
Scientia Iranica D (2022) 29(4), 1904{1913

Sharif University of Technology
Scientia Iranica

Transactions D: Computer Science & Engineering and Electrical Engineering
http://scientiairanica.sharif.edu

Fuzzy con�dence interval construction and its
application in recovery time for COVID-19 patients

A. Parchamia;�, S.M. Taherib, A. Falsafaina, and M. Mashinchia

a. Department of Statistics, Faculty of Mathematics and Computer, Shahid Bahonar University of Kerman, Kerman, Iran.
b. School of Engineering Science, College of Engineering, University of Tehran, Tehran, Iran.

Received 21 May 2021; received in revised form 11 December 2021; accepted 16 May 2022

KEYWORDS
Point estimation;
Fuzzy con�dence
interval;
Fuzzy number;
Fuzzy statistics;
COVID-19.

Abstract. An approach is proposed to construct fuzzy con�dence intervals for unknown
parameters in statistical models. In this approach, a family of con�dence intervals of the
unknown crisp parameters is considered. Such con�dence intervals are used to obtain a
fuzzy con�dence interval for the parameter of interest. The proposed approach enjoys a
wide range of con�dence intervals to obtain a trapezoidal shaped fuzzy set of the parameter
space as the fuzzy con�dence interval for the parameter of interest. By using the resolution
identity, it is shown that the constructed fuzzy con�dence intervals are really fuzzy sets of
the parameter space. Some numerical examples are provided to explain the functionality
of the approach at one-sided and two-sided fuzzy con�dence intervals. Moreover, the
application of this proposed approach in health sciences is provided for the case of the
recovery time of olfactory and gustatory dysfunctions for COVID-19 patients.

© 2022 Sharif University of Technology. All rights reserved.

1. Introduction

Statistical methods in fuzzy environments have been
studied in both theory and practice over the last
decades. This issue comes with interesting applications
in many �elds [1]. Con�dence interval is an important
subject in statistics and is a fundamental element in
statistical inference. In this respect, fuzzy con�dence
interval is the basic subject of statistical analysis in
fuzzy environments. Some authors have investigated
the issue through certain approaches. Corral and Gil [2]
formulated the problem of interval estimation for the
cases in which the experimental outcomes were fuzzy
rather than crisp. Parchami et al. [3] and Ramezani
et al. [4] introduced two classes of fuzzy con�dence

*. Corresponding author.
E-mail address: parchami@uk.ac.ir (A. Parchami)

doi: 10.24200/sci.2022.58381.5701

intervals for the fuzzy process capability indices based
on ranking functions. The application of fuzzy set
theory to statistical con�dence intervals for unknown
fuzzy parameters based on fuzzy random variables was
studied by Wu [5]. �Skrjanc [6] presented an approach
to con�dence interval for fuzzy models by combining
a fuzzy identi�cation methodology with some methods
from applied statistics. The main idea is to determine
the con�dence interval de�ned by the lower and upper
fuzzy bounds which construct the band that contains
all the output measurements. Couso and S�anchez [7]
extended the concept of con�dence interval to fuzzy
information by introducing a pair of fuzzy inner and
outer con�dence intervals. Using extension principle,
Viertl [1] investigated the problem of con�dence in-
terval based on fuzzy data. Chachi and Taheri [8]
introduced a fuzzy con�dence interval for mean of
Gaussian distribution on the basis of fuzzy random
variables. The developed approaches to constructing
fuzzy con�dence intervals during recent decades were
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reviewed and analyzed by Kahraman et al. [9]. More-
over, they presented two interval-valued intuitionistic
and hesitant con�dence intervals for intuitionistic and
hesitant observations, respectively [10]. Berkachy and
Donze [11] proposed an approach functioning based on
the likelihood ratio method to estimate the fuzzy con-
�dence interval in case fuzziness occurred. Chukhrova
and Johannssen [12] presented an extended sign test
based on fuzzy categories and fuzzy hypotheses to
improve the generality, versatility, and practicability
of the common sign test. Testing hypotheses for
multivariate normal distribution were investigated by
Hesamian and Akbari on the basis of fuzzy random
variables [13].

