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Abstract. This study introduces a new evolutionary approach called Binary Genetic
Programming (BGP) to design and assess public transportation systems from a sustainable
development perspective. The BGP combines evolutionary system identi�cation techniques
with k-fold cross-validation to obtain an accurate model between the land use and
transportation parameters from a sustainable urban development point of view. To assess
the new model, two public transportation systems including the new tram line of Antalya
(Turkey) and the bus rapid transit line of Bhopal (India) were considered. The model
was employed to classify the transportation systems into Transit-Oriented Development
(TOD) and non-TOD. The solutions generated by the new model were compared with
those of classic Decision Tree (DT) as well as the state-of-the-art Random Forest (RF)
models evolved as the benchmarks in this study. The results showed that the BGP was
highly e�cient and might provide less than 5% classi�cation error. It is superior to the DT
and RF solutions, which typically require higher datasets to avoid over�tting. Furthermore,
the explicit formulation of BGP in combination with the multicriteria evaluation method
increases human insight into the factors a�ecting the design of public transportations from
a sustainable urban development point of view.

© 2023 Sharif University of Technology. All rights reserved.

1. Introduction

Transit-Oriented Development (TOD) is an urban
development method that integrates land use with
coordinated transportation system [1]. It is a robust
approach to design urban areas considering sustainable
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development perspectives [2,3]. Indeed, TOD enhances
the access to public transit via Mixed Use of Land
(MUL) features and other urban elements [4]. As a
result, it reduces the dependency on cars and positively
impacts public life on TOD regions. During the last
few decades, TOD has been adopted in several ways as
a practical method for sustainable urban development
[3,5]. For example, in New Jersey, Portland, and
San Francisco, the regenerated areas encompass TOD
principles in their planning to ameliorate MUL promote
pedestrian facility, a�ordable housing, and increase
public health [6]. In some European cities, such
as Paris and Amsterdam, TOD mainly implements
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curbing the urban design to make it suitable for trans-
portation modes, mixed uses, and public space within
a range [7,8]. In Delhi, Tokyo, and Hong Kong, TOD
practice successfully reduced automobile dependency,
urban sprawl, and a�ordable housing [9,10]. Bus-
based TOD trick in Ahmedabad (India) curbs sprawl
by promoting compact high-density development near
public transit [11]. In Brisbane, Melbourne, Perth, and
Sydney, the public transport-focused TOD was applied
to solve lower-density urban sprawl and connection to
the town centers [12]. Loo and du Verle [13] proposed a
two-level sustainable mobility strategy for future cities
in which the main roles of TOD with respect to both
the internal and external movements of people were
discussed. The authors in Hong Kong found that
people living in TOD area had higher public transport
shares than those living in non-TOD neighborhoods.
More recently, Yu et al. [14] presented a Latent
Dirichlet allocation-based perspective to de�ne the-
matic characteristics of urban functions for each metro
station catchment in Hong Kong. In this connection,
the authors demonstrated that the functional patterns
within stations' catchment could be considered for
formulating more targeted TOD strategies.

To assess the level of TOD, urban designers
commonly use TOD indices [1,3,15]. Our review shows
that multicriteria analysis [e.g., 10,16] and/or data
envelopment analysis were implemented to measure the
TODness [e.g., 17,18]. However, the germane literature
lacks attempt on the prediction and classi�cation of the
areal TODness. This is an important task in sustain-
able urban development that supports decision-makers
to recognize signi�cant hot spots that meet (ideal)
TOD standards. Thus, an existing condition/area
could be adopted or refused for upcoming investment
or complementary infrastructure and services such as
developing a new public transport system or building
a new stop/station in an existing one. However,
it requires a profound understanding of the factors
a�ecting its performance. Therefore, the selection of
the parameters according to the geographical context
to �nd the relationship between predictor variables and
TODness is an essential step for evaluation.

Despite considerable research on the satisfactory
use of Arti�cial Intelligence (AI) techniques in urban
design and planning [e.g., 19,20], classi�cation of TOD
zones has not been explored yet. To bridge this
research gap, the present study aimed at developing
a new AI-baes classi�cation model that integrates the
multicriteria analysis with the state-of-the-art Genetic
Programming (GP) technique. In previous studies, AI
techniques such as Arti�cial Neural Networks (ANNs),
fuzzy logic, Decision Tree (DT), and Support Vector
Machines (SVM) are generally used by urban planners
to identify the urban evolution pattern or simulation
of development alternatives [21{28]. Although GP

has been used in di�erent civil engineering disciplines
[e.g., 29{33], the use of GP for classi�cation is not yet
ubiquitous in civil engineering and urban design [34].

