Scientia Iranica D (2022) 29(5), 2375-2393

PZIN
N4

SCIENTIA
IRANICA

Transactions D: Computer Science & Engineering and FElectrical Engineering

Sharif University of Technology

Scientia Iranica

http://scientiairanica.sharif.edu

A novel discrete grey wolf optimizer for scientific

workflow scheduling in heterogeneous cloud computing

platforms

M.S. Hosseini Shirvani*

Department of Computer Engineering, Sart Branch, Islamic Azad University, Sari, Iran.

Received 1 December 2020; received in revised form 27 December 2021; accepted 23 May 2022

KEYWORDS

Cloud computing;
Scientific workflow
scheduling;
Meta-heuristic
algorithm;
Discrete grey wolf
optimization;
Walking around
technique.

1. Introduction

Abstract. There are several scientific workflow applications which need a vast amount
of processing. Therefore, cloud offerings are made to give them a sense of economy.
Workflow scheduling has drastic impact on gaining the desired Quality of Service (QoS).
The main objective of workflow scheduling is to minimize the makespan. This scheduling is
formulated into a discrete optimization problem, which is NP-hard. This paper presents a
novel Discrete Grey Wolf Optimizer (D-GWO) for scientific workflow scheduling problems
in heterogeneous cloud computing platforms with the aim of minimizing makespan.
Although traditional Grey Wolf Optimizer (GWO) has great achievements with continuous
optimization problems, a clear gap exists in utilizing GWO for combinatorial discrete
optimization problems given that the continuous changes in search space during the course
of discrete optimization lead to inefficient or meaningless solutions. To this end, the
proposed algorithm is customized to optimize the discrete workflow scheduling problem
by leveraging some new binary operators and Walking Around approaches to balancing
between exploration and exploitation in a discrete search space. Scientific unstructured
workflows were investigated in different circumstances to prove the effectiveness of the
proposed D-GWO. The simulation results witnessed the superiority of the proposed D-
GWO to other state-of-the-arts in terms of scheduling assessment metrics.

(© 2022 Sharif University of Technology. All rights reserved.

used to model workflow executions. Each workflow is
modeled to a Directed Acyclic Graph (DAG) in which

Cloud computing presents itself as utility computing
to its users via internet protocols. It delivers unlimited
heterogeneous virtual processors to solve complicated
jobs [1-3]. This kind of parallel heterogeneous platform
is well-suited for the execution of scientific workflows
which academics are struggling with. Graph theory is

*, E-mail addresses: mirsaetd_hosseini@iau.ac.ir and

marsaetd_hosseini@yahoo.com

doi: 10.24200/sc1.2022.57262.5144

the nodes are used for tasks and the arcs are used
for data dependencies between tasks [4]. Since Virtual
Machines (VMs) have different configurations, utilizing
different VMs may lead to variable performance. Thus,
exploiting different workflow scheduling approaches
leads to different outcomes. The workflow scheduling,
which determines what task should be assigned to what
VM for execution, is NP-hard [5,6]. It is impossible to
find optimal scheduling in a bounded time frame. To
address the issue, many heuristic and meta-heuristic
algorithms have been published. In this domain, the

2376 M.S. Hosseini Shirvani/Scientia Iranica, Transactions D: Computer Science & ... 29 (2022) 2375-2393

most important Quality of Service (QoS) parameter is
makespan or total execution time [7,8]. Therefore, the
main concentration of the proposed scheduling models
is on makespan improvement [9]. In the scheduling
context, one of the earliest algorithms is known as
the list schedulers [10]. FEach list scheduler firstly
produces a list including ordered tasks associated with
a given workflow. This list must guarantee that a
topological sort of tasks does not violate the precedence
constraints. It secondly assigns the high priority
unscheduled task to the available VM that delivers the
Earliest Finish Time (EFT). The Heterogeneous Ear-
liest Finish Time (HEFT) algorithm is a list scheduler
that exploits different ranking procedures in its first
step [10]. Some extensions of the HEFT have heen
offered, including the Predictable Earliest Finish Time
(PEFT) [11], Robust Heterogeneous Earliest Finish
Time (RHEFT) [12], and Constrained Earliest Finish
Time (CEFT) [13]. Moreover, variety heuristics have
been proposed to enhance the results of list sched-
ulers. The heuristics are clustering, task duplication,
and data replication techniques [14-16]. In the task
duplication method, few candidate tasks are duplicated
to be run on some processors to increase parallelism.
In the task clustering technique, some tasks are put
in a cluster to be executed on the same VM [14].
By utilizing this, the data transfer time is omitted,
which can potentially decrease makespan. At last, the
data replication method uses data pipeline to reduce
idle time of the VMs [16]. In larger problems, the
majority of the search space remains unexplored by
utilizing either heuristics or list schedulers. Therefore,
miscellaneous meta-heuristics have been proposed to
improve the scheduling quality, which are mainly based
on the Genetic Algorithm (GA) [5,8,17,18], Particle
Swarm Optimization (PSO) [1,19-21], Cuckoo Search
Optimization (CSO) [22,23], and Simulated Annealing
(SA) [24-28]. One of the most successful meta-heuristic
algorithms, which solves continuous optimization prob-
lems, is Grey Wolf Optimization (GWO) [29,30]. The
traditional GWO cannot efficiently solve discrete prob-
lems [31]. The reason is that continuous changes and
modifications in the search space during the course of
discrete optimization lead to inefficient or meaningless
solutions. The majority of meta-heuristics have a
universal trend in their exploration phase wherein
they neglect exploitation of the current solution or
balance between them. In this paper, a novel discrete
GWO is presented to solve the combinatorial workflow
scheduling problem in cloud environment with a hetero-
geneous platform. To this end, new binary operators
and Walking Around techniques with a number of
procedures are proposed to make a balance between
exploration and exploitation of the search space.

The main contributions of this paper are as
follows:

1. To present a novel Discrete Grey Wolf Optimization
(D-GWO) scheduler for workflow execution, which
makes a good balance between exploration and
exploitation in the discrete search space;

2. To present new binary vectors and operators for
both exploration (encircling the prey) and exploita-
tion (Walking Around solution) for hunting and the
attack process.

The rest of the paper is organized as follows. Section 2
presents related works. A review of the original GWO
concepts is brought in Section 3. Section 4 provides the
proposed models and problem formulation. Section 5
brings an illustrative example. Section 6 is dedi-
cated to the proposed novel D-GWO for the workflow
scheduling problem. Performance evaluation of the
proposed model is given in Section 7. Section 8 includes
conclusion and future direction.

2. Related works

Review of the scheduling algorithms helps categorize
the proposed models in three classes: list-based sched-
ulers, heuristics, and meta-heuristics. A typical list
scheduler algorithm works in two steps. Firstly, it pro-
vides a valid ordered tasks list. Secondly, it assigns the
high priority task to a VM that returns the EFT. The
famous HEFT utilizes three ranking procedures each of
which provides its own ordered list [10]. Another list
scheduler is PEFT [11]. The PEFT provides a ranking
algorithm according to the prediction cost table. The
RHEFT [12] and Distributed HEFT (DHEFT) [13]
have been proposed which take different QoS crite-
ria [32]. The cost-effective fault tolerant workflow
scheduling was suggested for the execution of real-time
applications to cloud datacenter, which encounters
transient and permanent failures [33]. Variety heuris-
tics are added to improve the performance of workflow
schedulers. Duplication and clustering methods are
two important approaches in the area [34-36]. Task
duplication copies critical tasks of a given workflow
on some VMs to increase the degree of parallelism.
On the other hand, the clustering method groups
some highly dependent tasks in a cluster and then, all
tasks in the cluster are assigned to the same VM. It
potentially reduces the overall makespan by shortening
data transfer time. However, both list schedulers and
heuristic auxiliary methods cannot take over large-scale
problems. They are well-suited to small-scale problems
or limited time windows for quick decision. Therefore,
several meta-heuristics have been extended to solve
workflow scheduling problems. A shuffle-based GA was
customized to solve workflow scheduling in distributed
systems [8]. Another algorithm applied multi-queue
besides GA to produce semi-random initialization [37].
A scheduling algorithm incorporating PSO was pro-

M.S. Hosseini Shirvani/Scientia Iranica, Transactions D: Computer Science & ...

Table 1. The summary of the literature.