Chachi et al. [14] proposed fuzzy testing hy-
potheses about a fuzzy unknown parameter when
the available information was fuzzy. Their proposed
method functions based on the relationship between
the acceptance region of statistical tests at level 
and con�dence intervals for the parameter of interest
at con�dence level 1 � . After constructing a fuzzy
con�dence interval for the fuzzy parameter of interest,
they have constructed a fuzzy test function using
such a fuzzy con�dence interval. Moreover, fuzzy
testing of multi-alternative hypotheses was studied by
Harikrishnan et al. [15] through the relation between
fuzzy con�dence interval and region of acceptance.

An extensive and comprehensive systematic re-
view was guided by Chukhrova and Johannssen [16]
with several key research questions, containing absolute
essence on the topic of testing fuzzy hypothesis. To re-
view some new articles about testing fuzzy hypotheses,
we only refer the interested readers to [17{23] for the
sake of brevity.

Besides the above studies, Buckley [24,25] devel-
oped a method to estimate an unknown parameter in a
statistical model. He used a set of con�dence intervals
producing a triangular fuzzy number for estimation of
the interested parameter. Falsafain et al. [26] inves-
tigated a procedure to derive an explicit and unique
membership function of the above triangular fuzzy
number. Also, Falsafain and Taheri [27] demonstrated
that Buckley's method was subject to some drawbacks
and therefore, presented an improved method. Another
possibilistic testing crisp hypothesis was developed
by Mylonas and Papadopoulos based on Buckley's
method in which fuzzy estimators were employed to
construct the test statistic and the possibility of rejec-
tion/acceptance of the null hypothesis [28,29].

The present paper extends Buckley's estimation
method to construct 100(1 � )% fuzzy con�dence
interval by a trapezoidal shaped fuzzy subset in the
parameter space. This paper is organized as follows.
Preliminaries and notations are presented in Section 2.
Buckley's fuzzy point estimation method is reviewed
in Section 3. Then, the proposed method to construct

a fuzzy con�dence interval is developed in Section 4.
Several illustrative examples are presented in Section 5.
An application in health sciences related to Covid-19
is provided in Section 6. The �nal section includes
conclusions and future works.

2. Preliminaries and notations

Let X be a universal set and F (X) = f ~Aj ~A : X !
[0; 1]g. Any ~A 2 F (X) is called a fuzzy subset on X
for which ~A(x) denotes the degree of membership of
x in the fuzzy set ~A. We denote a fuzzy set using
an overline on symbols. An �-cut of ~A is de�ned as
~A[�] = fx 2 Xj ~A(x) � �g for 0 � � � 1.

In particular, let R be the set of real numbers. A
triangular shaped fuzzy number ~N 2 F (R) is a fuzzy
subset of R satisfying (i) ~N(x) = 1 for exactly one
x 2 R; (ii) for � 2 (0; 1], the �-cut of ~N is a bounded
and closed interval denoted by ~N [�] = [n1(�); n2(�)]
where n1(:) and n2(:) are the increasing and decreasing
continuous functions, respectively [24,25]. A trape-
zoidal shaped fuzzy number ~M 2 F (R) is a fuzzy subset
of R satisfying: (i) ~M(x) = 1 for any x 2 [x1; x2] such
that x1; x2 2 R and x1 � x2; (ii) for � 2 (0; 1], the �-
cut of ~M is a bounded and closed interval, denoted
by ~M [�] = [m1(�);m2(�)] where m1(:) and m2(:)
are the increasing and decreasing continuous functions,
respectively. It is obvious that a triangular shaped
fuzzy number is a special case of the trapezoidal shaped
fuzzy number. The symbols and notations used in the
article are summarized in Table 1.

3. Fuzzy point estimation: A brief review of
Buckley's method

This section briey reviews Buckley's method [24,25]
for fuzzy estimation of an unknown parameter in
statistical models, with some new modi�cations. Let
X1; � � � ; Xn be a random sample with observed values
x1; � � � ; xn from a distribution with probability den-
sity/mass function f(x; �), where � is a single unknown
crisp parameter of interest. Based on these observa-
tions, we construct 100(1 � �)% con�dence intervals
for the crisp parameter �, 0 � � � 1. We denote such
con�dence intervals by [�1(�); �2(�)]. In two special
cases, [�1(1); �2(1)] is a point estimation and the whole
parameter space � is a 100% con�dence interval for
� = 0. Usually, � is one of the forms(�1;+1),
(�1; b], [a;+1), or [a; b]; a < b, a; b 2 R. When
� increases, the length of [�1(�); �2(�)] decreases, and
vice versa. Therefore, these con�dence intervals are
nested. Thus, we have a family of 100(1 � �)%
con�dence intervals for �, where 0 � � � 1. Now, we
place the con�dence intervals one on top of the other
from � = 0 to � = 1 to construct a triangular shaped
fuzzy number ~�, whose �-cuts are as follows:
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Table 1. Symbols and notations used in the article.

