-driven 

robust portfolio optimization (DDRPO) models (see [61], [62],[63] ,[64]). 
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Table 1.  

DM 
 

Weight 
 Scenario A Scenario  B Scenario C Scenario D  

HB  

  0.206 0.086 0.107 0.206  0.392 

A1  0.100  0.000 0.050 0.300 0.600  0.050 

A2   0.100   0.500 0.250 0.100 0.000   0.150 

A3  0.450  0.000 0.000 0.100 0.300  0.600 

A4  0.350  0.400 0.150 0.050 0.000  0.400 

 

Table 2.  

  Stock1 Stock2 Stock3 Stock4 Stock5 Stock6 Stock7 Stock8 Stock9 Stock10 

Upper return  0.286 0.241 0.223 0.262 0.189 0.255 0.170 0.224 0.164 0.173 
Lower return  0.112 0.016 0.065 0.121 0.063 0.138 0.063 0.120 0.062 0.091 
Average return  0.199 0.129 0.144 0.192 0.126 0.197 0.117 0.172 0.113 0.132 
Tolerance  0.087 0.082 0.079 0.070 0.062 0.058 0.053 0.051 0.050 0.041 

 

 

Table3.  

Γ 
 

Stock 1 Stock 2 Stock 3 Stock 4 Stock 5 Stock 6 Stock 7 Stock 8 Stock 9 Stock 10  Portfolio 

returns 

0  0.300 0.000 0.000 0.300 0.000 0.300 0.000 0.100 0.000 0.000  0.194 

1  0.200 0.000 0.000 0.247 0.000 0.300 0.000 0.253 0.000 0.000  0.173 

2  0.187 0.000 0.000 0.231 0.000 0.281 0.000 0.300 0.000 0.000  0.156 

3  0.154 0.000 0.169 0.190 0.000 0.230 0.000 0.257 0.000 0.000  0.141 

4  0.086 0.090 0.094 0.106 0.000 0.300 0.000 0.144 0.000 0.000  0.131 

5  0.012 0.013 0.013 0.300 0.017 0.300 0.020 0.300 0.000 0.025  0.126 

6  0.010 0.011 0.011 0.300 0.014 0.300 0.016 0.300 0.017 0.021  0.116 

7  0.054 0.057 0.060 0.067 0.075 0.300 0.088 0.091 0.093 0.114  0.109 

8  0.000 0.000 0.000 0.100 0.000 0.300 0.000 0.300 0.000 0.300  0.104 

9  0.000 0.000 0.000 0.100 0.000 0.300 0.000 0.300 0.000 0.300  0.104 

10  0.000 0.000 0.000 0.100 0.000 0.300 0.000 0.300 0.000 0.300  0.104 
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