29 (2022) 2375-2393

Advantages

Shortcomings

Author(s)/Ref. Classification Approach
T 1
opeogit List-based scheduling ~ HEFT
et al. [10] algorithm
Arabnejad and List-based scheduling PEFT
Barbosa [11] algorithm
Guo and Xuo [33] List-based scheduling CEFT
algorithm
Darbh d
arbhia an Heuristic-based algo- Duplication
Agrawal [35] rithm
Palis et al. [36] Heuristic-based algo- Clustering
rithm
Hosseini Shirvani [8] Meta-heuristic-based =~ GA-based
algorithm
Sujana et al. [19] Meta-heuristic-based PSO-based

algorithm

It quickly ranks tasks and
provisions in a list that pre-
serves precedent constraints.

Similar to HEFT| it provides
a topological sorting list of
tasks based on cost table
prediction.

It efficiently
between cost and deadline in
the course of scheduling.

compromises

It increases parallelism by
duplicating the execution of
critical tasks on different

VMs.

It is a beneficial method
for communication-intensive
workflows to reduce data
transmission costs. It may
possibly reduce the total ex-

ecution time.

It efficiently explores the

search space globally.

It is a very fast approach.

In large-scale problems, it
ignores other promising pos-
sible solutions in the search
space.

It does not take VM avail-
ability in the course of
scheduling. In addition, it
neglects other possible solu-
tions.

It is a costly procedure,
which is solely applicable to
very faulty systems, because
it sometimes reschedules to
reach reliability.

It may be costly, because
it utilizes more resources
and may charge users more
money for residual VMs us-
age.

If the degree of heterogene-
ity is high, the system per-
formance degrades.

It does not utilize exploita-
tion technique, which can
potentially improve the final
results.

It suffers from early conver-
gence and usually gets stuck
in local optima.

posed, which suffered from early convergence [19]. The
literature review is summarized in Table 1.

The review reveals that the majority of proposed
models suffer from the lack of a balance between local
and global searches during the course of optimization.
In addition, improvement is still possible in exploring
discrete search spaces. The current paper is aimed to
fill the mentioned gaps.

3. Grey Wolf Optimizer (GWO)

The GWO mimics social hierarchy and predatory
treatment of grey wolves. In social hierarchy of grey
wolves, each wolf is categorized in one of the four
groups. The first, second, and third bests are alpha
(), beta (8), and delta (), respectively; the remaining
wolves are omega (w). In predating, the first three
groups of wolves, namely «, 3, and 6, are involved and
the predation is done in three main stages, which are

2377

encircling the prey, hunting, and attacking the prey.
The first two are done for exploration whereas the
third stage is for exploitation in the search space. For
encircling the prey, each individual X(¢) in the tth
round of the optimization course finds its distance to a
guessed prey X,(t). Then, it adjusts its path towards
the prey. The distance value and the adjustment of
direction are calculated via Eqs. (1) and (2):

—

D =|C-Xp(t)-X(1)], (1)

— — — =
X(t+1)=Xp(t)— A-D. (2)
To efficiently tune the optimization process in the
search space, two vectors A and 8 are used, which
are obtained by Eqs. (3) and (4). Recall, the first one
is randomly and linearly changed whereas the second
vector follows a completely random manner.

2378 M.S. Hosseini Shirvani/Scientia Iranica, Transactions D: Computer Science & ... 29 (2022) 2375-2393

A=27-1-7, (3)
¢ =om. (4)

As mentioned earlier, the elements of vector @ are
linearly declined from 2 to O during the course of
optimization process and r{ and 75 are two real random
vectors in the interval [0..1]. Then, each individual
wolf adjusts its trajectory towards the hunt based on
positions of wolves «, 3, and ¢ via Eq. (7).

— — = =
Xa:’01~Xa—X

— e —
Xﬂ:’cg-xﬁ—x

))

— — — /= — = = =

X =X.-4(D.), X=X3-4-(Ds),

— — —

X3 = X5 — Az (D(s) , (6)
X, + Xo + X5

. A

X(t—i—l):%. (7)

For attacking the prey (exploitation), the predatory
process is finished by the attacking stage. This stage
is performed when moving is ceased. The canonical
GWO is customized to optimize the discrete workflow
scheduling problem by leveraging new operators and
Walking Around procedures.

4. Models and problem statement
Several models are presented before problem definition.

4.1. System and application models

The cornerstone of a cloud system is a datacenter.
Fach datacenter provides a list of heterogeneous VMs,
VM = VM, VM, --- ,VM,. Each VM is determined
in terms of a variable Million Instructions Per Second
(MIPS). Figure 1 illustrates the proposed system model
for cloud environment.

The users request workflow execution, which is
received via the front end module of the cloud. Then,
the scheduler, embedded in the cloud broker, assigns
tasks to the available VMs to meet the user’s demand.
Workflow applications are modeled in DAGs. Each
DAG contains nodes and arcs. A workflow W contains
n tasks, W = {t;,t2,--- ,t,}, and set of arcs, A =
{(ti,t;)|ti,t; € W}, Every node is a task and an
arc is used for data dependency between each pair of
dependent tasks. A DAG has two specific nodes: entry
and exit. The entry has no father while the ezit has
no child. Each task is assigned the number of Million
Instructions (MIs). The processing time for execution
of task t; on VM; is calculated by Eq. (8):

Usery, Users,, Usery

Cloud Broker / Scheduler

Figure 1. The proposed system model.
ET(t;,VM;)

(MIS) assigned—to—a—task—t;

- . C®)
(MIPS) assigned-to—a—processor—VM;

The average amount of time needed for the execution
of ¢; on the platform with ¢ available VMs is calculated
by Eq. (9):

ET(t;, VM]-)
BT = | = |. (9)

q

The communication cost between each pair of depen-
dent tasks in arc e(#;,t;) is calculated by Eq. (10):
- DV

Cltity) =L+ Lo (10)
The term L is relevant to the delay of the intrinsic
link, which is negligible, and the term DV represents
the data volume transferred in the network bandwidth
(BW). If schedulers assign two dependent tasks to the
same VM, the communication cost is omitted. Figure 2
depicts a DAG in which ¢; and #1g are entry and ewxit
nodes, respectively.

Table 2 presents the execution time for each task
once on each of the three VMs of a heterogeneous
platform. The last column shows the average execution
time for each task measured by Eq. (9).

One important thing in scheduling is to use the
Communication-to-Computation Rate (CCR) concept
calculated by Eq. (11):

M.S. Hosseini Shirvani/Scientia Iranica, Transactions D: Computer Science & ... 29 (2022) 2375-2393 2379

T1),

17 731799 13 7

T2 ‘ ‘TTS“ ."VT4 "‘T5u (7o
L 30 R 575
16 ™3 .
f. Tr74 (T5) T79i"
9 42 7

Figure 2. A typical workflow [11].

Table 2. Execution time on VMs [11].

Task VMs ET
VM, VMz VMs
T1 22 21 36 26.3
T2 22 18 18 19.3
T3 32 27 43 34.0
T4 7 10 4 7.0
T5 29 27 35 30.3
T6 26 17 24 22.3
T7 14 25 30 23.0
T8 29 23 36 29.3
T9 15 21 8 14.7
T10 13 16 33 20.7

A
i‘(> O(tutj))

edge (t;,t;)
1 W
(S BT

If the CCR value is high, the given workflow is rela-
tively communication-intensive. The value of CCR for
a DAG in Figure 2 is 0.83 that means it is a moderate
graph.

CCR =

(11)

4.2. Scheduling model and problem
formulation

Task scheduling for workflow execution is a very impor-
tant mission, because it determines to what available
VM should be assigned which task. The proposed
scheduling model follows two steps: prioritizing tasks
and selecting VMs for the assignment of tasks [10].
In prioritizing the tasks, three ranking procedures are
engaged that are upward, downward, and level ranking,
each of which ranks tasks to produce its own valid
tasks list. Eq. (12) through Eq. (16) are presented

to provide different ordered tasks lists. Functions
Succ (t;) and Pred (t;) determine immediate successor
and predecessor tasks of a given task ¢;, respectively.
Upward ranking recursively starts from exit node to
reach entry node. It calculates ranking value for the
exit node by Eq. (12), but for other nodes, the ranking
values are calculated by Eq. (13):

UpRank(texit) = ET(tezit)7 (12)

UpRank(t;) =ET(t;) + max
Y t;Esucce (t;)

{ UpRank (t;)

+C(ti,tj)}. (13)

Downward ranking starts from entry node to reach exit
node. It calculates ranking value for the entry node by
Eq. (14), but for other nodes, the ranking values are
calculated by Eq. (15):

DownRank (tentry) = 0, (14)
DownRank(t;) = DownRank (t;
ownRank (t;) thgﬁ(t,-){ ownRank(t;)

+ET(;) +C(tj,ti)}. (15)

Finally, the level ranking procedure starts from entry
to reach exit. It assigns the level ranking value of zero
to the entry, but for others, the values are calculated
by Eq. (16):

LevelRank (t;) = y t_g)ayi ’){LevelRank ()} + 1()
s€pred 16

For each ranking, the tasks are sorted based on rank
labels assigned to each task. The sorting is ascending
order for both downward and level rankings whereas it
is descending for upward ranking.