Notation Meaning
R The set of real numbers
F (X) The set of all fuzzy sets on X
F (R) The set of all fuzzy sets on R
� Unknown parameter (which is

crisp)
� Parameter space
~N , ~M , ~A, ~B, ~� and ~� Fuzzy sets
~A[�] = [a1(�); a2(�)] �-cut of the fuzzy set ~A
~A � ~B ~A is a fuzzy subset of ~B
~C100(1�)%
� 100(1 � )% fuzzy con�dence

interval for � (which is a fuzzy
subset of �)

~C100(1�)%
� [�] �-cut of 100(1 � )% fuzzy

con�dence interval for �
[�1(�); �2(�)] 100(1 � �)% con�dence inter-

val for � (which is a crisp
subset of �)

z� �-quantile for the standard
normal distribution

tn;� �-quantile for the student's t-
distribution with n degrees of
freedom

�2
n Chi-square distribution with n

degrees of freedom
�2
n;� �-quantile for the chi-square

distribution with n degrees of
freedom

~�[0] = �;

~�[�] = [�1(�); �2(�)]; for 0 < � < 1;

~�[1] = �1(1) = �2(1):

Using the above method, we have more information
about the unknown parameter � rather than merely
having a classical single interval estimate [24,25]. In
fact, now, we are employing much more information
from the random sample, similar to all con�dence
intervals between 0% and 100%.

Note 1. It should be noted that the parameter of
interest � is crisp. However, we try to estimate such
a crisp parameter by constructing a fuzzy con�dence
interval.

Example 1. Assume that X1; X2; � � � ; X64 is a random
sample with observed values x1; x2; � � � ; x64 from the
normal distribution N(�; �2 = 100). Using Buckley's
method, we are going to estimate the parameter �.
Suppose that the sample mean is obtained as �x = 28:6.
Then, the usual 100(1 � �)% con�dence interval for
� is [28:6 � 1:25z1��2 ; 28:6 + 1:25z1��2 ], where z1��2

Figure 1. The membership function of ~� in Example 1
based on Buckley's method.

denotes the (1 � �
2 )-quantile for the standard normal

distribution. Therefore, the �-cuts of triangular shaped
fuzzy number ~� are obtained as follows:

~�[0] = R;

~�[�] =
�
28:6� 1:25z1��2 ; 28:6 + 1:25z1��2

�
;

for 0 < � < 1;

~�[1] = �x = 28:6:

By placing the �-cuts of ~� one on top of the other
from � = 0 to � = 1, it is possible to produce a
triangular shaped fuzzy point estimate for �, where its
membership function is depicted in Figure 1.

4. Fuzzy con�dence interval: the proposed
method

In this section, a procedure is proposed to construct
100(1� )% fuzzy con�dence intervals.

Let X1; � � � ; Xn be a random sample with ob-
served values x1; � � � ; xn from a distribution with prob-
ability density/mass function f(x; �). Assume that � is
an unknown crisp parameter and a fuzzy con�dence
interval is constructed for �. Inspired by Buckley's
method presented in Section 2, statistical con�dence
intervals of � are employed to construct the fuzzy
con�dence interval.

De�nition 1. A 100(1�)% fuzzy con�dence interval
for �, denoted by ~C100(1�)%

� , (as a fuzzy subset of �)
is constructed by the following intervals as its �-cuts:

~C100(1�)%
� [0] = �;

~C100(1�)%
� [�] = [�1(�); �2(�)]; for 0<�<1;

~C100(1�)%
� [1] = [�1(); �2()];
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Figure 2. Buckley's fuzzy point estimation (dotted line)
and the nested fuzzy con�dence intervals based on the
proposed method (solid lines) in the parameter space in
Theorem 2.

where [�1(�); �2(�)] is the usual/precise 100(1 � �)%
con�dence interval for �. Note that ~C100(1�)%

� [1], as
the extreme situation, is the ordinary/crisp 100(1�)%
con�dence interval for �.

