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Abstract. Bridges are one of the most important structures that come with a high
cost. The use of optimization methods may have a signi�cant e�ect on cost reduction.
In the present study, the performances of the Water Strider Algorithm (WSA), Enhanced
Colliding Bodies Optimization (ECBO), and Enhanced Vibrating Particles System (EVPS)
are compared so that the cost of a real-world non-prismatic reinforced concrete box girder
bridge can be optimized. To this end, a computer tool linking CSiBridge to Matlab software
has been used to optimize the bridge problem. For the �rst time, the present study uses
the WSA algorithm to optimize bridges. Results show that the performance of ECBO
algorithm is better than the other two algorithms and the WSA algorithm outperforms the
EVPS algorithm.

© 2022 Sharif University of Technology. All rights reserved.

1. Introduction

Structural engineers attempt to design the most eco-
nomical structures that are resistant to demanding
functional requirements over their service life. In tradi-
tional design methods (trial and error), structural anal-
ysis is repeated to obtain a reasonable design. The �nal
design obtained by traditional methods is insu�cient
to meet economical and safety criteria simultaneously.
Recently, a number of methods have been developed
that can be used to determine the optimal solution of
problems. One of these methods is random search algo-
rithm, which is an e�ective tool for solving large-scale
problems. Mainly, these algorithms are inspired by na-
ture. These methods can �nd optimal or near-optimal
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solutions in a reasonably computational time. There
are many metaheuristic algorithms in the literature,
including Genetic Algorithm (GA) [1], Particle Swarm
Optimization (PSO) [2], Ant Colony Optimization
(ACO) [3], Firey Algorithm (FA) [4], Cuckoo Search
(CS) algorithm [5], Charged System Search (CSS)
[6], and Simulated Annealing (SA) [7]. Kazemzaeh
Azad [8] presented monitored convergence curve as a
new framework for metaheuristic structural optimiza-
tion algorithm, among others. Extensive research has
been conducted on optimal design of structures (e.g.,
frame structures, truss buildings, plates, shells, dams,
retaining walls, scissor-link foldable structures, etc.).
The optimization of reinforced concrete structures is
more complex than steel structures. In the optimiza-
tion of steel structures, the weight of steel is considered,
while in an RC structure, the costs of three items
including concrete, steel, and formwork are considered
and each of these parameters a�ects the cost. In a
number of studies [9,10] on reinforced concrete frames,
the objective function was concerned with the cost of
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materials while the objective function of other studies
was to reduce CO2 emissions and ensure a trade-o�
between cost and CO2 [11{20]. Bridges are one of
the most important structures that incur high costs.
Recently, studies have been conducted on bridge opti-
mization. Fan et al. [21] summarized the applications
of Machine Learning (ML) for designing and inspection
of reinforced concrete bridges. Perea et al. [22] used
four heuristic algorithms to optimize the cost of a
reinforced concrete box-frame bridge. Aydin et al. [23]
minimized the cost of prestressed concrete I-girder
bridges using genetic algorithm. Pedro et al. [24] devel-
oped a two-stage optimization approach for designing
steel-concrete composite I-girder bridges to minimize
material costs. Yepes et al. [25] minimized the cost
of post-tensioned concrete box-girder pedestrian decks
based on the Spanish code. In another study, Yepes et
al. [26] investigated the relation between optimal CO2
emissions and cost for the precast-prestressed bridges
with a double U-shape cross-section. Garc��a-Segura et
al. [27] presented a method for optimizing the cost and
CO2 emissions of post-tensioned concrete box-girder
pedestrian bridges. Also, Garc��a-Segura et al. [28]
applied multi-objective harmony search algorithm to
optimal design of the post-tensioned concrete road
bridges in order to reduce CO2 emissions and costs as
well as to ensure the overall safety factor.