Inspired by the literature review, the main goal of
this study is, for the �rst time, to develop a GP-based
model for classi�cation of TOD zones. The proposed
model implements multi-source geospatial datasets in-
cluding built environment and transportation system
indicators to classify stations in two public transporta-
tion systems (a tramway line in Antalya, Turkey, and
a Bus Rapid Transit (BRT) line in Bhopal, India) into
TOD and non-TOD zones that are required for sus-
tainable urban development, evaluation, and planning
purposes. To verify the e�ciency of the introduced
Binary GP (hereafter BGP) approach, we compared its
classi�cation performance with that attained using the
classical DT and state-of-the-art Random Forest (RF)
models developed as the benchmarks in this study. To
the best of the authors' knowledge, only a few TOD
examinations have been conducted for Turkish and
Indian cities [e.g., 18,35{38]. The present study is the
foremost research that investigates TOD classi�cation
in tram and BRT systems. The proposed model is
believed to be useful for not only the sustainable
development of the case-study areas, but also TOD
zones classi�cation applications in other areas and
public transportation systems.

2. Methods

2.1. Generic Programing (GP)
The GP is an emerging AI approach that applies evo-
lutionary algorithms to identify an explicit relationship
for a given process [39]. It has di�erent variants
including (but not limited to) monolithic GP, linear
GP, multistage, and multigene GP. However, in all
types, a population of random solutions (programs) is
formed at the outset and then, the genetic items of
each program are progressively changed to achieve the
desired solution [40,41]. The computer programs have
a tree structure comprising a root/function node, inner
nodes, branches, and terminal nodes (leaves). Figure 1
shows a GP tree and the associated mathematical
expression.

The main steps required to develop a GP-based

Figure 1. An exemplary genome and its mathematical
expression.
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decision-making model include (i) the educated selec-
tion of dependent variables known as inputs, (ii) wise
guess about system functions (mathematical, logical, or
Boolean), and (iii) appropriate tuning of evolutionary
operators. Skilled decision-making during these steps
helps the GP algorithm evolve precise models and
reduces the time of computations [42]. Regardless of
the type of the problem, regression, or classi�cation,
the GP algorithm starts with random establishment of
the initial programs known as potential models. At
that point, the programs are sorted based on their
goodness of �tness, and the ones demonstrating higher
suitability would be chosen as parents subjected to
the evolutionary operations of crossover and mutation
[42]. These evolutionary operators mimic biological
evolution processes reecting \survival of the �ttest".
To solve classi�cation problems, as it is the case in this
study, an additional root node is generally selected so
that the numerical model outputs can be categorized
into the user-de�ned classes. This is a challenging task
that provides the injection of the modeler's knowledge
into the black-box programing technique. Since there
is no universal way to determine the root node, one
may use a trial-and-error procedure to �nd the best
function. According to the literature, softmax and
logistic functions are frequently used for classi�cation
task in engineering problems [43]. The reader is
referred to Koza [39] for a more detailed explanation of
GP theory and its evolutionary mechanisms.

2.2. Decision Tree (DT)
DT is one of the frequently used classi�cation algo-
rithms in practice. It presents a strategy that advances
from top to bottom or from general to speci�c during
the training process. In this strategy which has a kind
of tree structure, the attribute value of each node is
measured and branches are formed with the achieved
results. A typical DT architecture is shown in Figure 2.

DT modeling begins with root node selection
accompanied by separation criteria such as information
gain. According to the selected criteria, this root node

Figure 2. A typical decision tree architecture.

is divided into branches. The separation continues until
terminated by leaf nodes. In this structure, the path
followed by the data progresses with the answer given in
binary (yes/no), categorical, or numerical distinctions
depending on if-then-else algorithms. Tree contains all
trained cases in the root node and checks for clustering.
If all cases in the root node coincide with a single
cluster, the solution is achieved. Otherwise, the root
node is divided into branches and repeated until the
branch is simple enough to decide directly. Based on
the size of the dataset, branches and depth of tree
are speci�ed by the modeler. To prevent over�tting,
pruning algorithms are used, which refers to removing
leaf nodes containing a small number of objects from
the DT. The reader is referred to Jijo and Abdulazeez
[44] for details on DT theory and its types, bene�ts,
and drawbacks.

2.3. Random Forest (RF)
RF is a classi�cation and regression method that uses
an ensemble of binary DT that has been trained
individually, with the conclusion calculated by taking
into consideration the �ndings acquired by each DT
[45]. Each tree is built using a distinct bootstrap
sample chosen randomly. One-third of the original data
is left out to be used for testing the forest. Without
the need for any pruning, RF models have the potential
to generalize and reduce the risk of over�tting. Also,
based on the premise that a combination of predictions
is more accurate than using only one prediction, RF
seems to give better results than DT. For more details
about RF, the reader is referred to Breiman [45].