To select VM, the FFT and Earliest Start Time
(EST) functions are exploited. The EFT (t;,VM;)
function determines the earliest time that the virtual
machine VM, finishes execution of ¢; provided it is
assigned to this VM. The function EST (¢;,VM;)
determines the earliest possible time for beginning the
execution of ¢; on virtual machine VM. This function
takes both the availability time and the prerequisites
for receiving the data of a given task ¢; for VM, into
account. For entry and non-entry tasks, EST (¢;, VM;)
is calculated by Egs. (17) and (18), respectively.

EST (teniry, VM) = 0, (17)

EST(t;,VM;) = max{Avail(VMj),

. tqg}::}zfi(ti){AFT(tq)} +C(tq,ti)}. (18)

2380 M.S. Hosseini Shirvani/Scientia Iranica, Transactions D: Computer Science & ... 29 (2022) 2375-2393

In Eq. (18), the maximum value between Avail (VM)
and the latest time that the prerequisite data of ¢; is
received must be considered. The term Awail (VM)
indicates the earliest time that VM is free to do a new
mission. The term AFT(t,) is elaborated in Eq. (19) to
indicate the actual finish time of task ¢; on the available
VM guaranteeing the EFT. The term indez indicates
the number of VMs in the VMList that return the
minimum value:
AFT (tq,VMindes) =, VMnéi‘I/lMList{EFT(tq, VM;)}.

: (19)
In addition, the EFT (t;,,VM;) is calculated by the
summation of the two values of EST (t;,,VM;) and
ET(t;,VM;) drawn in Eq. (20):

EFT(t;,VM,) = EST(t;, VM;) + ET(t;, VM;). (20)

The total execution time (makespan) is calculated by
Eq. (21). This is the objective function that workflow
scheduling algorithm tries to minimize:

makespan = min {vrtr,-lg}vﬁ/ (AFT(ti))} . (21)

Since the existing schedulers present a limited number
of valid tasks lists, there is a clear need for finding opti-
mal solutions by efficiently exploring the search space.
Therefore, D-GWO is developed to bridge the gap.

5. An illustrative example

An illustrative example shows the effectiveness of D-
GWO in workflow scheduling. Figure 2 is considered
as a case study. D-GWO is compared with other
state-of-the-arts. The comparatives are two famous list
schedulers of HEFT [10] and PEFT [11], two meta-
heuristics of Multiple-Priority Queues and Genetic
Algorithm (MPQGA) [5] and a Customized Simulated
Annealing (C-SA) [25], and a hybrid D-PSO [38].
Table 3 shows the rank values of each task derived by
each algorithm. Table 4 shows lists of tasks generated
by different approaches along with the gained final
makespan. Figure 3 illustrates the performance of D-
GWO against others works in the literature. It proves
that D-GWO dominates others in terms of makespan.

6. Proposed discrete grey wolf optimization
algorithm for solving the workflow
scheduling problem

A novel D-GWO is presented to solve the discrete
workflow scheduling problem. To this end, the ele-
mentary concepts, new operators, and procedures are
introduced.

4
3 28 52 87 90 _od
P3 A/Te 4 TQT\
5 21 | E 83
P2
1 - ! Naet T vl |\8j\ 105 118
P1 T2 T8 T10
0 e -
0 20 40 60 80 100 120 140
(2)
4
3 35 70 81 89
T5 To
3 5 /| 46 76 ° r 106 122
P2 T T8 T10
1 = 5 a3 97 |
P1 T T4 T T3 T7
0 R
0 20 40 60 80 100 120 140
(b)
4
3 38 56 91 9
T2 15
b3 2 ZA’ 48 |\ 63 4 \os b
. 3 Ty L1
P2) - l\ N i 7°y T10
P1 T4 T7
0 .
0 20 40 60 80 100 120 140
()
4
3 38 56
P)/| = [\
2 2 48| 56 75 981 _ 108 124
P2 T T3 T T6 T8 T10)
1 34 64 72 o1
65
P1] T7 TS
0
0 20 40 60 80 100 120 140
(d)
4
3 28 52 56 105 113
—— i)\
TS
Es 5 2 ", — ido| ™
P2 T G i 7
1 8! 60 X67 96 120 133
P1 0 T2 T8 T10
0 20 40 60 80 100 120 140"
(e)
4
38 56
3
P3 5 < T2 48 75
< T7
P2 L T T6 T4\|§ § 09 122
P1 0 5 T8 To | T10
0 20 F40 60% 80 % 100§ 120 140’
()

Figure 3. An illustrative example: (a) D-GWO
scheduler, makespan = 118, (b) PEFT scheduler [11],
makespan = 122, (c) MPQGA scheduler [5],

makespan = 122, (d) S-CA scheduler [23], makespan = 124,
(e) HEF T-upward scheduler [10], makespan = 133, and (f)
D-PSO scheduler [42], makespan = 122.

M.S. Hosseini Shirvani/Scientia Iranica, Transactions D: Computer Science & ...

Table 3. Ranking value assigned to each task in different
list schedulers.

Tasks Ranking
PEFT Upward Downward Level
T1 2.7 169.0 0.0 0
T2 41.0 114.3 43.3 1
T3 37.0 102.7 57.3 1
T4 43.7 110.0 55.3 1
T5 31.0 129.7 39.3 1
T6 41.7 119.3 33.3 1
T7 17.0 52.7 107.3 2
T8 20.7 92.0 73.3 2
T9 16.3 42.3 126.6 2
T10 0 20.7 148.3 3

6.1. Problem encoding (memetic and wolf
representation)
The problem encoding phase is one of the most im-
portant issues that has impact on tracking and perfor-
mance of a proposed meta-heuristic algorithm [39-41].
The task name is considered as an allele. Hence, genes
are selected from a set of integer numbers {1,2,--- ,n}
that are task numbers. A woll (as a candidate
solution) is an ordered n number of non-identical
tasks. For instance, a valid list of tasks Listp.gwo =
{tl, t47 t3, te, t7, tg, ts, tg, tg, th} is encoded to a WOlf7 as
illustrated in Figure 4.

6.2. Auzxiliary binary vectors and operators

The trajectory of an individual wolf toward a prey
is conducted by three best wolves, namely the alpha
(Wa), beta (W3), and delta (Ws). Therefore, new
auxiliary binary vectors and operators are proposed

29 (2022) 2375-2393 2381

1 2 3 4 5 6 7 8 9 10

A wolf representation |1‘4|3‘6|7‘2|5’9|8‘10‘

Figure 4. An encoded wolf.

to take benefit of the knowledge of the leader wolves
about the traversed discrete search space. Thus, binary
vectors Token; = (by,ba,---,b,) and Adjuster; =
(ay,as, -+ ,a,) are applied for comparison between
each agent and leader wolves. In this regard, each
wolf must relocate tasks in the task list similar to the
encodings of the leaders. The zero bit means that the
corresponding task is not required to change. Note that
tentry and e, are not to be changed. Hence, they are
set to zero in the Token vector. Furthermore, in the
initialization, all tasks are to be changed, which is why
the value of the Token vector is the initialized one.

6.2.1. Binary operators \ and &

The operator \ is used to indicate the differences
in the corresponding tasks of two wolves. For in-
stance, take n = 6, Tokemy = (0,1,1,0,1,0) for
Wi, and Token, = (0,0,1,1,1,0) for W,. Then,
Tokem \ Token, = (0,1,0,1,0,0), that is, the output
of the same bit is zero, because it does not require to
be changed. For the operator ©, the associated bit
is changed provided the corresponding Adjuster value
is one. If Token; = (0,1,1,0,0,0) and Adjuster; =
(0,0,1,0,1,0), then Tokeny = Tokeny ® Adjuster; =
(0,1,1,0,0,0) ® (0,0,1,0,1,0) = (0,1,0,0,1,0). The
adjuster vector is a clue for the Token vector to close
off duplicate changes on especial tasks.

Recall, if the value of b; in Token is one, the
associated task in the list of a wolf W; can be arbitrarily
substituted with a task with the corresponding binary
by, value of one. This substitution is done by a heuristic.
The value of zero means no change is required. The
corresponding Adjuster value is used to change the

Table 4. Ordered list of tasks produced by comparative algorithms along with the final makespan.