Remark 1. It should be noted that the notation � is
used for �-cut of the fuzzy con�dence interval (which
is a crisp subset of � for each � 2 [0; 1]), while the
notation  is used for the con�dence level of the fuzzy
con�dence interval.

Remark 2. It is obvious that Buckley's fuzzy point
estimate is a particular case of the proposed fuzzy
interval estimate when  = 1 is selected. In fact, for
such a reduced case, Buckley's fuzzy point estimation is
a fuzzy subset of the 100(1�)% fuzzy con�dence inter-
val (see Figure 2). This assertion is analogous to the
classical condition where the point estimation of any
parameter belongs to the related con�dence interval.

Theorem 1. The intervals ~C100(1�)%
� [�], for

0 � � � 1, in De�nition 1 are �-cuts corresponding to
a fuzzy set.

Proof. For any 0 � �1 � �2 � 1, the usual/crisp
con�dence intervals of unknown parameter � are
nested, i.e., [�1(�2); �2(�2)] � [�1(�1); �2(�1)].
That is because �1(:) and �2(:) are increasing
and decreasing functions, respectively. Moreover,
~C100(1�)%
� [0] = [�1(0); �2(0)] = � is de�ned in

De�nition 1. Therefore, by resolution identity [30],
the introduced 100(1 � )% fuzzy con�dence interval
is a fuzzy set in the parameter space �.

Proposition 1. Any two-sided fuzzy con�dence in-
terval is a fuzzy number and any one-sided fuzzy
con�dence interval is a fuzzy limit in the parameter
space �. Refer to [31] to see details of lower and upper
fuzzy limits.

Theorem 2. The 100(1� )% fuzzy con�dence inter-
vals are nested fuzzy subsets of the parameter space �

(see Figure 2). In other words:

~C100(1�2)%
� � ~C100(1�1)%

� ; 0 � 1 � 2 � 1:

Proof. It su�ces to show that the �-cut of 100(1�2)%
fuzzy con�dence interval is a fuzzy subset of the �-
cut of 100(1� 1)% fuzzy con�dence interval for every
� 2 [0; 1]. Since �1(:) is an increasing function,
�1(�1) � �1(�2) for any � 2 [0; 1] and 0 � 1 �
2 � 1. Similarly, �2(:) is a decreasing function and
so for any � 2 [0; 1] and 0 � 1 � 2 � 1, we have
�2(�2) � �2(�1). Hence, considering the fact that
�1(�2) � �2(�2), it is obvious that:

[�1(�2); �2(�2)] � [�1(�1); �2(�1)] ;

for any 0 � 1 � 2 � 1 and � 2 �. Therefore, by
De�nition 1, ~C100(1�2)%

� [�] � ~C100(1�1)%
� [�] for any

0 � 1 � 2 � 1. Hence, we have �nally ~C100(1�2)%
� �

~C100(1�1)%
� , 0 � 1 � 2 � 1, 8� 2 �.

Remark 3 (Interpretation). Note that the inter-
pretation of a fuzzy set is based on the possibility.
Moreover, the occurrence possibility of an event is
de�ned as the supremum of the possibility of single
elements of the set, i.e., [32]:

Poss(A) = sup fPoss(fxg); x 2 Ag :
This interpretation is used in numerical examples.

5. Illustrative examples

In this section, four numerical examples are provided
to elaborate on the proposed method. All calculations
have been done using the software R version 3.5.2 [33].

5.1. Two-sided fuzzy con�dence interval
Example 2 (Mean of normal distribution). As-
sume that X1; X2; � � � ; X36 is a random sample with
observed values x1; x2; � � � ; x36 from the normal distri-
bution N(�; �2 = 144). Suppose that the sample mean
turns out to be �x = 28:6 and we seek to construct a 90%
fuzzy con�dence interval for the unknown parameter �.
Considering  = 0:10 and using the standard normal
distribution for the statistic �X��

�p
n

, the 100(1�0:10�)%
con�dence interval based on the observed random
sample of size n can be obtained as follows:�

�x� z1� 0:1�
2

�p
n
; �x+ z1� 0:1�

2

�p
n

�
; � 2 (0; 1):

Hence, the �-cut of 90% fuzzy con�dence interval of �
is obtained as follows:
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Figure 3. The membership function of 90% fuzzy
con�dence interval ~C90%

� for � in Example 2.