The main focus of this paper is to compare the
performance of three metaheuristic algorithms for opti-
mal design of a real-world 3D non-prismatic reinforced
concrete box girder bridge. For the �rst time, the WSA
algorithm has been used in bridge optimization and
the performance of these algorithms is compared with
those of ECBO and EVPS algorithms. To this end, a
computer tool that provides a link between CSiBridge
and Matlab software has been used to optimize the
bridge problem.

2. Optimization algorithms

In this section, the algorithms utilized in this study
are introduced. The ECBO and EVPS algorithms have
been recently developed and compared with previously
developed algorithms and found to be comparatively
e�cient. WSA is a new algorithm that was presented
in 2020 [29] and in this study, the aim is to examine its
performance in solving problems such as bridges.

2.1. Water strider algorithm
The Water Strider Algorithm (WSA) is a population-
based algorithm that has been newly developed by
Kaveh et al. [29]. This algorithm is inspired by the
social behavior patterns of water striders. Water
striders constitute a class of hemiptera insects that are
able to live on the surface of the water using surface
tension as well as their hydrophobic legs. They are

creating the territories to defend their assets and use
wave communications to convey their information. In
order to mate, males send call signals to females and
the latter respond to them. The response may be
attractive or repulsive. For growing and absorbing
energy, striders eat various kinds of food. After
successful mating, females lay gelatinous eggs on sub-
merged cli�s or plants. It takes about two months
for the eggs to mature strider. The steps including
birth, establishing territory, mating, feeding, death,
and succession should be mathematically modeled. In
this model, the search space is de�ned as a lake that
includes di�erent territories and food is a metaphor for
the objective function. The steps are given below:

1. Birth. Striders are born from eggs that are dis-
tributed in the lake. Through random distribution,
the initial population is obtained according to the
following equation.

WS0
i =Lb+rand:(Ub�Lb); i=1; 2; :::; nws;

(1)

where WS0
i represents the initial position of the ith

water strider. Ub and Lb are the upper and lower
bounds corresponding to variables' maximum and
minimum allowable values, respectively. Rand is
a vector with uniform random numbers between 0
and 1. The parameter nws is the number of WSs,
where the objective function is calculated for them
to determine their position in the lake.

2. Establishing territory. Striders establish territories
for living. They are placed in territories according
to their objective function. First, the WSs are
sorted based on their �tness and divided into
nws=nt groups. In this respect, nws is the total
number of striders and nt is the number of territo-
ries. The members of the territories are determined,
as shown in Figure 1.

Figure 1. Establishment of a territory by striders [29].
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Figure 2. Pseudocode of the Water Strider Algorithm (WSA) [29].

3. Mating. For mating, keystone sends precopulatory
courtship signals to each territory and the female
responds by either absorbing or repelling signals.
While the probability of sending attraction re-
sponses is considered equal to p, 1� p is the proba-
bility of repulsive response. If the female rejects the
request, the male may mount her aggressively, but
the female throws him away; therefore, keystone
may mate or be repelled. Inspired by this step, a
new position for insects is updated.8><>:WSt+1

i = WSti +R:rand
if mating happens (with probability of P )

WSt+1
i = WSti +R:(1 + rand) otherwise (2)

where WSti is the position of the ith WS in the ith
cycle; rand is a random vector between 0 and 1; R
is a vector whose starting point is at the position of
male (WSt�1

i ) and the endpoint is at the position
of a female in the same territory (WSt�1

F ). This
female can be selected through a roulette wheel
mechanism. The distance between male (WSt�1

i )
and female WSs (WSt�1

F ) is the length of R (Eq.
(3)):

R = WSt�1
F �WSt�1

i : (3)

4. Feeding. In the new position, WSs forage for food
to absorb energy. If the value of the objective
function is lower than the previous state, there is
no need to change the position, but if the objective
function is higher than the previous state, they
move to the territories with the best position. Eq.
(4) shows the new positions in this step; WStBL is
the best WS of lake:
WSt+1

i = WSti + 2:rand: (WStBL �WSti ): (4)

5. Death and succession. In the process of searching
for food, if the WSs cannot �nd food, they are
destroyed. Therefore, in this step, if the objective
function is greater than the previous position, a
newly matured larva is replaced with the killed WS
and its position is randomly obtained according to
Eq. (5):

WSt+1
i = Lbtj + 2:rand: (Ubtj � Lbti); (5)

where Ubtj and Lbti are the maximum and minimum
values of the WS's position inside the jth territory.