2.4. The proposed BGP model for TODness
classi�cation

Combination of traditional multicriteria evaluation
methods with AI techniques can yield accurate models
to describe and classify complex urban areas. Although
GP is known as a symbolic regression tool, it could be
improved in a way that the evolved evolutionary models
solve a classi�cation task [46]. For example, to predict
the possibility of heavy rainy month in two di�erent
cities in Iran, a GP-based classi�er was developed by
Danandeh Mehr et al. [43] in which the numerical
model output was rescaled to be one of categorical
outputs of Yes or No. To this end, the authors imposed
the Logistic regression function on the best GP tree as
a secondary root node. Inspired by that study, a new
BGP model that uses sigmoid function is proposed as
the additional root node capable of transforming the
numerical model output into the binominal values of
0.0 and 1.0 that denote non-TOD and TOD areas,
respectively. The sigmoid function (Eq. (1)) is a
generalization of logistic regression function that turns
a vector of K real values into a vector of K real values
equaling 1. In this study, a data set of 21 tramway
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stations (i.e., X = (x1; x2; :::; xK and K = 21) with
labels Y = (y1; y2) where yi 2 f0; 1g is considered,
indicating a problem of binary classes.

S
�
~X
�
i

=
exi

exi + 1
; (1)

where exi is the standard exponential function applied
to each element of the input vector. The denominator
is the normalization terms such that all outputs can be
in the range (0,1), indicating a valid probability.

As illustrated in Figure 3, the initialization of the
BGP model starts with the collection of the required
data (explained later in the next section) to calculate
TODness value of each station. TODness value of each
station in this study is determined based on available
data and multicriteria analysis (see Section 2.4). Then,
the gathered dataset is divided into two parts: training
(the �rst 75%) and testing (the last 25%) sets. As
the problem at hand has a limited dataset (21 tram
stations for Antalya and 16 BRT stations for Bhopal),
a three-fold cross-validation method is applied using
the training and testing datasets to ensure model ro-
bustness. To this end, the data is randomly partitioned
into three equal-size training and testing subsets, and
then each subset is used to evolve a BGP model.

Figure 3. Flowchart of the proposed binary genetic
programming approach to evolve TODnees classi�er.

The attained accuracy measures are �nally averaged
to reduce inevitable uncertainty raised from the limited
data set. The advantage of this method is that roughly
all datapoints are used for both training and validation.
To train each set, we used GPdotNet [42] that applied
classic GP to formulate each label as a function of input
elements (i.e., Y = f(X)). The tool supports di�erent
�tness functions including total accuracy, Heidke skill
score, and pierce skill score. Total accuracy was used
as the �tness function to train GP models in this study.

2.5. Performance appraisal criteria
To evaluate the accuracy of the new models, three
statistical metrices including total Accuracy (AC),
Kappa (KA), and Classi�cation Error (CE) were used
in this study. While TA is the averaged value of
True Positive (TP) and True Negative (TN) class
predictions, KA parameter indicates the reliability of
the comparative agreement between two classi�ers. It
is calculated in the range of [0, 1] with higher values
for better agreement.

AC =
TP + TN

m
� 100; (2)

KA =
OAG + EAG

1� EAG ; (3)

CE = 100� TA; (4)

where m is the total sample number, and OAG and
EAG are the observed and expected agreements, re-
spectively. All these metrices can be measured using
a confusion matrix of the model outputs. Basically,
a confusion matrix is a table that summarizes the true
and false predictions in an order. It is an N�N matrix,
where N is the total number of target classes (i.e., 0
and 1).

3. Case study area and data

3.1. Antalya new tram line
Having a fast population growth, Antalya is located
on the Mediterranean coast, south-west of Turkey,
between the Torus Mountains and the Mediterranean
Sea. The city of Antalya (Figure 4(a)) is of great
signi�cance to the truism industry of Turky and its
picturesque beaches are the destination of worldwide
tourists [47]. The urban population of Antalya is nearly
2.55 million in 2020 and is poised to 2.60 million in
2022. The city has an area of 21000 km2 and therefore,
its population density is about 124 person per square
kilometer.

The city has a four-line tram (light rail) sys-
tem in operation including Museum-Zerdalilik Nostal-
gic Tram, Fatih-Meydan Tram, and Meydan-Airport-
Aksu-EXPO and Varsak-Otogar. As shown in Figure 5,
the Varsak-Otogar line, which has 21 stations along
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Figure 4. Study area displaying (a) Antalya municipal and (b) existing tramway lines.

its course and was partly under construction during
this study, is considered for TOD analysis in the
present study. The line of interest has a length of
approximately 13 km and is located in the northeast
part of the city.