No. Approach/Ref. Generated list of tasks Final makespan
1 HEFT-upward [10] {t1,t5,t6,t2,t4,t3,ts,t7,t0,t10} 133
2 HEFT-downward [10] {t1,t6,t5,t2,ta,t3,ts,t7,t0,t10} 136
3 HEFT-level [10] {t1,t2, ts, ta, ts, e, tr, s, to, t10} 143
4 PEFT [11] {t1,ta, te, ta, ts, ts, ts, tr, to, t1o} 122
5 MPQGA [5] {t1,t6, s, ta, ta, ta, tr, ts, to, t10} 122
6 Customized-SA (CSA) [23] {t1,ts,t5,t2,t4,te,t7,ts,t0,t10} 124
7 D-PSO [42] {t1,te ts,ta, ta, s, ta, b7, to, t1o} 122
8 Proposed D-GWO {t1,ta,ts,te,t7,t2,t5,t0,ts,t10} 118

2382

value of Token for the next round. This change is a
clue to not modify the corresponding task again in the
next round.

6.3. D-GWO algorithm description

Algorithm 1 starts with the initial population by calling
Algorithm 2 that utilizes the theorems in [1]. The
theorems allow to permute tasks of the same level in
a list. The vectors Token and Adjuster are set to T,
which means all tasks are to be changed. Then, each
wolf is evaluated by a fitness calculated by Algorithm 3.
The first, second, and third bests are known as the

M.S. Hosseini Shirvani/Scientia Iranica, Transactions D: Computer Science & ...

29 (2022) 2375-2393

a, B, and 6 wolves. The best so far solution is kept
in as a possible optimal solution. The main loop of
Algorithm 1 starts between lines 8 through 31. Tt is
iterated until the termination criterion is met. In each
iteration, for each wolf, some operations are performed.
Firstly, Algorithm 4 is called to encircle the prey for
exploration. If the change made upon a given wolf
is valid, the best so far solution can be updated;
otherwise, the change of the wolf is retreated. Also,
the Token is updated based on the Adjuster and the
Adjuster is updated in Algorithm 4 to preclude du-
plicate changes. Afterwards, the exploitation phase is

(* all tasks

be associated Token and Adjuster of alpha wolf.

Input:
A given DAG application with its specification
VMs: {VM,, VM,,...,VMy}
n :number of tasks in a given DAG
M : number of VMs
m : number of wolves
Maxlteration : Maximum of iterations
Output:
An optimal task scheduling solution
1: Call Algorithm 2 to generate an initial population (* each wolf W;=(w;;, wis,..., W;,) where i=1,2,...,m and
each field w;; = t; is a task in a given DAG. *)
2: Initialize two binary vectors Token;=(b;y, b;z,-.-, bin)ZT and Adjuster;=(a;j;, Qiz5- - -» ain)ZT.
initially are to be exchanged *)
3: Call Algorithm 3 to calculate the fitness for each W;;
4: Let W, be the first best wolf, Token, and Adjuster,
5: Let W be the second best wolf, Tokeng and Adjusterg be associated Token and Adjuster of beta wolf.
6: Let Ws be the third best wolf, Tokeng and Adjusters be associated Token and Adjuster of delta wolf.
7: Let BestSoFar € W, ; BestSolution € Fitness(WW,)
8: while the termination criteria is not met do
9: for each wolf W;in population where i=1,..., m do
----------- (* Exploration *)
10: Call Algorithm 4 for encircling the prey (update the position W; towards the prey)
11: if Validate (;) is True then
12: if Fitness(IV;) is better than BestSolution then
13: BestSoFar < W;
14: BestSolution < Fitness(WW;)
15: end-if
(* Update Token; based on Adjuster; for next round usage *)
16: Token; = Token; @ Adjuster; ;
-------------- (* Exploitation *)
17: Draw integer g ~ [1..3] for Walking Around procedures
18: if R=1 then
19: Call Algorithm 5 for Permutation,(W;)
20: elseif if R=2 then
21: Call Algorithm 6 for Permutation,(W;)
22: else
23: Call Algorithm 7 for Permutations;(W;)
24: end-if
25: else
26: Retreat W;
27: end-if
28: Call Algorithm 3 to calculate the fitness for each W;;
29: Let new W,, W, and W; three best wolves based on updated fitness values
30: end for
31: end while
32: return BestSoFar and BestSolution
33: End {Algorithm 1}

Algorithm 1. D-GWO-scheduler.

M.S. Hosseini Shirvani/Scientia Iranica, Transactions D: Computer Science & ...

29 (2022) 2375-2393

Input:

G : A given DAG with its specifications
n :number of tasks
m : number of wolves in population

Output:

W : A semi-conducted random wolves

(* Note that, W=(W,, W,,..., W) where each i-th wolf is W;=(W;;, Wiy, ..., Win) ¥)

o

HeveRanhwhe

W, € Call upward ranking (G) based on Egs. (12-13).

W, € Call downward ranking (G) based on Egs. (14-15).

W; € Call level ranking (G) based on Eq. (16).

W, € Call PEFT (G) based on Algorithm in Ref. [11].

Calculate depth of given DAG in D=Level (G) based on Eq. (16).

Calculate List={t,, SubList,, SubList,, ..., SubList,_,, t, } where SubList; having nodes in the same Level=;.

For i=5 to m do
W; € A List getting from permutation of tasks in SubList; [1].
End-For
return W
End {Algorithm 2}

Algorithm 2. Initial wolves.

Input:

W; : A wolf;
n : number of tasks in W;
VMs : {VM,,VM,,..., VM }

Output:

An assignment and makespan value

1:
2
3
4:
5
6

7.
8:

While there exists an unscheduled task in ordered list Do
Select an unscheduled task ¢; from chromosome (list)
For each VM, in VMs list Do
Calculate EFT(t;, VM) based on Eq. (20).
Assign task t; to VM, that returns minimum EFT (t;, VMy,).
End-For
return makespan=AFT (tgy;t)
End {Algorithm 3}

Algorithm 3. Fitness function.

Input:
Wi, Wy, Wg, Ws : Wolf;
n :number of tasks in a wolf
Token;, Tokeng, Tokeng, Tokeng : Token;
Adjuster;, Adjuster,, Adjusterg, Adjusters : Adjuster;
VMs : {VMy, VM,,...,VMy}
Output:
A new updated wolf W;
1: Let F;=Fitness (W,), F,=Fitness (W), and F;=Fitness (W)
(* F<F,<F; %)
2. Let P=——2— p=— "2 and p=—2
Fi+F,+F3 Fi+F,+F3 Fi+F,+F3
(* ,<P,<P; andP; + P, + P;=1%)
3: TokenDif f,=Token; \ Token,
4: TokenDif f,= Token; \ Tokeng
5: TokenDif fs=Token; \ Tokens
6: For j=1To n Do
7: draw g ~ (0,1)
8: if g <P; Then
9: Adjuster;(j) € TokenDif f(j)
10: elseif ¢ < P, Then
11: Adjuster(j) € TokenDif f,(j)
12: else
13: Adjusteri(j) € TokenDif f5(j)
14: end-if
15: End-For
16: Adjuster;(1)= Adjuster;(n)=0;
17: Update W; for encircling the prey by updating its trajectory following Adjuster;
18: (* Exchange t; and t, where Adjusterj(t;)= Adjuster;(t,)=1 and t; # t; *)
19: return W;
20: End {Algorithm 4}

Algorithm 4. Encircling the prey.

2383

2384 M.S. Hosseini Shirvani/Scientia Iranica, Transactions D: Computer Science & ... 29 (2022) 2375-2393

started. The Walking Around can potentially improve
the solutions from the exploration phase. To this end,
a random integer is drawn to call one of the Walking
Around procedures casually. In the Walking Around
process, procedures which make permutation are in-
troduced. These procedures are well defined in such a
way to permute the search space efficiently. After the
exploitation phase is done and changes happen, all of
the wolves are evaluated again to find three new leaders
of a, 3, and ¢ wolves. Finally, the best so far solution
is returned. Algorithm 2 generates a semi-random
initial population. It utilizes theorems of Ref. [1], which
produce promising individuals. Algorithm 3 calculates
the fitness function. Algorithm 4 adopts the position
information of individual and leader wolves: «, /3,
and 6. Moreover, their Token and Adjuster vectors
are considered as input. Based on the fitness of the
leaders, three probability parameters P, P», and P
are calculated to get a chance for adopting parts of the
knowledge of the leader wolves about the search space
for an individual wolf to encircle the prey. Firstly,
the difference Token (TokenDiff) between the Token
of W, and those of other leaders W,, Wg, and Ws
is obtained. For each task in the list, it is randomly
determined which part is drawn from which leader wolf.
Afterwards, the update trajectory is performed by
incorporating the Adjuster vector. The value zero used
in line #16 means the entry and exit tasks are not to
be changed. In line #17, the tasks with corresponding
bit values equal to one in the Adjuster are candidates
for exchange. After exchange, a new individual is
generated as the output.