6. Termination of algorithm. In the last step, if the
termination criterion is satis�ed, the algorithm
stops and the best solution for the variables is
reported. However, if the condition is not satis�ed,
it will return to the mating step. The pseudo-code
for WSA algorithm is shown in Figure 2.

2.2. ECBO algorithm
Colliding Bodies Optimization (CBO) algorithm [30]
and Enhanced Colliding Bodies Optimization (ECBO)
algorithm [31] are inspired by the collision theory
between two bodies. In this respect, the momentum be-
fore the collision is equal to the sum of the momentum
after the collision. In order to enhance the performance
of CBO algorithm, two techniques are used: The
�rst technique is Collision Memory (CM), which stores
some of the best solutions at every iteration found
in previous population and substitutes them to the
current worst CBs vector. In the second technique,
one component of the ith CB is randomly regenerated
in each generation. The probability of choosing this
component is expressed by the Pro parameter. This
parameter is distributed uniformly in the range of (0,1).
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Figure 3. Pseudocode of the Enhanced Colliding Bodies Optimization (ECBO) [32].

Introducing new objects to the population prevents the
transfer of population to the local optima and increases
the convergence rate without increasing computational
cost.

The main procedure for implementing this algo-
rithm is described in the following and its pseudocode
is provided in Figure 3:

Step 1. First, the initial position of each colliding
body is determined randomly in the research space
according to the following equation:

x0
i =xmin+rand(xmax�xmin); i=1; 2; :::; n; (6)

where x0
i is the initial position of the ith CB, xmin

and xmax are the minimum and maximum values of
the variables, respectively, rand is a random value in
the range of [0; 1], and n is the number of CBs.
Step 2. The mass of each CB is calculated as follows:

mk =
1

fit(k)
nP
i=1

1
fit(i)

; k = 1; 2; :::; n; (7)

where fit(i) is the value of the objective function for
CBs and n is the population size.
Step 3. In order to save a number of historically
best CB vectors and their related mass and objective
function values, Colliding Memory (CM) is utilized.
The solution vectors that are saved in CM are added
to the population and the same number of the current
worst CBs is deleted. Finally, CBs are sorted in
ascending order according to their objective function
values. By using this technique, the performance of
the algorithm can be improved.
Step 4. CBs are divided into two equal groups: (i)
stationary and (ii) moving groups. In this algorithm,
agents with higher �tness (moving objects) move
towards the agents with lower �tness (stationary ob-
jects) and collision between these objects occurs. The

collision occurs for two purposes: (1) improving the
position of moving objects and (2) pushing stationary
objects towards a better position.
Step 5. Before collision, the velocity of moving
objects is calculated as follows:

vi = xi�n2 � xi; i =
n
2

+ 1; :::; n: (8)

Step 6. The velocity of the colliding bodies after
collision in each group is obtained as follows:

Stationary objects:

v0i =
(mi+n

2
+ "mi+n

2
)vi+n

2

mi +mi+n
2

; i = 1; 2; :::;
n
2
: (9)

Moving objects:

v0i =
(mi � "mi�n2 )vi
mi +mi�n2

; i =
n
2

+ 1; :::; n: (10)

The coe�cient of restitution " is de�ned as follows:

" = 1� iter
itermax

: (11)

Step 7. The new positions of the objects using the
generated velocities after the collision and their old
positions are updated as follows:

(a) The new position of moving objects:

xnewi = xi�n2 + randov0i;

i =
n
2

+ 1;
n
2

+ 2; :::; n; (12)

where xnewi is the new position of the ith CBs, xi�n2
is the old position of the ith stationary CB, and
rand is a random vector uniformly distributed in
the range of [�1; 1]. v0i is the velocity of the ith
moving CB after collision. The sign \�" denotes an
element-by-element multiplication.
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(b) The new position of the stationary object:

xnewi = xi�n2 + randov0i

i =
n
2

+ 1;
n
2

+ 2; :::; n; (13)

where xnewi is the new position of the ith CBs, xi�n2
is the old position of the ith stationary CB, and v0i is
the velocity after the collision of the ith stationary
CB.

Step 8. The Pro parameter is compared with the
random number rni (i = 1; 2:::n). If Pro > rn, a CB
is selected from both moving and stationary groups,
and a component is randomly regenerated.
Step 9. Return to Step 2 until terminating criterion
is satis�ed.

2.3. Enhanced vibrating particles system
Vibrating Particles System (VPS) [33] and Enhanced
Vibrating Particles System (EVPS) algorithms [34] are
population-based algorithms. These algorithms are
inspired by free vibration of single-degree-of-freedom
systems with viscous damping. VPS consists of a
number of particles that are problem variables. The
VPS procedure can be outlined as follows:

Step 1. In this algorithm, the initial locations of
all particles in the research space are determined
randomly.

xji = xmin + rand(xmax � xmin); (14)

where xji is the jth variable of the ith particle. xmin
and xmax denote the upper and lower bounds of
variable and rand is a random number in the range
of [0, 1].
Step 2. The value of the objective function is
calculated for each particle.
Step 3. For each candidate solution, three equilib-
rium positions with di�erent weights are de�ned as
follows:
- HB is the historically best location of the entire

population;
- GP is a good particle;
- BP is a bad particle.
To obtain good and bad particles, the population
must be sorted based on their objective function
values in ascending order. Then, good and bad
particles are selected randomly from the �rst and
second halves, respectively. The position of the
particle is updated using the following equation:

xji =w1:[D:A:rand1 +HBj ]

+ w2:[D:A:rand2 +GP j ]

+ w3:[D:A:rand3 +BP j ]; (15)

A =[w1:(HBj � xji )] + [w2:(GP j � xji )]
+ [w3:(BP j�xji )] w1+w2+w3 =1: (16)

The parameters w1, w2, and w3 are three important
parameters for measuring the relative importance of
HB, GP, and BP, respectively. Rand 1, Rand 2, and
Rand 3 are random numbers between [0, 1].

In order to do modeling, the e�ect of damping
parameter D is de�ned as follows:

D = (
iter

itermax
)��; (17)

where iter is the number of current iterations, itermax
is the total number of iterations, and � is a constant
value.

For each particle, a parameter like P (0 to 1)
is de�ned to accelerate the convergence of the VPS
algorithm. Parameter P is compared with rand if
P < rand; then, w3 = 0 and w2 = 1� w1.
Step 4. Particles in the research space move to
�nd a better result and may violate the boundary
constraints. If a component violates a boundary,
it is changed by the harmony search-based side
constraint handling approach. In this technique,
HMCR (Harmony Memory Considering Rate) pa-
rameter determines whether the violating component
should be changed with the corresponding value into
HB or should be selected from the permissible space.
In addition, if the component of the historically best
position is selected, a parameter like PAR (Pitch
Adjusting Rate) determines whether this value can
be changed with the neighboring value or not [33].
Step 5. If termination criterion is not ful�lled, return
to Step 2.

