A hybrid model for simulation of lithium-ion batteries using artificial neural networks and computational fluid dynamics

Farshad Dehghania, Reza Eslamloueyana,*, Mohammad Sarsharb,*
aSchool of Chemical and Petroleum Engineering, Shiraz University, Molasadra Ave., Shiraz, Iran
bInstitute of Mechanics, Iranian Space Research Center, Falasiri Street, Shiraz, Iran

* Corresponding authors
E-mail address: eslamlo@shirazu.ac.ir (R. Eslamloueyan), Tel./fax: +98 711 6473793, Mobile: 09177101839
E-mail address: m.sarshar@isrc.ac.ir (M. Sarshar), Tel./fax: +98 711 6231388, Mobile: 09171281381

Abstract

Chemical reactions inside lithium-ion batteries generate heat and cause temperature rise. Hence, it is necessary to monitor battery time dependent heat generation. In this work, a hybrid model for simulating heat generation inside a pack of lithium batteries has been developed. An artificial neural network (ANN) has been employed to simulate electrochemical and thermal behaviors of a Panasonic NCR 18650 lithium-ion battery. In order to develop the hybrid model, the designed ANN has been inserted into ANSYS Fluent software through a C source code. A 3-D computation fluid dynamics (CFD) has been developed to simulate temperature distribution in the battery pack. Experimental data has been obtained using a NEWARE battery test system at different C-rates. The outputs of the proposed ANN consist of heat generation inside the battery as well as the electrochemical parameters. The combination of the ANN and CFD modeling, which led to a hybrid model, can be mentioned as the major contribution of this work. The results show an excellent consistency between the proposed model and test data. The simulation estimates the range of the manufacturer’s working temperatures (-20 to 60 °C), regarding the considered batteries.

Keywords: Artificial neural networks, Lithium-ion batteries, Electrochemical and thermal simulation, Thermal management, CFD simulation

1. Introduction

Increase in fossil fuel consumption worldwide has been responsible for the global warming, a result of greenhouse effect due to excessive CO\textsubscript{2} production. It is predicted that with the current rate of fuel consumption, global petroleum reserves will be exhausted in the next 50 years [1]. According to these facts hence, the need for renewable and sustainable energy sources is becoming more evident than ever before. Energy sources contain batteries, fuel cells, capacitors, etc.
Batteries can be used as both, primary and backup energy sources in the electrical devices like electric vehicles (EVs), hybrid electric vehicles (HEVs), communication systems and so on [2]. Nowadays, Lithium-ion batteries are leading batteries with special characteristics that include fast response, high energy density, high nominal voltage, low self-discharge rate, long cycle life and no memory effect [3-5]. In spite of these positive characteristics, performance and safety of lithium-ion batteries must be monitored during operation to avoid sudden expulsion [6]. Even the best performing systems are prone to degrade over time and usage. For example, three important accidents that led to high economic damage to companies that use lithium-ion batteries as their source of energy are as follows:

1. In September 2016 a Samsung Galaxy Note 7 battery malfunctioned causing about $3 billion in losses [7]
2. Plane crash in April 2000 caused by failure of the power supply system of its landing gear
3. Accident of Mars Global Surveyor in November 2006 due to heating of battery radiators [8, 9]

It is concluded from the past accidents and problems caused by malfunction of Lithium-ion batteries that monitoring and predicting battery heat generation and its working temperature are crucial for battery performance.

There is no simple and accurate model available to predict lithium-ion battery characteristics such as cycle life, capacity, heat generation, etc. Developing tools that provide information such as voltage, remaining capacity, heat generation and other battery operational characteristics at every desired time and working cycle is necessary. To achieve this goal, the artificial neural networks (ANNs), as one of the most powerful black box modeling techniques with quick responses is used to predict electrochemical and thermal characteristics of lithium-ion batteries. ANNs are useful for non-linear systems, and those which cannot be described by analytical equations. ANNs are considered as data-based models which are able to learn from experiments and examples [10].

ANNs have been used to predict electrochemical properties of lithium-ion batteries such as voltage, capacity, power and other battery parameters such as state of charge (SoC), state of health (SoH) and state of energy (SoE) [10-17]. Parthiban et al employed artificial neural network for the first time to predict the electrochemical characteristics of lithium-ion batteries [10].