6.3.1. Walking around procedures (for Ezploitation)

Here, Walking Around procedures for a given solution
are introduced. Three procedures, which permute the
discrete search space, are Permutation,, Permutations,
and Permutations. Among the mentioned three
Walking Around procedures, one is randomly called.
Algorithm 5 presents Permutation; procedure along
with its application. Algorithm 5 as the first kind
of permutation randomly opts a meme WJi]. Then,

it quests for finding its first successor task in the
list such as W[j]. A selected meme W[i] must be
exchanged by Wk] in which & € [i + 1.5 — 1] so
that the last predecessor of meme WIk] is ahead
of Wi] in the ordered list. It definitely keeps the
topological sorting attribute. Figure 5 illustrates how
Permutation; performs. It randomly draws W[4] = t5.
The first successor of t2 is W[7] = t9. Algorithm 5 finds
k € [5..6] so that the last predecessor task of Wk] is
ahead of W[4]. In this case, the last predecessor task
of W[6], which is ¢, is ahead of W[4]. The reason
for choosing W6] is to exchange it with W[4]. The
new wolf is depicted in Figure 5. Algorithm 6 presents
Permutation, procedure. Algorithm 6 as the second
kind of permutation randomly opts a meme W[i] in a
wolf W. Then, it quests for finding its last predecessor
task in the list such as W[j]. A selected meme W]
must be exchanged by W[k| in which k € [j +1..i — 1]
so that the first successor of meme W/k] is placed
after of W[i] in the ordered list. It definitely keeps
the topological sorting attribute. Figure 6 illustrates

The first successor

1 2 “m89 10

R

Before ’1’4‘3|2’6‘5|9‘7‘8|10‘

permutationy

1 2 3 4 5 6 7 8 9 10
midarion: | AL o] > [TSN

mutationy

Figure 5. Performance of Permutation;.

The last predecessor

1 2 3 4 5 6 7 8 9 10
;n%?“fwoLl;zetationg l | E ‘ i | : ‘ 3 | 6 ‘ 0 | ! ‘ : |10‘
1 2 3 4 5 6 7 8 9 10
migaon. SRR T

Figure 6. Performance of Permutations.

Input:

W; [1..n] : A wolf

n : number of tasks in a wolf
Output:

W; [1.. n] : A modified wolf

1: Draw a random integer R in ~ [2..n-1]
2:Z < W [R]

task t, where z=WW; [R]
5: Exchange (W; [R], W; [j])
6: return W; [1.. n]
7: End {Algorithm 5}

3: t, € Find task t,, in set { Succ(t;) } which appears ahead in the W; [1..n] where y=W; [S]
4: Find randomj € [R+1..S-1] and t,=W; [j]; so that the last item of Pred(t,) appeared in the wolf is ahead of

Algorithm 5. Permutation; procedure.

M.S. Hosseini Shirvani/Scientia Iranica, Transactions D: Computer Science & ... 29 (2022) 2375-2393 2385

Input:

W; [1.. n] : A wolf

n : number of tasks in a wolf
Output:

W; [1.. n] : A modified wolf

1: Draw a random integer R in ~ [2..n-1]
2:Z < Wi[R]

of task t, where z=W; [R]
5: Exchange (W; [R], W; [j])
6: return W; [1.. n]
7: End {Algorithm 6}

3:t, € Find task t,, in set { Pred(t;) } which appears latter in the W;[1..n] where y=W;[S]
4: Find random index j € [S+1..R-1] and t,=W; [/]; so that the first item of Succ(t,) appeared in the wolf'is latter

Algorithm 6. Permutationy procedure.

W; [1.. n] : A wolf

n : number of tasks in a wolf
Output:

W; [1.. n] : A modified wolf

Input: G :is agiven DAG along with its specifications

: L=find graph G’s level by Level (G) in Eq. (16).

: Exchange(W; [/1, W; [k]) /* t,€>t,,
cif W; [1.. n] is not valid then

return the input intact W; [1.. n];
End-if
:return W; [1.. n]
: End {Algorithm 7}

IR - NET NN SR

: Find two independent nodes t,= W; [j] and t,= W; [k] in consecutive level; so, Level(t,)#Level(t,)

Algorithm 7. Permutations procedure.

L=2 L=3
Before 1 2 3 4 5 6 7 8 9 10
mutations | IEISIN > [120 7 (PRI
1 2 3 4 5 6 7 8 9 10
v | K CE

Figure 7. Performance of Permutations.

how Permutations acts. It randomly draws W[7] = to.
The last predecessor of tg is W[4] = to. Algorithm 6
finds k € [5..6], so that the first successor task of W k]
is placed after W{[7]. In this case, the first successor
task of W[6], which is tg, is placed after of W{7].
The reason for selecting W{6] is to exchange it with
W{7]. The new wolf is depicted in Figure 6. Algorithm
7 presents Permutations procedure. Algorithm 7 as
the third kind of permutation firstly measures the
maximum level of DAG. Then, it randomly opts for
two independent memes that are associated with two
different levels. The independent tasks are substituted.
If the newborn wolf is valid, it is definitely returned.
Otherwise, the first wolf without change is returned.
Figure 7 illustrates how Permutations works. Two
memes W[5] = t5 and W[7] = ¢7 are independent tasks
belonging to two different levels L = 2 and L = 3,
respectively. Calling Permutationg improves makespan
from 138 to 118, as depicted in Figure 7.

7. Performance evaluation

To evaluate the performance of the D-GWO, evaluation
parameters, dataset, and settings are presented.

7.1. Evaluation parameters

The famous scheduling evaluation metrics are
makespan, SLR, speedup, and efficiency. The
important QoS parameter that the user endures is
makespan, calculated by Eq. (21). However, utilizing
only makespan does not indicate how efficiently the
scheduling works. Therefore, the makepan must be
compared with the Critical Path (CP) of a given
DAG. The CP is the longest serial path, which
is not parallelizable. Therefore, the makespan is
usually longer than this length. This is why the
new parameter of Scheduling Length Ratio (SLR) is
introduced, which is calculated by Eq. (22):

makespan
> min (W((t;, VM)V VM, € VMList)&

t; e CriticalPath

SLR=

22)

Another important parameter is to compute how the
proposed model makes speedup. The speedup value
measured by Eq. (23) means the reverse relative paral-
lel execution time against serial execution time:

2386 M.S. Hosseini Shirvani/Scientia Iranica, Transactions D: Computer Science & ... 29 (2022) 2375-2393

Table 5. Different simulation datasets.

Communication

Computation

CCR cost cost Graph type

0.5 [2..10] [2..15] Computation-intensive

1.0 [2..10] [2..10] Moderate

5.0 [5..20] [2.. Rather communication-intensive
10.0 [10..40] [2.. Communication-intensive

Serial-execution-on-VM

speedup =
P b makespan

>, Wit VMk)}
(23)

min
B Y VM€ VMList v {TY}

makespan

The speedup does not show how many processors are
involved in gaining speedup. This is why the auxiliary
parameter efficiency is introduced, which is calculated
by Eq. (24):

speedup
Number-of-Used-VMs

efficiency = * 100%. (24)
7.2. Dataset

The molecular dynamics depicted in Figure 8 is one of
the most important scientific workflows that is perva-
sively used in physics branches [10,17,42]. It is a well-
suited workflow for testing because of its unstructured
and unbalanced shape. To efficient evaluation, several
datasets are produced to generate different workflows
with different attributes. Therefore, different molecular

Figure 8. Molecular workflow [10,17,36].

workflows are generated for the simulation datasets.
Table 5 elaborates the datasets.

The width of the given workflow is 7, because the
maximum available tasks in each level are 7. Thus,
utilizing more than 7 VMs does not have any affection
on the final results [1,8]. For each scenario, the number
of utilized VMs is 3, 5, and 7.

7.3. Results and discussion
This section clarifies simulation settings and discusses
the results.

7.8.1. Parameter settings and performance analysis
The proposed D-GWO scheduler was compared with
several schedulers existing in the literature. To this
end, the most efficient ones were selected, namely
PEFT [11], MPQGA [5], C-SA [25], and D-PSO [38].
All experiments were executed in fair conditions on the
same platform. Table 6 depicts the parameter setting
of each.