In order to increase the convergence speed and
avoid local optima, EVPS algorithm has been devel-
oped. In this method, two parameters \Memory" and
\OHB" are used. The parameter of Memory acts as
HB except that it saves memory size (number) of the
best historically positions in the entire population,
and OHB (one of the best historically positions in
the entire population) is one row of memory that
is selected randomly. HB is replaced with Memory
in the EVPS algorithm. Another change in the
VPS algorithm is that Eqs. (15) and (16) should be
replaced with Eqs. (18) and (19). In Eqs. (18) and
(19), either of Eqs. (a), (b) and (c) are used with the
probability of !1, !2, and !3, respectively. Other
equations are the same as VPS algorithm [34]. The
pseudocode of EVPS is provided in Figure 4.

xji =

8><>:[D:A:rand1 +OHBj ] (a)
[D:A:rand2 +GP j ] (b)
[D:A:rand3 +BP j ] (c)

(18)
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Figure 4. Pseudocode of Enhanced Vibrating Particles System (EVPS) algorithm.

A =

8><>:(�1)(OHBj � xji ) (a)
(�1)(GP j � xji ) (b)
(�1)(BP j � xji ) (c)

(19)

3. Formulation of optimum design of RC
bridge

3.1. Objective function
In this study, the objective function is to minimize the
cost of RC bridges. Herein, the problem can be stated
as follows:

Find fXg = [x1 ; x2; :::; xn ]

To minimize f(fXg)=Vc:Cc+Cs:s:As:Ls+Cf :Af

Subjected to gj(x) � 0; j = 1 to m

where xmin � x � xmax; (20)

where f(fXg) presents the cost of the bridge super-
structure containing the volume of the concrete, the
weight of reinforcements, and the area of the formwork.
Parameters Cc , Cs, and Cf are the unit rate of
concrete, reinforcement, and formwork, respectively.
Their values for the objective function are given in
Table 1. Vc is the volume of concrete that has been
extracted from the CSiBridge software. s is the unit
weight of bars that is 7850 kg/m3. As and Ls are the
area and length of longitudinal bars of beams and slabs,
respectively. In the objective function, the cost of shear
rebars is not considered. fXg is the vector containing
the design variables. n is the number of variables. xmin
and xmax are the lower and upper bounds of the design
variable. gj(x) denotes design constraints and m is the
number of the constraints.

Design variables cannot have any arbitrary value.

Table 1. Unit rates for cost [28].

Item Unit Description Cost (¿)

Cs Kg Steel B{500 1.16

Cs

m3 Concrete (25 MPa) 95.05
m3 Concrete (30 MPa) 99.81
m3 Concrete (35 MPa) 104.57
m3 Concrete (40 MPa) 109.33
m3 Concrete (45 MPa) 114.10
m3 Concrete (50 MPa) 118.87

Cf m2 Form work 33.81

They must be satisfying the limitations and speci�-
cations provided by the utilized codes. One method
is the use of the penalty function. According to this
method, the constrained problem is transformed into
the unconstrained problem and the design variables
with penalty are removed from the algorithm in the
following iterations:

fp(x) = f � (1 +
mX
i=1

max(0;gj(x)))k; (21)

where fp represents the penalized objective function;
f the value of the objective function; and k a penalty
exponent, for which k = 2 is considered in this study.

3.2. Design variables
In the optimization process, the design variables are
concrete strength, geometry of the cross-section, ta-
pered length, reinforcement of box girders, and slabs.
The constant parameters and variable are tabulated in
Table 2. Geometrical cross-section of the bridge with
some of the variables is shown in Figure 5.
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Table 2. Design variables and parameters.