Several cooling methods are used for temperature control inside battery pack based on the amount of heat generated during battery operation and the environmental conditions, taking into account the best operating temperatures in the range of 20 to 40 °C [18]. Cooling methods are performed by gas and liquid [19], using phase-change materials [10] and heat pipes [20]. Computational fluid dynamics is an effective way to simulate temperature distribution inside battery pack. Wang et al. developed a CFD simulation to find the temperature distribution inside a single cylindrical lithium-ion battery cell, considering that no cooling strategy is applied in order to control the temperature distribution [21].

Cicconi et al. studied temperature distribution in an electric vehicle battery pack and calculated heat generation inside battery for different C-rates, and finally considered three forced convection cooling methods for thermal management of battery pack [22].

The novelty of this work is the combination of an ANN black box model with a CFD model for
developing a hybrid model to simulate a pack of commercial Li-ion batteries. After constructing the neural network, it is integrated with Fluent software through a C code in order to simulate the temperature distribution inside the battery pack.

2. Methodology

Acquired experimental data and thermal model adopted in this study, constructing structure of the network along with the pattern employed to optimize the number of hidden layer neurons and the battery pack structure will be discussed in this section.

2.1. Data acquisition

In order to obtain experimental data such as voltage, temperature, capacity, etc., a host computer, NEWARE BTS 3000 battery test system and an incubator are used. The battery test system is shown in Fig. 1. Data acquisition system and the way all components interact with each other are shown in Fig. 2. All training and testing data are collected from NCR 18650 Panasonic lithium-ion cell. Data obtained include cycle number, time and voltage at constant temperatures of 25, 35 and 45 ºC for 0.5, 1.0 and 1.5 C-rate for discharge. Time steps for data gathering is one second for a total time of 6700 S, 3700 S and 1300 S for discharge rate of 0.5C, 1.0 C and 1.5C, respectively. Overall data for battery simulation is shown in Table 1.

2.2. Thermal model

The most common equation that is used for calculating heat generation inside a battery during an electrochemical process is shown in Equation (1) [23]:

\[
Q = I(V_0 - V) - IT \frac{dV_0}{dT} \tag{1}
\]

Q is heat generation in the battery, \(V_0\) is open circuit voltage (OCV), V is cell voltage, I is applied current (positive for discharging and negative for charging) and T is temperature of the cell. The first term in Equation (1) is the overpotential due to ohmic losses in the cell, charge transfer overpotentials at the interface and mass transfer limitations. The second term is the entropic heat, and the potential derivative with respect to temperature is considered as the entropic heat coefficient [24].

2.3. Measurement of entropy change

Following method is used to measure the entropic heat generation of the battery [25]:
1. Keeping cell at open circuit voltage for about 21–23 h at room temperature.
2. Temperature change by 10 ºC after every 2.5 h.
3. \(V_0\) measurement at temperatures 25, 35, 45 and 55 ºC.

As it is shown in Fig. 3, OCV decreases while the battery is kept at 25 ºC for about 22 hours due to self-discharge [26]. When the temperature is changed from 25 ºC to 35 ºC, OCV increases in a
short period of time then it decreases again as time goes on. The same procedure is applied at 45 °C and 55 °C. $\frac{dV_0}{dt}$ is calculated for each increase in OCV using least squares approximation assuming that the changes in OCV trend are linear.

2.4. Artificial neural network

Artificial neural network is a black box model that links input to output data using a defined set of non-linear functions. ANNs are inspired by biological nervous systems [27] and the basic unit in ANN is the neuron [28]. They are trained using a number of input data with corresponding output data obtained from actual measurements so that a particular set of inputs, produce a specific set of target outputs. Training network adjusts weights and biases in such a way that outputs match the targets as much as possible. It is important to construct the best architecture of ANN by choosing appropriate training algorithm and transfer functions. As input and output data are determined, designing ANN architecture is started. In this study, a feedforward multilayer perceptron of MATLABs neural network toolbox is used. ANNs training is more efficient through proper normalization of the data. Normalization of inputs is performed using Equation (2) in the range of -1 to 1.

$$x = \frac{2(x - x_{\min})}{x_{\max} - x_{\min}} - 1$$

(2)

Where x_{\min} and x_{\max} are the minimum and maximum of the input vector of x in the neural network, respectively. Tansigmoide is the type of neurons transfer function being used which is shown in Equation (3).

$$f(x) = \frac{\exp(x) - \exp(-x)}{\exp(x) + \exp(x)}$$

(3)

In this work, feed-forward network is used. The Levenberg–Marquardt backpropagation algorithm [29-31] is used to minimize the mean square of errors between the experimental and calculated output by adjusting the weights and biases. ANNs are prone to data overfitting; therefore, the dataset was divided into three subsets: training, validation, and testing [32]. For each case, 70% of dataset is selected for training, 15% for validation and 15% for random testing. Randomization is performed before training.