~C90%
� [0] = (�1;+1);

~C90%
� [�] =

h
28:6� 2z1� 0:1�

2
; 28:6 + 2z1� 0:1�

2

i
;

for 0 < � < 1;

~C90%
� [1] =

h
28:6� 2z1� 0:1

2
; 28:6 + 2z1� 0:1

2

i
= [25:31; 31:89]:

Note that ~C90%
� [1], as an extreme situation, is an

ordinary 90% con�dence interval for �. By placing
�-cuts of ~C90%

� one on top of the other from � = 0
to � = 1, one can produce a trapezoidal shaped
fuzzy con�dence interval for � at a con�dence level
of 0.90. The membership function of such a fuzzy
con�dence interval is shown in Figure 3. The obtained
fuzzy con�dence interval includes the 90% classical
con�dence interval with a membership degree of
one, i.e., the interval [25:31; 31:89]. It includes other
possible values of the unknown parameter � with a
degree of membership between 0 and 1. These results
are clearly more useful than using only a single exact
con�dence interval to make an inference about the
unknown population mean.

Example 3 (Mean of normal distribution-� un-
known). Assume that X1; � � � ; X9 is a random sample
from normal distribution N(�; �2) where both � and
�2 are unknowns. Suppose that the observed values
of mean and standard deviation are �x = 3 and s =
4. A fuzzy con�dence interval for � with con�dence
coe�cient 0.90 is constructed, i.e.,  = 0:10. By
using the t-distribution with n � 1 degrees of freedom
for the statistic

p
n( �X��)
S , the related 100(1�0:10�)%

con�dence interval can be constructed based on the
observed random sample of size n as:�

�x� tn�1;1� 0:1�
2

sp
n
; �x+ tn�1;1� 0:1�

2

sp
n

�
;

for any � 2 (0; 1);

where tn;� is the �-quantile for the student's
t-distribution with n degrees of freedom. Hence, the

Figure 4. Three nested membership functions of fuzzy
con�dence intervals ~C90%

� (solid line), ~C95%
� (dashed line),

and ~C99%
� (dotted line) in Example 3.

�-cuts of 90% fuzzy con�dence interval for � are
obtained as follows:

~C90%
� [0] = (�1;+1);

~C90%
� [�] =

�
3� 2

3
t8;1� 0:1�

2
; 3 +

2
3
t8;1� 0:1�

2

�
;

for 0 < � < 1;

~C90%
� [1] =

�
3� 2

3
t8;1�0:1

2
; 3 +

2
3
t8;1�0:1

2

�
=[1:76; 4:24] :

Note that ~C90%
� [1], as an extreme situation, is a

classical 90% con�dence interval for �. By placing
the �-cuts of ~C90%

� one on top of the other, one can
construct the membership function of the trapezoidal
shaped fuzzy con�dence interval for � at level 0.90,
which is shown in Figure 4 by solid line.

To make a comparison between di�erent fuzzy
con�dence intervals and studying the e�ect of value ,
we provide fuzzy con�dence intervals for  = 0:10; 0:05,
and 0.01. The results are three nested fuzzy con�dence
intervals. The related membership functions are shown
in Figure 4.

5.2. One-sided fuzzy con�dence interval
Using the proposed approach made it possible to
obtain a one-sided fuzzy con�dence interval, too. In
the following, two numerical examples for such a case
are presented.

Example 4. Suppose that a 90% left one-sided fuzzy
con�dence interval for � is constructed at level of 0.90
in Example 3. It is easy to obtain 100(1 � 0:1�)%
left one-sided con�dence interval for � based on the
observed random sample of size n as follows:�

�x� tn�1;1�0:1�
sp
n
;+1

�
; � 2 (0; 1):

Therefore, the �-cuts of 90% fuzzy left one-sided
con�dence interval for � are obtained as follows:
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Figure 5. The membership function of 90% one-sided
fuzzy con�dence interval for � in Example 4.