Each scenario was independently executed 20
times. The average results were reported in terms
of makespan, SLR, speedup, and efficiency. Figure 9
illustrates that D-GWO beats other state-of-the-arts
in term of makespan in all scenarios.

Table 7 elaborates the comparisons. The Relative
Percentage Deviation (RPD) concept is applied in
order to stipulate the amount of improvement with
the proposed model [1]. As Table 7 shows, following
D-GWO as the best, D-PSO competes MPQGA in
some cases, but in the majority of cases MPQGA works
better. In summary, they work the same in 7 scenarios;
in one scenario, D-PSO works better; and in the
remaining 4 scenarios, the MPQGA performs better
than D-PSO. Totally, after D-GWO, the MPQGA, D-
PSO, C-SA, and PEFT are known from better to the
worst.

Figure 10 depicts the comparison of D-GWO with
other state-of-the-arts in terms of SLR, which is a
normalized parameter regardless of graph shape and
size. Again, in all scenarios, D-GWO outperforms
others in terms of SLR. After D-GWO as the best, the
MPQGA, D-PSO, C-SA, and PEFT are placed from
the second to the fifth best.

Table 8 is dedicated to elaborate the information

M.S. Hosseini Shirvani/Scientia Iranica, Transactions D: Computer Science & ... 29 (2022) 2375-2393 2387

I rerr I c-sAa [[] MPQGA | | D-PSO | | b-cwo

CCR=04 CCR =1.0
300 150
=]
g 200 1 g 100 J
- <
< =
100 1 50 E
0 0
3 5 7 3 5 7
Number of VMs Number of VMs
CCR = 5.0 CCR = 10.0
150 150
=]
g 100 1 g 100
@ o
O w0
R/ Q
< 4
s <
=
50 1 50
0 0
3 5 7 3 5 7
Number of VMs Number of VMs

Figure 9. Performance comparison of D-GWO with others in terms of makespan.

I rerr I c-sA] MPQGA | D-PSO D-GWO
CCR=10.4 CCR =1.0
2.0 3
1.5 1] I - _ _
2
2
= 1.0 {1 &
w0
1
0.5]
0.0 0 ,
3 5 7 3 5 7
Number of VMs Number of VMs
CCR=5.0 CCR = 10.0
6 8
6 _
4]
~
7 B o4
w0
2]
2
0 0
3 5 7 3 5 7
Number of VMs Number of VMs

Figure 10. Performance comparison of D-GWO with others in terms of SLR.

2388 M.S. Hosseini Shirvani/Scientia Iranica, Transactions D: Computer Science & ... 29 (2022) 2375-2393
Table 6. Parameter settings of the comparative algorithms.
. Specific parameters
Algorithms P P Population size Max iterations
Parameter Value
MPQGA [3] Crossover percentage: 0.8 50 ~ 150 dep.ends 100 ~ 150 del.)ends
Mutation percentage: 0.05 on scenarlo on scenario
PEFT [11] Fixed heuristic Original settings NA One time
Freeze 0 10 ~ 20 iterations
C-SA [23] To 1000 Point-wise in each temperature
AT 20 depends on scenario
=0 1o 50 ~ 100 depends 50 ~ 150 depend
D-PSO [42] 3 1o ~ ep.en S ~ cep.en s
on scenario on scenario
‘/II]ELX 4
To: Initial temperature; AT: Decrease in the amount of temperature; Freeze: Freeze temperature for
the final condition; Vinax: Velocity limit for clamping; C7: Personal acceleration coefficient;
C2: Social acceleration coefficient; w: Inertia coefficient
Table 7. Comparison of the literature in terms of makespan.
CCR No. of Makespan RPD (%)
VMs PEFT C-SA MPQGA D-PSO D-GWO PEFT C-SA MPQGA D-PSO
3 215 210 204 204 201 6.51 4.29 1.47 1.47
0.4 5 183 183 180 178 176 3.83 3.83 2.22 1.12
7 178 175 171 171 167 6.18 4.57 2.34 2.34
3 106 103 88 88 86 6.18 4.57 2.34 2.34
1.0 5 93 93 82 86 81 12.90 12.90 1.22 5.81
7 90 90 82 86 81 10.00 10.00 1.22 5.81
3 136 131 98 100 90 33.82 31.30 8.16 10.00
5.0 5 123 128 96 96 95 22.76 25.78 1.04 1.04
7 123 123 92 96 91 26.02 26.02 1.09 5.21
3 137 136 133 133 130 5.11 4.41 2.26 2.26
10.0 137 135 130 130 126 8.03 6.67 3.08 3.08
7 137 135 130 130 126 8.03 6.67 3.08 3.08

in Figure 10. It uses RPD to stipulate the amount of
improvement with the proposed model.

Figure 11 demonstrates the comparison D-GWO
with the state-of-the-arts in terms of speedup. In all
scenarios, D-GWO outperforms others. This figure
shows the same results as the previous figures. Table 9
elaborates this comparison in detail.

Figure 12 shows the comparison of D-GWO with
the state-of-the-arts in terms of efficiency. In all
scenarios, D-GWO outperforms others.

Table 10 elaborates this comparison in detail. As
Table 10 indicates, D-GWO beats others in terms of
efficiency, which means that it exploits the underlying
infrastructure with the maximum utilization. The
MPQGA, D-PSO, C-SA, and PEFT algorithms are
placed from the second to the fifth best in terms of
system utilization.

In all 12 scenarios, the C-SA competes with
PEFT, because the C-SA has local optimization trend
and PEFT is only a heuristic domain-specific algo-

M.S. Hosseini Shirvani/Scientia Iranica, Transactions D: Computer Science & ... 29 (2022) 2375-2393 2389
Table 8. Comparison of the literature in term of SLR metric.
CCR No. of SLR RPD (%)
VMs PEFT C-SA MPQGA D-PSO D-GWO PEFT C-SA MPQGA D-PSO
3 1.99 1.94 1.89 1.86 1.86 6.53 4.12 1.59 0
0.4 1.69 1.69 1.67 1.65 1.63 3.55 3.55 2.40 1.21
1.65 1.62 1.58 1.58 1.55 6.06 4.32 1.90 1.90
2.79 2.71 2.32 2.32 2.26 19.00 16.61 2.59 2.59
1.0 2.45 2.45 2.16 2.26 2.13 13.06 13.06 1.39 5.75
7 2.37 2.37 2.16 2.26 2.13 10.13 10.13 1.39 5.75
5.23 5.04 3.77 3.85 3.46 33.84 31.35 8.22 10.13
5.0 4.73 4.92 3.69 3.69 3.65 22.83 25.81 1.08 1.08
7 4.73 4.73 3.54 3.69 3.50 26.00 26.00 1.13 5.15
6.23 6.18 6.05 6.05 5.91 5.14 4.37 2.31 2.31
10.0 6.23 6.14 5.91 5.91 5.73 8.03 6.68 3.05 3.05
6.23 6.14 5.91 5.91 5.73 8.03 6.68 3.05 3.05
I et I o-sa [vroca [p-pso [p-GWo|
CCR=04 CCR=1.0
4 3 — —
; B .
o8 2
£ g
§ 2 3
=3 s
0 =3
2
1
0 0
3 5 7 3 5 7
Number of VMs Number of VMs
CCR=15.0 CCR =10.0
2.0 1.5
1.5] — —
1.0
a o
2 1.0 <
g 3
& o 0.5
0.5
0.0 0.0
3 5 7 3 5 7

Number of VMs

Number of VMs

Figure 11. Performance comparison of D-GWO with others in terms of speedup.

rithm. For this reason, both of them search in a limited
region. The C-SA marginally outperforms the PEFT in
7 scenarios out of 12, they are the same in 4 scenarios,
and PEFT works better in only one scenario in rather
communication-intensive graphs. On the other hand,
the main competition is between MPQGA and D-
GWO. D-PSO competes with MPQGA in some cases,

but in the majority of cases, MPQGA works better.
As mentioned earlier, they work the same in 7 scenarios
and in one scenario D-PSO works better than MPQGA,
but in the remaining 4 scenarios, the MPQGA performs
better than D-PSO. The D-GWO beats MPQGA in
terms of all evaluation parameters, because it engages
pertinent operators and carefully balances exploration