2.4.1. Input and output of neural network

Operation time, cycle number and working temperature are the inputs and heat generation (Q), voltage and capacity are the output of the network. The input/ output of the neural network is shown in Fig. 4.
2.5. Selection of optimal configuration

Several methods are proposed in the literature for approximating number of hidden layer neurons in ANNs. One of the proposed methods, named pyramid rule, is used for a three layered neural network. In this method the number of hidden layer neurons is estimated by $\sqrt{a \times b}$, in which a and b represent the number of input and output layer neurons [33]. Katz implies that number of hidden layer neurons can be from one half to three times the number of input neurons [34]. In this work, a cross-validation method is employed to optimize the number of hidden layer neurons [35]. Cross-validation method is a usual method in machine learning in order to avoid data over-fitting. It is based on training the network with small number of neurons and if the test data error does not meet the goal, the number of hidden layer neurons is increased by one. This procedure is repeated until the increase in number of hidden layer neurons causes test error growth. Errors are reported as mean squared error (MSE) and mean relative error (MRE) as shown in Eqs.(4) and (5), respectively.

\[
MRE = \frac{1}{N} \sum_{i=1}^{N} \left| \frac{x_{\text{exp}} - x_{\text{pred}}}{x_{\text{exp}}} \right|
\]

(4)

\[
MSE = \frac{1}{N} \sum_{i=1}^{N} (x_{\text{exp}} - x_{\text{pred}})^2
\]

(5)

N is the number of data points, x_{exp} and x_{pred} are the experimental and predicted values of the outputs.

2.6. Battery pack design

Battery pack consists of 24 commercially available NCR 18650 Panasonic lithium-ion batteries in a 3×8 array configuration. There is 2 mm space between batteries (for each row and column) and 5 mm space from the pack body. Each battery is 18.5 mm in diameter and 65.5 mm height with nominal voltage of 3.6 V and 2900 mAh capacity. Some cooling methods are used for controlling battery pack temperature. All sides of battery pack are isolated except bottom of the pack which is connected to a heat sink. In addition, cooling via natural convection with two sides of the battery pack exposed to atmosphere is examined.

2.7 Battery pack thermal model

Thermal modeling of the battery pack is carried out using CFD simulation. Data from thermal modeling of a single cell battery based on artificial neural networks are used for thermal modeling of the battery pack. Developing a C code for the insertion of single cell thermal model into the CFD simulation software. The flow chart of the whole simulation is shown in Fig. 5.
2.7.1 CFD methodology and boundary conditions

In the case where the battery pack is cooled via natural convection, laminar flow is used as the fluid flow and the energy equation is activated. Least squared cell based equations as the gradient equations, second order equations as the pressure model and second order upwind equations as the momentum and energy equations are activated. In the other case only energy equation is activated where cooling is carried out by the use of a heat sink. Steady state simulation and pressure based solver are the other governing conditions which are used in the simulation.

2.7.2 Creating the geometry

GAMBIT 2.2 is used in order to both create the geometry and producing optimized mesh. GAMBIT provides different options for meshing such as hexahedral, hexahedral wedge and tetrahedral hybrid mesh. In this study hexagonal mesh is chosen because of the simplicity of the geometry. The major superiorities of GAMBIT over other geometry and mesh creating tools is optimizing and creating the best mesh near boundaries which leads to the higher accuracy. In order to select the best mesh, the process begins with low number of nodes and the aspect ratio and mesh quality is checked. This process is repeated for different node numbers and finally the optimized values of 25 cell zones, 137483 faces and 738249 nodes are obtained.

3. Results and discussion

3.1. Neural Networks

The results of cross-validation method applied to the network for optimizing hidden layer neurons are shown in Figs. 6 through 8. Range of error based on different number of neurons and C-rates are shown in Tables 2 to 4. In these tables, MSE and MRE are reported for test data based on the calculated errors, optimized number of hidden layer neurons for C-rate of 0.5, 1.0 and 1.5.

Optimized number of hidden layer neurons is listed in Table 5. MSE for training, validation and test data show the high level of accuracy of the network for prediction. MRE is used for test data (which is already used for optimizing hidden layer neurons) with error percentage of less than 0.1 for all cases.