~C90%
� [0] = (�1;+1);

~C90%
� [�] =

�
3� t8;1�0:1� � 2

3
;+1

�
;

for 0 < � < 1;

~C90%
� [1] =

�
3� t8;1�0:1 � 2

3
;+1

�
= [2:069;+1):

Note that ~C90%
� [1] is an ordinary 90% left one-sided

con�dence interval for �. By placing the �-cuts of
~C90%
� one on top of the other, one can construct a fuzzy

con�dence interval for � at level 0.90 (see Figure 5).

Example 5 (Beta distribution). Assume that
X1; X2; � � � ; Xn is a random sample from beta distri-
bution Beta(�; 1), i.e., f�(x) = �x��1, � > 0. Consid-
ering pivotal quantity �2�

Pn
i=1 lnXi � �2

2n, one can
obtain 100(1� �)% right one-sided con�dence interval�

0; �2
2n;1���2
Pn
i=1 ln xi

i
based on the observed random sample

of size n. Now, let n = 23 and the observations are as
follows:

0:454; 0:755; 0:975; 0:796; 0:374; 0:835;

0:885; 0:585; 0:971; 0:811; 0:456; 0:939;

0:682; 0:691; 0:917; 0:899; 0:858; 0:913;

0:892; 0:722; 0:863; 0:678; 0:642:

Since
P23
i=1 lnxi = �6:84, the �-cuts of 95% fuzzy

right one-sided con�dence interval for � are obtained
as follows:

~C95%
� [0] = (0;+1);

~C95%
� [�] =

 
0;

�2
46;1�0:05�

(�2)(�6:84)

#
;

for 0 < � < 1;

Figure 6. The membership function of 95% one-sided
fuzzy con�dence interval for � in Example 5.

~C95%
� [1] =

 
0;

�2
46;1�0:05

(�2)(�6:84)

#
= (0; 4:590]:

Note that ~C95%
� [1], as the extreme situation, is an

ordinary 95% right one-sided con�dence interval for �.
Similar to the previous examples, one can construct a
fuzzy con�dence interval for � at level 0.95, where its
membership function is depicted in Figure 6.

Regarding Remark 3, the obtained fuzzy interval
has a probabilistic-possibilistic interpretation. For
instance, at a con�dence level of 0.95:

{ It is completely possible that the unknown parame-
ter � be less than 4.59;

{ With possibility 0.3, � is equal to 5.06;

{ With possibility 0.8, � is greater than 4.68;

{ With possibility 0.35, � is between 5 and 6.

6. Application in health sciences: Recovery
time for COVID-19 patients

Corona virus exhibits di�erent clinical manifestations
in paucity-symptomatic patients; Olfactory Dysfunc-
tion (OD) and Gustatory Dysfunction (GD) may rep-
resent the �rst or only symptoms. This important
subject is currently arousing great interests, and a
growing number of studies are being published. One
hundred and twenty Iranian patients with the Covid-19
were considered in a research study (68 were males and
52 females) [34]. The mean duration of OD and GD for
male patients was 16.87 and 12.80 days, respectively.
Moreover, the mean duration of OD and GD for female
patients was 25.80 and 27.13 days, respectively. It
appears that the mean recovery time from OD or GD
was longer for females than males. Therefore, we are
going to construct four 90% fuzzy con�dence intervals
in this section for:

1. The mean of recovery time of GD in male patients;

2. The mean of recovery time of GD in female patients;

3. The mean of recovery time of OD in male patients;

4. The mean of recovery time of OD in female patients.
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On the basis of Kolmogorov-Smirnov non-parametric
test [35], the assumption of exponential distribution
can be accepted for the recorded data set with p-values
0.97, 0.31, 0.54, and 0.83, respectively. Therefore,
it is assumed that each data set has an exponential
distribution with unknown parameter � > 0, i.e.,
f�(x) = �e��x, x > 0. Thus, by considering pivotal
quantity 2�

Pn
i=1Xi � �2

2n, the classical 100(1 � �)%
con�dence interval for the mean of recovery time, i.e.,
� = 1

� , based on the observed values is:"
2
Pn
i=1 xi

�2
2n;1��2

;
2
Pn
i=1 xi

�2
2n;�2

#
;

for any � 2 (0; 1).
One of the limitations of the study was that

patients did not have speci�c medical examinations and
detailed medical tests to assess olfactory and gustatory
dysfunctions. Hence, patients reported the process of
improving their olfactory and gustatory dysfunctions
based on mental perception and this fact can be one
reason to use the fuzzy con�dence interval for the mean
of recovery time. Therefore, the �-cuts of 90% fuzzy
con�dence interval for the recovery mean time of OD
in male patients are obtained as follows:

~C90%
� [0] = (0;+1);

~C90%
� [�] =

"
2� 1147:17
�2

2�68;1� 0:10�
2

;
2� 1147:17
�2

2�68; 0:10�
2

#
;

For 0 < � < 1;

~C90%
� [1] =

"
2� 1147:17
�2

2�68;1� 0:10
2

;
2� 1147:17
�2

2�68; 0:10
2

#
= [10:60; 15:81]:

By using the proposed method, we can construct the
fuzzy con�dence interval for � at level 0.90. The
membership function of 90% fuzzy con�dence interval
for the mean of recovery time of OD in male patients
is shown by solid line in Figure 7. Also, the 90% fuzzy
con�dence interval for the recovery mean time of OD
is shown by dashed line in Figure 7 for female patients.
Similarly, Figure 8 shows 90% fuzzy con�dence inter-
vals for the recovery mean time of GD for male and
female patients.

7. Discussion and interpretation

Results for recovery time of gustatory dysfunction
are as follows: Both of the constructed 90% fuzzy
intervals in Figure 7 have probabilistic-possibilistic
interpretations. For instance, at con�dence level 0.90:

Figure 7. The membership functions of 90% fuzzy
con�dence intervals for the recovery mean time of
gustatory dysfunction for males (solid line) and for
females (dashed line) COVID-19.

Figure 8. The membership functions of 90% fuzzy
con�dence intervals for the recovery mean time of
olfactory dysfunction for males (solid line) and for females
(dashed line) COVID-19.

{ It is completely possible that the mean recovery time
duration of GD for male patients be between 10.60
and 15.82 days;

{ With possibility 0.75, the mean recovery time du-
ration of GD for male patients is more than 16.10
days;

{ It is completely possible that the mean recovery time
duration of GD for female patients is between 20.83
and 32.94 days;

{ With possibility 0.16, the mean recovery time du-
ration of GD for female patients is more than 37
days.

Also, results for recovery time of OD are as
follows: Considering two 90% fuzzy intervals in Fig-
ure 8, some probabilistic-possibilistic interpretations of
results are as follows. For instance, at con�dence level
0.90:

{ It is completely possible that the mean recovery time
duration for OD be between 13.97 and 20.85 days for
male patients;

{ With possibility 0.75, the mean recovery time du-
ration of OD for male patients is more than 21.22
days;

{ It is completely possible that the mean recovery time
duration for OD is between 21.90 and 34.63 days for
female patients;
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{ With possibility 0.38, the mean recovery time du-
ration of OD for female patients is more than 37
days.

For a statistician, such results can be more useful
than using only a single classical con�dence interval
to make an inference about the unknown mean of
recovery time in health sciences. Note that such fuzzy
con�dence intervals bene�t from both probabilistic and
possibilistic sources of information.

8. Conclusions

An approach was presented to construct a fuzzy
con�dence interval for an unknown crisp statistical
parameter. The proposed fuzzy con�dence interval was
a trapezoidal shaped fuzzy subset in the parameter
space. Some numerical and applied examples were
presented to explain the proposed approach. The
bene�ts of the approach are as follows:

1. The proposed approach enjoys greater generality
than Buckley's fuzzy point estimation method;

2. There is no limitation to construct fuzzy con�dence
interval for any unknown parameter;

3. The interpretation of the proposed fuzzy con�dence
interval is based on both probability and possibility;

4. The method is applicable in various contexts, as the
applicability of the proposed method was explained
based on a real-world problem about COVID-19.

9. Future works

Regarding the proposed approach in this paper, the
following topics can be considered for future works:

1. Considering the relationship between statistical
tests and con�dence intervals, the study of testing
fuzzy hypotheses [36,37] based on fuzzy/precise
observations presents two potential subjects for
further research;

2. As another related subject, one can investigate
the fuzzy con�dence interval from the Bayesian
perspective;

3. Moreover, the developments of various types of
con�dence interval are some potential directions for
future research. For instance, the shortest fuzzy
con�dence interval, the unbiased fuzzy con�dence
interval, the equal tails fuzzy con�dence interval,
and the asymptotic fuzzy con�dence interval may
be considered in future research based on the
proposed approach.
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