The performance measures adopted for TOD
index calculation at each station include Population
Density (PD), Land Use Diversity (LD), Walkable
Catchment area (WC), Walkable Path (WP), and
Travel Behavior (TB). These performance measures
were collected as they are frequently suggested in
the germane literature [1,48] and available to evaluate
the level of TOD among the selected stations. It
should be noted that each of these measures is calcu-
lated/determined for a bu�er zone of 800-meter radius
around the station. LD is a major factor a�ecting non-
motorized and public transport-based trips, especially
for work purposes, and it creates rational passenger

ow of the day consistently. To calculate LD, we,
�rst and foremost, classi�ed the area into residential,
commercial, recreational, and industrial areas; then,
the Area Index, i.e., the ratio of the work areas in
the bu�er zone to the work areas in the whole study
area, was calculated for each station. Knowledge of
the TB of the transit-supportive user is necessary.
Therefore, we can �nd the gap between the user and
present transit services [49]. In the present study, TBs
including tendency or use of personal motorized vehicle,
public tram, taxi, and walking or cycling were used as
a categorical data to distil TOD index of each station.
To determine TB of dwellers at 800-meter bu�er zone
of each station, a total of 100 households were sampled
and interviewed. Questionaries were designed so that
we could measure the household members with the
age of 16 to 69 and report their attitude to each of
the TB measurements (i.e., personal motorized vehicle,
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Figure 5. The �rst case study area showing tramway stations and their nearby.

public tram, taxi, and walking, or cycling). It is worth
mentioning that the members were asked to ful�ll
the questionaries regardless of the ongoing COVID-19
restrictions during the study.

According to Singh et al. [10], multicriteria analy-
sis was used to combine the data and transfer them into
a resulting decision (target binary variable). The main
step in multicriteria analysis is standardization of each
criterion. It is performed to adjust the units of di�erent
indicators. In this study, we simply divided each value
by their maximum amount so that all the inputs were
unitless. As a result, the classi�cation algorithm gives
equal importance to the adopted measures.

3.2. Bhopal BRT
To evaluate the e�ciency of the BGP algorithm (see
Figure 3) for TODness prediction along a BRT line,
the second case study was run using available data from
the literature [1]. To this end, we used TODness values
(Figure 6) from 16 stations along a well-established
BRT system of Bhopal, India. According to Khare et
al. [1], the city su�ers the problem of urban sprawl
and more than 40% of the work trips in the city are
made by public transport. Seven criteria including
PD, LD, WC, TB, WP, MUL, and Economic Indicator

Figure 6. TODness scores of the bus rapid transit
stations, Bhopal, India.

(EI) were used to quantify the TOD values at each
station. Table A.1 lists the selected stations and the
score of each of these performance measures. For a map
of the BRT line and details about calculation of each
criterion, the interested reader is referred to Khare et
al. [1].

4. Results and discussion

As previously described, the novel BGP and classic
DT approaches were applied to classify the Antalya
tramway and Bhopal BRT stations into TOD and non-
TOD areas. In this section, the attained results for each
case study area are presented and discussed separately.

4.1. Results of case study#1
To develop BGP and DT models for Antalya tram
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line, performance measures of 21 tram stations to-
gether with the outputs of multiple criteria analysis
were considered. Table 1 summarizes the TODness
values for all the stations attained through multicriteria
analysis and reects the involvement of indicators in
planning for TOD. It is observed from the table that
nine stations on the line secure the TOD condition (i.e.,
TOD index � 0:6). On a scale of one, the maximum
TOD index value is 0.772 for Zafer station, while the
minimum index value is 0.336 for Varsak Depo Alani
station. Since Zafer district is one of the central
residential regions and homes for a fame hospital in
Antalya, having a high TOD score is in not surprising
and agrees with local Moovit (moovitapp.com) records.
By contrast, the Varsak Depo Alani station is a non-
residential/commercial area with less PD and is mainly
used as a warehouse area; thus, it is expected to score
very low.