Voltage versus time for 0.5, 1.0 and 1.5 C in discharge are shown in Figs. 9 through 11. It is understood that by increasing the C-rate, discharge time decreases. At the end of discharge, there is a steep decrease in voltage. This decrease is due to concentration polarization that happens due to lithium ion concentration gradient in the battery. The smooth decrease of voltage in the middle of discharge also occurs because of ohmic polarization that happens due to non-ideality of electrodes and connections in the battery structure.

The capacity versus time in discharge for prediction and experimental data for C-rates equal to 0.5, 1.0 and 1.5 are shown in Figs. 10 to 12. The capacity has a linear behavior related to time and current and prediction curves exactly overlap the experimental data points.
Heat generation increases with time and the temperature is also increasing so temperature rise cannot solely affect the battery heat generation as shown in Figs. 13-15. Cell voltage in the first part of equation (1) plays an important role in the heat generation inside battery and due to this, the increase in the temperature just decreases the intensity of heat generated.

The heat generation versus time in discharge for C-rates equal to 0.5, 1.0 and 1.5 are shown in Figs. 15 to 17. It can be seen that with the increase in C-rate, heat generation increases and discharge time decreases.

3.2. CFD Results

As C-rate is increased, maximum temperature inside the battery pack is increased as shown in Figs. 18 to 20. It is concluded from Bernardi equation, in which current and heat generations have a direct relation with each other. Higher C-rates are applied when higher levels of energies are demanded and stronger cooling systems are required. When cooling is carried out by natural convection and 0.5C discharge rate, temperature of the battery pack is between 300-312 K in the outer sides and 310-324 K in the middle. For the 1.0 C discharge rate temperature of the battery pack is between 311-330 K in the outer sides and 320-346 K in the middle. For 1.5 C discharge rate temperature of the battery pack is between 320-340 K in the outer sides and 340-362 K in the middle. When cooling is carried out by a heat sink in the vacuum condition and 0.5 C discharge rate, temperature of the battery pack is between 286-305 K in the outer sides and 290-314 K in the middle. For the 1.0 C discharge rate temperature of the battery pack is between 320-340 K in the outer sides and 340-354 K in the middle. For 1.5 C discharge rate temperature of the battery pack is between 332-381 K in the outer sides and 350-381 K in the middle. The simulation results under vacuum conditions are shown in Figs. 21-23.

Maximum battery temperature occurs in the middle of the pack. This mainly happens because lowest temperature difference is observed between cells and the circulated air around it. When pack walls and both ends are approached, temperature decreases in order to have a consistent temperature distribution over battery pack.

At equal C-rates, batteries at vacuum conditions have higher temperature and pose a uniform temperature profile compared to natural cooling. This happens because conduction is the only way to extract heat from the battery pack in the vacuum which has a weak heat transfer compared to convection.

Optimal lithium-ion battery performance occurs at temperatures of 273 to 313K, which validates the CFD simulation in most cases. It can be seen that at higher C rates the temperature inside the battery pack violates the optimum working temperature but it is not important because, in most satellites the batteries are worked at lower C rates.

4. Conclusion

Artificial neural networks have been employed in order to simulate and predict the electrochemical and thermal properties of NCR 18650 lithium-ion batteries based on the experimental data points for 0.5, 1.0 and 1.5C-rate discharge with 100 S time steps. Experimental data used to construct the network has been divided into three classes of 70 percent
of data for training, 15 percent for validation and 15 percent for testing. Cross-validation method results in 12, 6 and 11 hidden layer neurons with mean relative error of 10^{-3}, 2.6×10^{-5} and 1.5×10^{-4} for test data for 0.5, 1.0 and 1.5 C-rates respectively, which demonstrates quality and exactness of the simulation. After construction of the network, a C code, which contains network parameters, has been entered into ANSYS Fluent software as a unique effort in this work. CFD simulation has been performed for two separate cases of battery at the earth conditions with both ends of the battery pack being open, and battery in the vacuum the same as space condition. The simulation of the hybrid model results in temperatures in the range of the manufacturer’s optimal working temperature of the considered lithium ion batteries (-20 to 60 °C).

For the future work and enhancement of the project, experimental data can be gathered for a battery pack and comparison can be made with the current simulation and the experimental data

Acknowledgments

The Technical and financial support of Institute of Mechanics is deeply appreciated.