2390 M.S. Hosseini Shirvani/Scientia Iranica, Transactions D: Computer Science & ... 29 (2022) 2375-2393
Table 9. Comparison of the literature in term of speedup.
CCR No. of Speedup RPD (%)
VMs PEFT C-SA MPQGA D-PSO D-GWO PEFT C-SA MPQGA D-PSO
2.34 2.40 2.47 2.47 2.51 6.97 4.48 1.49 1.49
0.4 5 2.75 2.75 2.80 2.83 2.86 3.98 3.98 2.27 1.14
2.83 2.88 2.95 2.95 3.02 6.59 4.79 2.40 2.40
2.08 2.14 2.50 2.50 2.56 23.26 19.77 2.33 2.33
1.0 5 2.37 2.37 2.68 2.56 2.72 14.81 14.81 1.23 6.17
2.44 2.44 2.68 2.56 2.72 11.11 11.11 1.23 6.17
1.00 1.04 1.39 1.36 1.51 51.11 45.56 8.89 11.11
5.0 5 1.11 1.06 1.42 1.42 1.43 29.47 34.74 1.05 1.05
1.11 1.11 1.48 1.42 1.43 35.16 35.16 1.10 5.49
1.00 1.01 1.03 1.03 1.05 5.38 4.6 2.31 2.31
10.0 5 1.00 1.01 1.05 1.05 1.09 8.73 7.14 3.17 3.17
1.00 1.01 1.05 1.05 1.09 8.73 7.14 3.17 3.17
[v B c-sh [s [50 [p-owo)
CCR=10.4 CCR=1.0
100 100
. 5
£ 50 | _
g g 50
m m
0 0
3 5 7 3 5 7
Number of VMs Number of VMs
CCR = 5.0 CCR =10.0
60 40
H o 30
40 o
IS =
.§ E 20 1
O
E 20 =
10 1
0 0
3 5 7 3 5 7

Number of VMs

Number of VMs

Figure 12. Performance comparison of D-GWO with others in terms of efficiency.

with the exploitation phase. Another important point
is that the improvement inclination is increased by
increasing the CCR value, except for CCR = 10.0.
The reason is that parallel algorithms do not have bril-
liant improvement in communication-intensive graphs
in comparison with serial executions. To prove the
scalability of D-GWO, different datasets for larger
graphs up to 150 nodes were generated. The results

also proved the significant improvement.

7.8.2. Time complexity

Algorithm 1 as the main one has several sub-
algorithms. Algorithm 2 spends O(m + n) because
making each ranking list takes O(n) along with loops
taking O(m). Algorithm 3 takes O(AM) where
A and M indicate the number of arcs and VMs.

M.S. Hosseini Shirvani/Scientia Iranica, Transactions D: Computer Science & ...

29 (2022) 2375-2393

Table 10. Comparison of the literature in term of efficiency.

2391

CCR No. of Efficiency (%) RPD (%)
VMs PEFT C-SA MPQGA D-PSO D-GWO PEFT C-SA MPQGA D-PSO

3 78.00 80.00 82.33 82.33 83.79 7.27 4.58 1.62 1.62
0.4 5 55.00 55.00 56.00 56.60 57.20 4.00 4.00 2.14 1.06
7 40.43 41.14 42.14 42.14 43.14 6.71 4.86 2.37 2.37
3 69.33 71.33 83.33 83.33 85.33 23.08 19.63 2.40 2.40
1.0 5 47.40 47.40 53.60 51.20 54.40 14.77 1477 1.49 6.25
7 34.86 34.86 38.29 36.57 38.86 11.48 11.48 1.49 6.25
3 33.33 34.67 46.33 45.33 50.33 51.00 45.19 8.63 11.03
5.0 5 22,20 21.20 28.40 28.40 28.60 28.83 34.91 0.70 0.70
7 15.86 15.86 20.14 20.29 20.43 28.83 28.83 0.70 0.70
3 33.33 33.67 34.34 34.34 35.00 5.00 3.96 1.94 1.94
10.0 5 20.00 20.20 21.00 21.00 21.80 9.00 7.92 3.81 3.81
7 14.29 14.43 15.00 15.00 15.57 9.00 7.92 3.81 3.81

Algorithm 4 takes O(n) because of the for-loop.
Time complexity for all Walking Around approaches
takes the same O(n), because the permutation takes

at most n operations. Finally, Algorithm 1 takes
O(n.m.Mazlteration + A.M).

8. Conclusion and future work

This paper presented a novel Discrete Grey Wolf Op-
timizer (D-GWO) to improve makespan of workflows
running on heterogeneous cloud platforms. To this aim,
novel binary vectors and operators were introduced
to efficiently explore the discrete search space by
making a balance between local and global searches.
To cover exploitation, several permutation procedures
were designed to enhance the gained solution from ex-
ploration. The performance superiority of the proposed
method was verified in different circumstances against
other state-of-the-arts. Since the users trust reliable
computing resources, we contemplate to model cloud
reliability for workflow scheduling problems in future
work.

References

1. Hosseini Shirvani, M.S. “A hybrid meta-heuristic al-
gorithm for scientific workflow scheduling in hetero-
geneous distributed computing systems”, Eng. Appl.
Artif. Intell., 90(December 2019), p. 103501 (Apr.
2020 DOI: 10.1016/j.engappai.2020.103501

2. Armbrust, M., Fox, A., Griffith, A.R., et al., Above

the Clouds: A Berkeley View of Cloud Computing,
University of California, Berkeley (2009).

Jafari Navimipour, N. “A formal approach for the
specification and verification of a trustworthy human
resource discovery mechanism in the expert cloud”, Ez-
pert Systems with Applications, 42(15-16), pp. 6112—
6131 (2015).

Roy, S.K., Devaraj, R., Sarkar, A., et al
“Contention-aware optimal scheduling of real-time
precedence-constrained task graphs on heteroge-
neous distributed systems”, Journal of Systems Ar-
chitecture, 105(101706), pp. 1-26 (2020). DOL
https://doi.org/10.1016/j.sysarc.2019.10170 6

Keshanchi, B. and Jafari Navimipour, N. “Priority-
based task scheduling algorithm in cloud systems using
a memetic algorithm”, Journal of Circuits, Systems,
and Computers, 25(10), pp. 1-33 (2016).

Tong, Z., Chen, H., Deng, X., et al. “A schedul-
ing scheme in the cloud computing environment us-
ing deep Q-learning”, Information Sciences, 512,
pp- 1170-1191 (2020). DOL: https://doi.org/10.1016/
j.ins.2019.10.035.

Mohammadzadeh, A., Masdari, M., and Ghare-
hchopogh, F.S. “Energy and cost-aware workflow
scheduling in cloud computing data centers us-
ing a multi-objective optimization algorithm”, J
Netw Syst Manage, 29(31), pp. 1-34 (2021).
https://doi.org/10.1007/s10922-021-09599-4.

Hosseini Shirvani, M.S. “A new shuffled genetic-based
task scheduling algorithm in heterogeneous distributed
systems”, Heterog. Distrib. Syst. J. Adv. Comput. Res.,
9(4), pp. 19-36 (2018).

2392

10.

11.

12.

13.

14.

16.

17.

18.

19.

20.

21.

M.S. Hosseini Shirvani/Scientia Iranica, Transactions D: Computer Science & ...

Hosseini Shirvani, M.S. “Evaluating of feasible solu-
tions on parallel scheduling tasks with DEA decision
maker”, J. Adv. Comput. Res., 6, pp. 109-115 (2015).

Topcuoglu, H., Hariri, S., and Wu, M.Y.
“Performance-effective and low-complexity task
scheduling for heterogeneous computing”, IFEE

Trans. Parallel Distrib. Syst., 13(3), pp. 260-274
(2002). DOI: 10. 1109/71.993206

Arabnejad, H. and Barbosa, J.G. “List scheduling
algorithm for heterogeneous systems by an optimistic
cost table”, IEEE Trans. Parallel Distrib. Syst., 25(3),
pp. 682—694 (Mar. 2014). DOI: 10.1109/TPDS.2013.
57

Thaman, J. and Singh, M. “Green cloud environ-
ment by using robust planning algorithm”, FEgypt.
Informatics J., 18(3), pp. 205-214 (Nov. 2017). DOL:
10.1016/j.€ij.2017.02. 001

Khan, M. “Scheduling for heterogeneous Systems using
constrained critical paths”, Parallel Comput., 38, pp.
175-193 (2012). DOI: 10.1016/j.parco.2012.01.001
Lin, C.-S., Lin, C.-S.; Lin, Y., et al. “Multi-objective
exploitation of pipeline parallelism using clustering,
replication and duplication in embedded multi-core
systems”, J. Syst. Archit., 59(10), pp. 1083-1094 (Nov.
2013). DOI: 10.1016/j.sysarc.2013.05.024

Liou, J. and Palis, M.A. “An efficient task clustering
heuristic for scheduling DAGs on multiprocessors”,

Symp. Parallel Distrib. Process. February, pp. 152-156
(1996).