To train and test the models, the datapoints
(Table 1) were split into 75% (16 stations) of training
and 25% (5 stations) of testing datasets. Then, 3-

fold strategy was used to randomly create subsets used
for BGP and DT modeling. For example, Table A.2
represents the subsets used in this study. The associ-
ated BGP and DT/RF prediction models were evolved
using GPdotNet and RapidMiner, respectively. These
are well-documented tools with a free license. The
BGP model con�guration includes the determination of
the rate of evolutionary operations, maximum number
of generations, functional set, objective function, and
additional root node function. In this study, GP engine
was set to generate solutions with maximum tree depth
of six and improve it up to 500 generations. However,
the training process at each fold revealed that the
BGP algorithm quickly converged to the best solution
after a few number of generations (see Appendix B:
Figure B.1). The adopted crossover, mutation, and
reproduction rates are 0.9, 0.05, and 0.2, respectively.
Figure 7 illustrates the best evolved BGP trees for each
fold. The associated DT models are also presented in
Figure 8. In both DT and RF modeling, the maximum
tree depth was set to 10. According to RF literature,

Table 1. The input and target variables used for the binary genetic programming and decision tree modeling (Population
Density (PD), Land use Diversity (LD), Walkable Catchment area (WC), Walkable Path (WP), and Travel Behavior (TB)).

ID Station name PD LD WC WP TB TOD Binominal label

1 Varsak Depo Alani 0.033 0.144 0.203 0.302 1.000 0.336 Non-TOD�

2 Varsak 0.066 0.462 0.489 0.438 1.000 0.491 Non-TOD

3 Kepezpark 0.131 0.862 0.195 0.354 0.943 0.497 Non-TOD

4 Aktoprak 0.458 0.531 0.559 0.579 0.957 0.617 TOD��

5 Aydo�gmu�s 0.479 0.325 0.541 0.824 0.786 0.591 TOD

6 Kar�siyaka 0.675 0.502 0.345 0.689 0.743 0.591 TOD

7 S�elale 0.494 0.837 0.744 0.540 0.629 0.649 TOD

8 S�uleyman Demirel 0.547 0.364 0.399 0.581 0.800 0.538 Non-TOD

9 Ulubatli Hasan 0.057 1.000 0.351 0.378 0.600 0.477 Non-TOD

10 Fevzi C�akmak 0.451 0.837 0.261 0.724 0.729 0.600 TOD

11 Kuzeykaya 1.000 0.475 0.460 0.640 0.600 0.635 TOD

12 Gazi 0.536 0.585 0.365 0.570 0.586 0.528 Non-TOD

13 S�ut�c�uler 0.419 0.381 0.377 0.481 0.571 0.446 Non-TOD

14 G�undo�gdu 0.673 0.517 0.346 0.389 0.643 0.514 Non-TOD

15 Ye�silirmak 0.462 0.642 0.383 0.492 0.557 0.507 Non-TOD

16 Kepez Belediyesi 0.148 0.762 0.218 0.613 0.657 0.479 Non-TOD

17 S�ehitler Parki 0.306 0.869 0.853 0.603 0.457 0.618 TOD

18 Erdem Beyazit K.M. 0.298 0.805 0.372 0.498 0.514 0.498 Non-TOD

19 Yildirim Beyazit 0.328 0.787 0.268 0.487 0.586 0.491 Non-TOD

20 Zafer 0.337 0.880 1.000 0.956 0.686 0.772 TOD

21 Atat�urk 0.363 0.800 0.758 1.000 0.371 0.659 TOD

Note: �: Negative Label; ��: Positive label
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Figure 7. Binary genetic programming models derived for TOD area prediction in Varsak-Otogar tramway line, Antalya
(Population Density (PD), Land use Diversity (LD), Walkable Catchment area (WC), Walkable Path (WP), and Travel
Behavior (TB)).

Figure 8. Same as Figure 7, but evolved by decision tree
(Land use Diversity (LD), Walkable Catchment area
(WC), and Walkable Path (WP)).

the maximum number of trees was limited to 100 so
that the models could not be over�tted. Given that 100
trees are generated for each fold, the tree representation
of RF models is not depicted in this article.

Through the visual comparison of Figures 7 and
8, it is observed that BGP puts forward more complex

structures than DT in which all the performance mea-
sures contribute to the model prediction. Conversely,
DT predictions were limited to the use of merely WC
and WP. To recognize the best structure and attain
the models' accuracy, the classi�cation matrices of
these structures were compared in Tables 2 and 3,
respectively.

Each row in the tables shows which TOD area was
predicted by the model. The columns are the ground
truth indicating the number events in each class. The
values lying across the main diagonal show the success
of the model at each class. These matrices together
with Eqs. (2) to (4) were utilized to calculate the
classi�cation accuracy of the models (see Table 4). It
is seen from the table that the highest classi�cation
accuracy belongs to the BGP models. In all folds
at the training phase, the approach achieves 100%
accuracy in terms of all the e�ciency criteria. The
same accuracy in the testing period, particularly in
Folds 2 and 3 implies that the BGP model deserves
generalization capability and does not fall into the
overtraining trap. By contrast, the benchmark DT
and RF model shows a perfect solution merely in the
training data sets of Fold 2. Regarding the testing
datasets, misclassi�cation rate of the DT (RF) is 20%
(20%) at Fold 2, 40% (35%) at Fold 1, and 40% (31.3%)
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Table 2. The confusion matrix of the binary genetic programming models evolved based on the presence and absence of
TOD.