References

Figure Captions:

Figure 1- BTS3000 Neware Battery Tester for obtaining experimental data

Figure 2- Battery data acquisition system

Figure 3- OCV versus time for calculation of entropic heat coefficient

Figure 4- Input/ output of the neural network

Figure 5- The flow chart of the whole simulation

Figure 6- Number of hidden layer neurons versus MRE for 0.5C discharge

Figure 7- Number of hidden layer neurons versus MRE for 1C discharge

Figure 8- Number of hidden layer neurons versus MRE for 1.5C discharge

Figure 9- Voltage versus Time for 0.5C discharge test data

Figure 10- Voltage versus Time for 1C discharge test data

Figure 11- Voltage versus Time for 1.5C discharge test data

Figure 12- Capacity versus Time for 0.5C discharge test data

Figure 13- Capacity versus Time for 1C discharge test data

Figure 14- Capacity versus Time for 1.5C discharge test data

Figure 15- Heat generation versus Time for 0.5C discharge test data

Figure 16- Heat generation versus Time for 1C discharge test data

Figure 17- Heat generation versus Time for 1.5C discharge test data

Figure 18- Battery Pack under natural convection for 0.5C discharge

Figure 19- Battery Pack under natural convection for 1C discharge

Figure 20- Battery Pack with natural convection for 1.5C discharge

Figure 21- Battery Pack under vacuum condition for 0.5C discharge

Figure 22- Battery Pack under vacuum condition for 1C discharge

Figure 23- Battery Pack under vacuum condition for 1.5C discharge
Figure 1 - BTS3000 Neware Battery Tester for obtaining experimental data

Figure 2 - Battery data acquisition system
Figure 3- OCV versus time for calculation of entropic heat coefficient

Figure 4- Input/ output of the neural network
Figure 5- The flow chart of the whole simulation

1. Experimental data acquisition
2. Pre-processing of the data for designing the neural network
3. Designing the neural network for simulation of a single battery cell
4. Integration of the CFD simulation for thermal modeling of the battery pack with the designed ANN estimating the heat generation of a single battery cell
Figure 6- Number of hidden layer neurons versus MRE for 0.5 C discharge

Figure 7- Number of hidden layer neurons versus MRE for 1C discharge
Figure 8- Number of hidden layer neurons versus MRE for 1.5 C discharge

Figure 9- Voltage versus Time for 0.5 C discharge test data
Figure 10- Voltage versus Time for 1 C discharge test data

Figure 11- Voltage versus Time for 1.5 C discharge test data
Figure 12- Capacity versus Time for 0.5 C discharge test data

Figure 13- Capacity versus Time for 1 C discharge test data
Figure 14- Capacity versus Time for 1.5 C discharge test data

Figure 15- Heat generation versus Time for 0.5 C discharge test data
Figure 16- Heat generation versus Time for 1 C discharge test data

Figure 17- Heat generation versus Time for 1.5 C discharge test data
Figure 18- Battery pack under natural convection for 0.5 C discharge

Figure 19- Battery pack under natural convection for 1 C discharge
Figure 20 - Battery pack with natural convection for 1.5 C discharge

Figure 21 - Battery pack under vacuum condition for 0.5 C discharge
Figure 22- Battery pack under vacuum condition for 1 C discharge

Figure 23- Battery pack under vacuum condition for 1.5 C discharge
Tables Captions:

Table 1- Overall battery cell data

Table 2: MRE and MSE for different neural network configurations for 0.5 C discharge

Table 3: MRE and MSE for different neural network configurations for 1 C discharge

Table 4: MRE and MSE for different neural network configurations for 1.5 C discharge

Table 5: Number of hidden layer neurons; training, validation and test data errors
Table 1- Overall battery cell data

<table>
<thead>
<tr>
<th>Discharge rate</th>
<th>0.5 C</th>
<th>1.0 C</th>
<th>1.5 C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cycles</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Cell voltage</td>
<td>2.58-4.00</td>
<td>2.65-3.85</td>
<td>2.68-3.78</td>
</tr>
<tr>
<td>Time (s)</td>
<td>6700</td>
<td>3700</td>
<td>1300</td>
</tr>
<tr>
<td>Cell Temperature K</td>
<td>298-318</td>
<td>298-318</td>
<td>298-318</td>
</tr>
</tbody>
</table>

Table 2- MRE and MSE for different neural network configurations for 0.5 C discharge