Tang, Q., Zhu, L.-H., Zhou, L., et al. “Scheduling di-
rected acyclic graphs with optimal duplication strategy
on homogeneous multiprocessor systems”, J. Parallel
Distrib. Comput., 138, pp. 115-127 (Apr. 2020) DOL:
10. 1016/j.jpdc.2019.12.012.

Akbari, M., Rashidi, H., Alizadeh, S.H. “An en-
hanced genetic algorithm with new operators for
task scheduling in heterogeneous computing systems”,
Eng. Appl. Artif. Intell, 61, pp. 35-46 (2017).
http://dx.doi.org/10.1016/j.engappai.2017.02.013.

Zand, H.V.; Raji, M., Pedram, H., et al. “A genetic
algorithm-based tasks scheduling in multicore proces-
sors considering energy consumption”, International
Journal of Embedded Systems (IJES), 13(3), pp. 264—
273 (2020).

Sujana, J.A.J., Revathi, T., Priya, T.S.S., et al
“Smart PSO-based secured scheduling approaches
for scientific workflows in cloud computing”, Soft
Comput., 23, pp. 1745-1765 (2019). https://doi.org/
10.1007/s00500-017-2897-8

Dordaie, N. and Jafari Navimipour, N., A Hybrid Par-
ticle Swarm Optimaization and Hill Climbing Algorithm
for Task Scheduling in the Cloud Environments, ICT
Press., 4(4), pp. 199-202 (Dec. 2018).

Alsaidy, S.A., Abbood, A.D., and Sahib, M.A.
“Heuristic initialization of PSO task scheduling al-
gorithm in cloud computing”, J. King Saud Univ.
— Comput. Inf. Sci., 34(6A), pp. 2370-2382 (2022).
https://DOlLorg/10.1016/ j.jksuci.2020.11.002

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

29 (2022) 2375-2393

Boveiri, H.R. “An enhanced cuckoo optimization algo-
rithm for task graph scheduling in cluster-computing
systems”, Soft Comput , 24, pp. 10075-10093 (2020).
https://DOl.org/10.1007/s00500-019-04520-3

Agrawal, M. and Sirvastava, G.M.S. “A cuckoo search
algorithm-based task scheduling in cloud computing”,
In Advances in Computer and Computational Sciences

(2018). DOI: 10.1007/978-981-10-3773-3-29

Moschakis, I.A. and Karatza, H.D. “Multi-criteria
scheduling of bag-of-tasks applications on heteroge-
neous interlinked clouds with simulated annealing”,
The Journal of Systems & Software, 101, pp. 1-14
(2015). DOI: 10.1016/j.jss.2014.11.014

Osamy W., El-sawy A.A., and Khedr, A.M.,
“SATC: A simulated annealing based tree con-
struction and scheduling algorithm for
ing aggregation time in wireless sensor networks”,
Wireless Pers Commun, 108, pp. 921-938 (2019),
https://doi.org/10.1007/s11277-019-06440-9

De Vicente, J., Lanchares, J., and Hermida, R.
“Placement by thermodynamic simulated annealing”,
A Physics Letters, 317(56), pp. 415-423 (2013).

Keshani, M. and Jahanshahi, M.H. “Using simulated

annealing for task scheduling in distributed systems”,

minimiz-

International Conference on Computational Intelli-
gence, Modelling and Simulation (2009).

Hosseini Shirvani, M.S. and Noorian Talouki,
R. “Bi-objective scheduling algorithm for scien-
tific workflows on cloud computing platform with
makespan and monetary cost minimization approach”,
Compler Intell. Syst., 8, pp. 1058-1114 (2022).
https://doi.org/10.1007/s40747-021-00528-1

Mirjalili, S., Mirjalili, S.M., and Lewis, A. “Grey wolf
optimizer”, Adv. Eng. Softw., 69, pp. 46-61 (2014).
Gu, J., Jiang, T., Zhu, H., et al. “Low-carbon job
shop scheduling problem with discrete genetic-grey
wolf optimization algorithm”, Journal of Advanced
Manufacturing Systems, 19(1), pp. 1-14 (2020). doi:
10.1142/S0219686720500018

Mohammadzadeh, A.; Masdari, M., Gharehchopogh,
F.S., et al. “Improved chaotic binary grey wolf opti-
mization algorithm for workflow scheduling in green
cloud computing”, FEwol. Intel., 14, pp. 1997-2025
(2021). https://doi.org/10.1007/s12065-020-00479-5

Shirvani, M.S., Amirsoleimani, N,
Salimpour, S., and Azab, A. “Multi-criteria task
scheduling in distributed systems based on fuzzy
TOPSIS,” 2017 IEEE 30th Canadian Conference on
FElectrical and Computer Engineering (CCECE), pp.
1-4 (2017). DOIL: 10.1109/CCECE.2017.7946721

Guo, P. and Xue, Z.
scheduling algorithm for real-time tasks in cloud sys-
tems”, 17th IEEFE International Conference on Com-
munication Technology (2017).

Noorian Talouki, R., Hosseini Shirvani, M.S., and
Motameni, H. “A heuristic-based task schedul-
ing algorithm for scientific workflows in hetero-
geneous

Hosseini

“Cost-effective fault-tolerant

cloud computing platforms”, Journal of

36.

37.

38.

39.

40.

M.S. Hosseini Shirvani/Scientia Iranica, Transactions D: Computer Science & ...

King Saude Unawversity: Computer and Infor-
mation Sciences, 34(8A), pp. 4902-4913 (2022).
https://doi.org/10.1016/j.jksuci.2021.05.011.

Darbha, S. and Agrawal, D.P. “A task duplication
based scalable scheduling algorithm for distributed
memory systems”, Journal of Parallel and Distributed
Computing, 46, pp. 15-27 (1997).

Palis, M.A., Liou, J.C., and Wie, D.S.L.. “Task clus-
tering and scheduling for distributed memory parallel
architectures”, IEEE Transactions on Parallel and
Distributed Systems, 7(1), pp. 46-55 (1996).

Xu, Y., Li, K., Hu, J., et al. “A genetic algorithm for
task scheduling on heterogeneous computing systems
using multiple priority queues”, Information Sciences,
270, pp. 255—287 (2014).

Mohammadzadeh, A.; Masdari, M., Gharehchopogh,
F.S., et al. “A hybrid multi-objective metaheuristic
optimization algorithm for scientific workflow schedul-
ing”, Cluster Comput, 24, pp. 1479-1503 (2021).
https://doi.org/10.1007/s10586-020-03205-z.

Noorian Talouki, R., Hosseini Shirvani, M.S., and
Motameni, H. “A hybrid meta-heuristic scheduler
algorithm for optimization of workflow scheduling in
cloud heterogeneous computing environment”, Jour-
nal of Engineering, Design and Technology (2021).
https://doi.org/10.1108/JEDT-11-2020-0474.

Tanha, M., Hosseini Shirvani, M.S., and Rahmani
A M. “A hybrid meta-heuristic task scheduling algo-
rithm based on genetic and thermodynamic annealing
algorithms in cloud computing environemnts”, Neural

29 (2022) 2375-2393 2393

Computing and Applications, 33, pp. 16951-16984
(2021). https://doi.org/10.1007/s00521-021-06289-9

41. Javadian Kootanaee, A., Poor Aghajan, A., and
Hosseini Shirvani, M.S. “A hybrid model based on
machine learning and genetic algorithm for detecting
fraud in financial statements”, Journal of Optimization
wn Industrial Engineering, 14(2), pp. 169-186 (2021).
d0i:10.22094/joie.2020.1877455.1685

42. Bharathi, S., Chervenak, A., Deelman, E., et
al. “Characterization of scientific workflows”, In
Third Workshop on Workflows in Support of Large-
Scale Science, pp. 1-10 (2008). DOIL: 10.1109/
WORKS.2008.4723958.

Biography

Mirsaeid Hosseini Shirvani received his BSc, MSc,
and PhD degrees all in Computer Software Engineering
Systems from Universities in Tehran, Iran. He has been
teaching miscellaneous computer courses in several
universities in Mazandaran province since 2001. He
has also published several papers in authentic and
worldwide well-reputed journals. Currently, he is a
professor in the Computer Engineering Department
at TAU (serving as a faculty member of the Sari-
Branch). His research interests are in the areas of
cloud- and fog-computing, IoT, distributed systems,
parallel processing, machine learning, and evolutionary
computations.