No. Variable Symbol Step Constraints

1 Concrete strength (ton/m2) f 0c 500 2500 � f 0c � 5000

2 Girder depth (m) h1, h3 0.25 1 � h � 2:5

3 Girder depth in the mid supports (m) h2 0.25 1:5 � h � 3

4 Top slab thickness (cm) Tt 1 18 � Tt � 35

5 Bottom slab thickness (cm) Tb 1 17 � Tb � 30

6 End thickness of cantilever (cm) Tc 1 18 � Tc � 30

7 Initial thickness of cantilever (cm) Ts 2 20 � Ts � 50

8 Length of cantilever (m) Lc 0.25 1 � Lc � 2

9 Web thickness in intermediate cell (cm) TW3 2 25 � TW1 � 50

10 Web thickness in outside cell (cm) TW1 2 30 � TW1 � 70

11 Diameter of bars perpendicular to tra�c in slabs d1 1 #3 � d1 � #11

12 Number of bars perpendicular to tra�c in slabs n1 1 2 � n1 � 15

13 Diameter of bars perpendicular to tra�c in cantilever d2 1 #3 � d2 � #11

14 Number of bars perpendicular to tra�c in cantilever n2 1 2 � n2 � 15

15 Number of longitudinal bars in moment capacity for sections nlt, nlb 1 2 � nlt; nlb � 15

16 Diameter of longitudinal bars in moment capacity for sections dlt Constant #7

17 Diameter of shear bars (mm) Constant 12

18 Tapered length (TLR) (m) TLR 1 3 � TLR � 7

19 t1 = t2 = t3 = t4 = t5 = t6 = t7 = t8 (mm) Constant 150

20 Number of cells Constant 3

Figure 5. Geometry of superstructures.

3.3. Loading
The combination of dead and live loads (Eq. (22))
according to AASHTO Table 3.22.1A [35], is used to
design the deck. Dead loads include the weight of
girders and slabs as well as the weight of asphalt. The
weight per unit volume of concrete is 2.5 ton/m3 and
the weight per unit volume of asphalt is 2.2 ton/m3.
The thickness of the asphalt is 5 cm. According to
the Articles 3.7 from AASHTO 2002 [35], H20-44 and

HS20-44 are considered as live loads. These loads are
placed in 3.6-meter tra�c lanes. The width of the deck
is 9.2 meters and 2 tra�c lines are considered.

Combination load = 1:3DL+ 2:17LL; (22)

where DL and LL are dead and live loads. In the live
load, the dynamic e�ects are calculated as follows:

MI = 1 +
50

3:28L+ 125
� 1:3; (23)
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Figure 6. Bridge division for design.

where L is the length of span in meter.

3.4. Methodology implementation
In order to obtain the variables in the optimal design
of 3 D non-prismatic reinforced concrete box girder
bridge in continuous spans, the link between CSiBridge
v22.1 and MATLAB 2016a has been used. MATLAB
interacts with CSiBridge via its Application Program-
ming Interface (API). MATLAB is used to handle
the optimization algorithm and control the AASHTO
2002 standard speci�cation while CSiBridge is used for
performing �nite element analysis.

3.5. Design constraints
The design of slabs and girders in the box girder
bridge is based on the speci�cations of AASHTO 2002
[35]. In all sections, exural capacity, shear Strength,
geometry constraints, and superstructure deection are
controlled. Also, the main reinforcement, distribution

reinforcement of slabs, and longitudinal skin reinforce-
ment are obtained based on AASHTO.

4. Design example

The deck of a 3D box girder reinforced concrete bridge
with three spans 15, 26, and 15 meters is optimally
designed to compare the performance of algorithms in
optimizing this type of bridge. The objective function
is economic cost. Figure 6 shows the division of the
bridge for design. The girders are divided into 16
parts (section cut) and 10 sections to satisfy the design
and construction constraints. Based on this division,
section cuts and related variables are shown in Table 3.
In this table, htlr is obtained for non-prismatic sections
by interpolation. The variables expressed in Table 2 are
the same in all di�erent sections, except for the items
listed in Table 3.

Tables 4 and 5 list the optimal results from ECBO

Table 3. Sections and related variables.