Training Testing
True TOD True non-TOD True TOD True non-TOD

Fold-1
Pred. TOD 7 0 2 0
Pred. non-TOD 0 9 1 2

Fold-2
Pred. TOD 6 0 3 0
Pred. non-TOD 0 10 0 2

Fold-3
Pred. TOD 6 0 3 0
Pred. non-TOD 0 10 0 2

Table 3. The confusion matrix of the decision tree models evolved based on the presence and absence of TOD.

Training Testing
True TOD True non-TOD True TOD True non-TOD

Fold-1
Pred. TOD 6 0 1 1
Pred. non-TOD 1 9 1 2

Fold-2
Pred. TOD 10 0 2 1
Pred. non-TOD 0 6 0 2

Fold-3
Pred. TOD 10 1 2 2
Pred. non-TOD 0 5 0 1

Table 4. Performance results of the Binary Genetic Programming (BGP), Decision Tree (DT), and Random Forest (RF)
models at the training and validation stages (total Accuracy (AC), Kappa (KA), and Classi�cation Error (CE)).

Model Fold Training Validation
AC (%) KA CE (%) AC (%) KA CE (%)

BGP

Fold 1 100 1 0.0 80 0.615 20
Fold 2 100 1 0.0 100 1 0.0
Fold 3 100 1 0.0 100 1 0.0

Average 100 1 0.0 93.3 0.871 6.7

DT

Fold 1 93.75 0.871 6.25 60.0 0.167 40
Fold 2 100 1 0.0 80 0.615 20
Fold 3 93.75 0.862 6.25 60 0.286 40

Average 95.83 0.91 4.167 66.67 0.356 33.33

RF

Fold 1 95.00 0.891 5.00 65.0 0.178 35.0
Fold 2 100 1 0.0 80 0.615 20.0
Fold 3 97.75 0.932 2.25 68.66 0.376 31.33

Average 97.58 0.941 2.417 71.22 0.390 28.78
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at Fold 3. This implies (i) the lower generalizability of
RF and DT models if they are not considered over-
trained solutions and (ii) RF provides less uncertain
solutions than DT. This drawback of DT may rely
on the limited number of datapoints available in both
training and testing subsets. Thus, the algorithm yields
more uncertain classes for testing datapoints. Despite
bootstrapping the trees in RF, it cannot increase DT
accuracy as much as BGP. The authors believe that
the evolutionary feature of GP algorithm that provides
more divers with solutions at the training phase of BGP
diminishes the negative e�ect of the limited datasets
at the training phase; thus, the algorithm can detect
local optimum solutions. According to the mean KA
statistics that compare the models in terms of the
number of stations and the areas that are correctly
categorized, it can be concluded that the BGP classi�ed
the stations 100% and 87.1% accurately in the training
and testing datapoints. Despite the acceptable classi-
�cation range in the training datapoints (KA = 91%),
the DT and RF provided relatively fair results in the
testing datapoints (KA = 36% and 39%, respectively).
As in the literature where the KA values less than 40%
are considered as fair and more than 60% as substantial
classi�cation [50,51], the proposed BGP model could be
interpreted as a substantially satisfactory classi�er for
TOD area prediction in Antalya tramway system.

4.2. Results of case study#2
Like the evolution of BGP, DT, and RF models for
Antalya tram line, normalized performance measures of
16 BRT stations across Bhopal together with their bi-
nomial TODness values were employed (see Table A.1).
According to Table A.1, half of the BRT stations secure
the TOD conditions. On a scale of one, the maximum
and minimum TOD index values are 0.74 and 0.39 for
New Market station and Ashima Mall, respectively.
The TODness range is more or less the same with
that of Antalya tram line. In a similar approach
explained in the results of the �rst case study, 3-fold
strategy was employed to randomly create subsets and
develop BGP, DT, and RF models. Figures 9 and 10
illustrate the best evolved BGP trees and DT models
for TODness classi�cation (at each fold), respectively.
The associated accuracy results together with those of
RF are tabulated in Table 5. Similar to the �nding
from the �rst case study, the BGP simulation exhibited
fast convergence to the best solution (see Appendix B:
Figure B.2).