<table>
<thead>
<tr>
<th>Number of neurons</th>
<th>MRE</th>
<th>MSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>1.10x10^{-3}</td>
<td>1.42x10^{-3}</td>
</tr>
<tr>
<td>10</td>
<td>1.03x10^{-3}</td>
<td>1.69x10^{-3}</td>
</tr>
<tr>
<td>11</td>
<td>1.07x10^{-3}</td>
<td>1.48x10^{-3}</td>
</tr>
<tr>
<td>12</td>
<td>1.07x10^{-3}</td>
<td>1.11x10^{-3}</td>
</tr>
<tr>
<td>13</td>
<td>1.32x10^{-3}</td>
<td>1.32x10^{-3}</td>
</tr>
<tr>
<td>14</td>
<td>1.06x10^{-3}</td>
<td>1.63x10^{-3}</td>
</tr>
</tbody>
</table>

Table 3-MRE and MSE for different neural network configurations for 1.0 C discharge

<table>
<thead>
<tr>
<th>Number of neurons</th>
<th>MRE</th>
<th>MSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1.30x10^{-3}</td>
<td>3.09x10^{-3}</td>
</tr>
<tr>
<td>4</td>
<td>8.57x10^{-4}</td>
<td>4.28x10^{-4}</td>
</tr>
<tr>
<td>5</td>
<td>2.03x10^{-4}</td>
<td>3.15x10^{-4}</td>
</tr>
<tr>
<td>6</td>
<td>2.64x10^{-5}</td>
<td>2.74x10^{-4}</td>
</tr>
<tr>
<td>7</td>
<td>1.43x10^{-4}</td>
<td>2.50x10^{-4}</td>
</tr>
<tr>
<td>8</td>
<td>7.80x10^{-4}</td>
<td>1.31x10^{-4}</td>
</tr>
</tbody>
</table>

Table 4- MRE and MSE for different neural network configurations for 1.5 C discharge

<table>
<thead>
<tr>
<th>Number of neurons</th>
<th>MRE</th>
<th>MSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>1.69x10^{-4}</td>
<td>1.08x10^{-4}</td>
</tr>
<tr>
<td>11</td>
<td>1.57x10^{-4}</td>
<td>6.06x10^{-5}</td>
</tr>
<tr>
<td>12</td>
<td>1.63x10^{-4}</td>
<td>2.54x10^{-5}</td>
</tr>
<tr>
<td>13</td>
<td>2.31x10^{-4}</td>
<td>6.71x10^{-5}</td>
</tr>
<tr>
<td>14</td>
<td>2.71x10^{-4}</td>
<td>6.76x10^{-5}</td>
</tr>
<tr>
<td>15</td>
<td>3.16x10^{-4}</td>
<td>8.03x10^{-5}</td>
</tr>
<tr>
<td>Discharge rate</td>
<td>No. of hidden layer neurons</td>
<td>Training data performance (MSE)</td>
</tr>
<tr>
<td>----------------</td>
<td>-----------------------------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>0.5 C</td>
<td>12</td>
<td>1.1×10^{-3}</td>
</tr>
<tr>
<td>1.0 C</td>
<td>6</td>
<td>2.5×10^{-4}</td>
</tr>
<tr>
<td>1.5 C</td>
<td>11</td>
<td>6.2×10^{-5}</td>
</tr>
</tbody>
</table>
Biography

Farshad Dehghani is the process engineer at Hampa Energy Engineering and Design Company (HEDCO). He received the B.S. and M.S. degrees in chemical engineering from Shiraz University (Shiraz-Iran), in 2016 and 2018, respectively. His research interests include process simulation, fluid dynamics and energy storage.

Reza Eslamnloueyan is the Professor in chemical engineering at Shiraz University. He received the B.S. and Ph.D. degrees in chemical engineering from Sharif University of Technology (Tehran-Iran) in 1992 and 2003, respectively. He also earned his M.S. of chemical engineering from Shiraz University (Shiraz-Iran), in 1995. He joined chemical engineering department at Shiraz University in 2004. His research interests include process modeling, simulation, design and control in chemical engineering. Backed by twenty years of professional experience in process industries, He along with his colleagues established the knowledge-based company, Green Energy Science and Technology Company (GEST Co. ltd.), at Fars Science and Technology Park (FSTP) in 2011.

Mohammad Sarshar is the Associate Professor in chemical engineering at Iranian Space Research Center. He received the B.S. degree in chemical engineering from Sistan and Baluchistan University (Zahedan-Iran) in 1991. He also earned his M.S. and Ph.D. of chemical engineering from Shiraz University (Shiraz-Iran), in 1995 and 2008, respectively. His research interests include process simulation, fuel, biofuel and energy storage. Backed by thirty years of professional experience in technology development and process industries, He along with his colleagues established the knowledge-based company, Green Energy Science and Technology Company (GEST Co. ltd.), at Fars Science and Technology Park (FSTP) in 2011.