Section cut
Depth of

girders (h)

Number of
longitudinal
bars (top)

Number of
longitudinal

bars (bottom)

Space of
shear bar

(S)
A1 h1 nlt1 nlb1 S1
A2 h1 nlt2 nlb2 S2
A3 htlr1 nlt2 nlb2 S2
A4 htlr1 nlt3 nlb3 S3
A5 htlr2 nlt3 nlb3 S3
A6 htlr2 nlt4 nlb4 S4
A7 h2 nlt4 nlb4 S4
A8 h2 nlt5 nlb5 S5
A9 h2 nlt6 nlb6 S6
A10 htlr3 nlt6 nlb6 S6
A11 htlr3 nlt7 nlb7 S7
A12 htlr4 nlt7 nlb7 S7
A13 htrl4 nlt8 nlb8 S8
A14 h3 nlt8 nlb8 S8
A15 h3 nlt9 nlb9 S9
A16 h3 nlt10 nlb10 S10
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Table 4. Optimum longitudinal bars, depth of girders, and space of shear bars for ECBO algorithm.

Girders Depth (m)
Section Exterior girders Interior girders

nlt (top) nlb (bottom) S (m) nlt (top) nlb (bottom) S (m) h node i h node j
Sec 1 6 6 0.4 5 6 0.5 1.25 1.25
Sec 2 8 7 0.4 7 6 0.5 1.250 1.583
Sec 3 8 9 0.4 9 7 0.5 1.5833 1.916
Sec 4 14 10 0.4 11 8 0.5 1.916 2.25
Sec 5 13 14 0.4 11 9 0.5 2.25 2.25
Sec 6 10 10 0.3 9 10 0.4 2.25 2.05
Sec 7 10 11 0.2 8 8 0.3 2.05 1.65
Sec 8 7 8 0.2 8 7 0.3 1.65 1.25
Sec 9 7 10 0.2 6 10 0.3 1.25 1.25
Sec 10 6 11 0.5 5 11 0.5 1.25 1.25

Table 5. Optimum result for ECBO algorithm.

Optimum variable

f ;c (ton=m2) 2500
Tt (cm) 20
Tb (cm) 17
Tc (cm) 19
Ts (cm) 30
Lc (m) 2
TW3 (cm) 25
TW1 (cm) 30
Top slab reinforcement/m; (n1; d1) 10#3
Cantilever slab reinforcement/m; (n2; d2) 8#4
TLR1 (span 1, 3) (m) 6
TLR2 (span 2) (m) 5

Average 87089.75 ¿
Std deviation 2720.664
Best cost 81613.86 ¿

Figure 7. Convergence curve for ECBO algorithm.

algorithm. The best cost is 81613.86 Euro. The
volume of concrete in this solution is 272.24 m3 and the
total weight of bars in slabs and girders is 27395.8 kg.
Figure 7 shows the convergence curve of the algorithm

corresponding to the lowest cost. In this algorithm, the
number of population (np) and stopping criterion are
considered 30 and 300 iterations, respectively. Based
on the examinations, a suitable value for the parameter
Pro of algorithm is 0.35 and CM is np=2.

Optimal results of WSA algorithm are shown in
Tables 6 and 7. Herein, the best cost is 86418.11 Euro.
The volume of concrete and the total weight of bars
in slabs and girders are 291.47 m3 and 28238.3 kg,
respectively. Figure 8 shows the convergence curve of
the algorithm for the lowest cost. In this algorithm,
the number of population and the territories of WSs
are assumed to be 50 and 25, respectively. The number
of iterations is 200.

The results of EVPS algorithm are shown in
Tables 8 and 9, in which the best cost is 86983.6 Euro.
The volume of concrete in this solution is 267.4289 m3

and the total weight of bars in slabs and girders is
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Table 6. Optimum longitudinal bars, depth of girders, and space of shear bars for WSA algorithm.