By comparing Figures 9 and 10, it is seen that
BGP evolves more complex structures than DT in
which most of performance measures contributed to
the model prediction. Inversely, DT predictions were
limited to the use of only WC and LD. Given that
100 trees were developed in the best RT model, we did

Figure 9. Binary genetic programming models derived for TOD area prediction along Bhopal bus rapid transit line
(Population Density (PD), Land use Diversity (LD), Walkable Catchment area (WC), Walkable Path (WP), and Travel
Behavior (TB)).
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Table 5. Performance results of the Binary Genetic Programming (BGP), Decision Tree (DT), and Random Forest (RF)
models at the training and validation stages (total Accuracy (AC), Kappa (KA), and Classi�cation Error (CE)).

Model Fold Training (12 stations) Validation (4 stations)

AC (%) KA CE (%) AC (%) KA CE (%)

BGP

Fold 1 100 1 0.0 75.0 0.50 25.0

Fold 2 100 1 0.0 100 1 0.0

Fold 3 100 1 0.0 100 1 0.0

Average 100 1 0.0 91.67 0.833 8.33

DT

Fold 1 93.75 0.871 6.25 60.0 0.167 40.0

Fold 2 100 1 0.0 75.0 0.50 25.0

Fold 3 91.67 0.833 8.33 100 1 0.0

Average 95.14 0.90 4.86 78.33 0.56 21.67

RF

Fold 1 100 1 0.0 80 0.615 20

Fold 2 100 1 0.0 100 1 0.0

Fold 3 100 1 0.0 75.0 0.50 25.0

Average 100 1 0.0 85.0 0.705 15.0

Figure 10. Same as Figure 9 but evolved by decision tree
(Land use Diversity (LD) and Walkable Catchment area
(WC)).

not provide the models' trees here. However, it can
be stated that RF solutions are more complicated than
both GP and DT. With respect to the model's average
accuracy summarized in Table 5, GP and RF are 100%
successful in the training period. However, their accu-
racy in the testing stations diminished to 92% and 85%,
respectively. Despite rather satisfactory results in the

training period, the DT shows signi�cantly unreliable
predictions in the unseen dataset such that its KA
varies in the range of 0.17 to 1.00. Similar magnitudes
of performance were also seen when BGP and DT
were used to model TODness in Antalya's tramline.
Although DT predictions can be improved via an
ensemble approach that yields RF model, the solution
remains highly complex which makes its application
di�cult for practical aims. Solutions evolved by GP
are not only less complex, but also explicit which can
elucidate directional relationships between parameters
and TODness. Combining the results from both case
studies, we can conclude the superiority of the proposed
BGP model over DT and RF. Thus, its application for
a sustainable design of public transportation systems
is recommended.

Because BGP, DT, and RF rely on various math-
ematical algorithms, they demonstrate di�erent results
for the same datasets. This �nding is consistent
with the germane literature, proving that the accuracy
and performance of predictions from di�erent ML
techniques could markedly vary [52]. Our results un-
derlined that outcome from a given model might vary
from fold to fold even in case of greater uncertainty,
compared to di�erent models. Undoubtedly, more
reliable predictions can be achieved when the desired
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model is trained by the samples representing the
transportation process as truly as possible. Therefore,
speci�c attention must be devoted to data partitioning
in the future applications of the proposed model.
Moreover, future studies are supposed to extend the
range of classi�ers and ML models used in our study.

5. Summary and conclusion

The combination of traditional multicriteria evalua-
tion methods with novel Arti�cial Intelligence (AI)
techniques can be used to describe and design sus-
tainable public transportation systems. Classi�ca-
tion and prediction of Transit-Oriented Development
(TOD) zones are of paramount tasks in sustainable
urban development as it provides a baseline for urban
planners and decision-makers to identify the urban
functional area over space and time. This paper, for the
�rst time, suggested a simple an explicit approach by
which the state-of-the art Genetic Programming (GP)
technique can be further developed for classifying TOD
areas along a public transportation system. The new
model called Binary Genetic Programming (BGP) was
implemented for two use cases: Antalya tramway and
Bhopal Bus Rapid Transit (BRT) system. The new
model identi�es the best relationship between various
land use and urban features and TODness values at
each station. To verify the e�ciency of the BGP model,
we further developed traditional DT models, with the
same input/target variables as the benchmark solution.
While BGP attempted to classify the area into TOD
and Non-TOD areas based upon the theory of the
\survival of the best", the DT algorithm applies if-then
rules to solve the same task. The results of performance
analysis in both case studies demonstrated that the
suggested model could surely obtain the solution of
classi�cation with signi�cantly higher accuracy than
DT. Despite the apparent shortage of data, the BGP
can produce models with acceptable generalization
accuracy. It is well known that the data-driven
models are case-sensitive and their structure must be
reoptimized when di�erent datasets are used. However,
the lack of a consistent framework for quantifying TOD
has made the functionality of the concept di�cult.
Our study was limited to the available data from two
cities. Further datasets from other locations could be
applied to verify the robustness of the proposed BGP
approach.
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Appendix A

The original datapoints (Table A.1) and subsets (Ta-
ble A.2) created via three-fold cross-validation method
to develop BGP and DT models in the present study.

Appendix B

The BGP �tness simulation for TOD area prediction
in Varsak-Otogar tramway line as well as Antalya
(Figure B.1) and Bhopal BRT line (Figure B.2).
The maximum �tness (red line) shows that the BGP

Table A.1. The input and target variables used for binary genetic programming (BGP) and Decision tree (DT) modeling
of Bhopal bus rapid transit line (population density (PD), land use diversity (LD), walkable catchment area (WC),
walkable path (WP), travel behavior (TB), mixed-use of land (MUL), and economic indicator (EI)).

ID Station name PD LD WC WP TB MUL EI TOD Binominal label

1 New Market 0.28 1 0.91 0.9 0.63 0.51 0.53 0.74 TOD��

2 Board 0.22 0.84 1 0.81 0.71 0.59 0.54 0.71 TOD

3 New Ashok 0.8 0.87 0.22 0.89 0.76 1 0.64 0.7 TOD

4 Piplani 0.19 0.77 0.63 1 0.66 0.59 0.74 0.65 TOD

5 Railway Station 1 0.78 0.21 0.66 0.8 0.51 0.54 0.63 TOD

6 People Mall 0.26 0.53 0.95 0.64 0.75 0.32 0.73 0.62 TOD

7 Karound 0.21 0.78 0.54 0.88 0.78 0.86 0.58 0.62 TOD

8 Sai 0.35 0.76 0.31 0.95 0.67 0.71 0.67 0.6 TOD

9 Habibganj 0.2 0.7 0.48 0.85 0.63 0.47 0.62 0.56 Non-TOD�

10 Gandhi 0.1 0.52 0.38 0.87 0.77 0.35 0.67 0.48 Non-TOD�

11 Kohe Fiza 0.2 0.66 0.21 0.62 0.62 0.5 0.78 0.48 Non-TOD

12 Beema 0.25 0.53 0.09 0.8 0.63 0.83 0.63 0.46 Non-TOD

13 Halalpur 0.08 0.48 0.38 0.71 0.77 0.35 0.69 0.45 Non-TOD

14 Aura 0.23 0.39 0.14 0.85 0.64 0.74 0.69 0.44 Non-TOD

15 C21 0.08 0.55 0.39 0.31 0.77 0.2 0.68 0.4 Non-TOD

16 Ashima 0.09 0.33 0.25 0.68 0.58 0.57 0.68 0.39 Non-TOD
�Negative Label; ��Positive label.
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Table A.2. The Fold-1 subset used to develop binary genetic programming and decision tree models (an example of
Antalya tram line; (population density (PD), land use diversity (LD), walkable catchment area (WC), walkable path
(WP), and travel behavior (TB)).

ID PD LD WC WP TB TOD

21 0.363 0.800 0.758 1.000 0.371 1

4 0.458 0.531 0.559 0.579 0.957 1

8 0.547 0.364 0.399 0.581 0.800 0

16 0.148 0.762 0.218 0.613 0.657 0

13 0.419 0.381 0.377 0.481 0.571 0

20 0.337 0.880 1.000 0.956 0.686 1

9 0.057 1.000 0.351 0.378 0.600 0

10 0.451 0.837 0.261 0.724 0.729 1

1 0.033 0.144 0.203 0.302 1.000 0

12 0.536 0.585 0.365 0.570 0.586 0

5 0.479 0.325 0.541 0.824 0.786 1

11 1.000 0.475 0.460 0.640 0.600 1

18 0.298 0.805 0.372 0.498 0.514 0

7 0.494 0.837 0.744 0.540 0.629 1

14 0.673 0.517 0.346 0.389 0.643 0

3 0.131 0.862 0.195 0.354 0.943 0

15 0.462 0.642 0.383 0.492 0.557 0

17 0.306 0.869 0.853 0.603 0.457 1

2 0.066 0.462 0.489 0.438 1.000 0

19 0.328 0.787 0.268 0.487 0.586 0

6 0.675 0.502 0.345 0.689 0.743 1

Figure B.1. The binary genetic programming �tness simulation for TOD area prediction in Varsak-Otogar tramway line.
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Figure B.2. The binary genetic programming mode; �tness simulation for TOD area prediction along Bhopal bus rapid
transit line.

achieved 100% accuracy at the training phase at all
three folds after a few generations.
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