Girders Depth (m)
Section Exterior girders Interior girders

nlt (top) nlb (bottom) S (m) nlt (top) nlb (bottom) S (m) h node i h node j

Sec 1 6 6 0.4 5 6 0.5 1.25 1.25
Sec 2 7 9 0.4 8 12 0.5 1.25 1.583
Sec 3 8 11 0.4 9 14 0.5 1.583 1.916
Sec 4 12 13 0.4 12 13 0.5 1.916 2.25
Sec 5 12 15 0.4 12 13 0.6 2.25 2.25
Sec 6 12 10 0.3 9 9 0.4 2.25 2
Sec 7 10 14 0.3 10 9 0.4 2 1.75
Sec 8 10 8 0.3 10 8 0.5 1.75 1.5
Sec 9 10 10 0.3 11 10 0.6 1.5 1.5
Sec 10 9 11 0.6 7 14 0.6 1.5 1.5

Table 7. Optimum result for WSA algorithm.

Optimum variable

f ;c (ton=m2) 3000
Tt (cm) 22
Tb (cm) 17
Tc (cm) 26
Ts (cm) 30
Lc (m) 2
TW3 (cm) 25
TW1 (cm) 30
Top slab reinforcement/m; (n1; d1) 5#4
Cantilever slab reinforcement/m; (n2; d2) 3#6
TLR1 (span 1, 3) (m) 6
TLR2 (span 2) (m) 6

Average 88197 ¿
Std deviation 1751.646
Best cost 86418.11 ¿

32246 kg. Figure 9 shows the convergence curve of the
EVPS algorithm corresponding to the lowest cost. In
this solution, the number of population and stopping
criterion are 30 and 300 iterations, respectively. A
suitable value for the parameter w1 is 0.2 and w2
is 0.5. Memory size of the algorithm is assumed to
be 4.

Comparison of the convergence curves of the
algorithms is given in Figure 10. For each algorithm,
10 independent runs are performed. Although initial
populations in our algorithms are randomly generated,
the initial population can be used for e�ciency seed-
ing, as presented in [36]. In this study, although
the convergence speed of the optimization process is
appropriate, some particular approaches may be added
to increase the convergence speed, e.g., one can utilize Figure 8. Convergence curve for WSA algorithm.
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Table 8. Optimum longitudinal bars, depth of girders, and space of shear bars for EVPS algorithm.

Girders Depth (m)
Section Exterior girders Interior girders

nlt (top) nlb (bottom) S (m) nlt (top) nlb (bottom) S (m) h node i h node j

Sec 1 8 8 0.4 9 7 0.5 1.25 1.25
Sec 2 8 12 0.4 13 9 0.5 1.25 1.583
Sec 3 13 11 0.4 14 9 0.5 1.583 1.916
Sec 4 10 14 0.4 13 15 0.5 1.916 2.25
Sec 5 12 10 0.4 11 11 0.4 2.25 2.25
Sec 6 10 14 0.3 14 13 0.4 2.25 2.05
Sec 7 10 15 0.2 12 11 0.3 2.05 1.65
Sec 8 8 7 0.2 10 8 0.3 1.65 1.25
Sec 9 9 14 0.2 9 11 0.3 1.25 1.25
Sec 10 7 14 0.5 5 13 0.5 1.25 1.25

Table 9. Optimum result for EVPS algorithm.

Optimum variable

f ;c (ton=m2) 2500
Tt (cm) 19
Tb (cm) 18
Tc (cm) 19
Ts (cm) 26
Lc (m) 2
TW3 (cm) 25
TW1 (cm) 30
Top slab reinforcement/m; (n1; d1) 7#4
Cantilever slab reinforcement/m; (n2; d2) 6#5
TLR1 (span 1, 3) (m) 6
TLR2 (span 2) (m) 5

Average 8872.5 ¿
Std deviation 1752.475
Best cost 86983.6 ¿

Figure 9. Convergence curve for EVPS algorithm.

a competitive metaheuristic such as the upper bound
strategy of Kazamzadeh Azad et al. [37,38].

The best costs of WSA, ECBO and EVPS algo-
rithms are 86418.11, 81613.86, and 86983.6, respec-

Figure 10. Convergence curves of the algorithms.

tively. The best cost of ECBO is better than other
used algorithms and the best costs of WSA and EVPS
algorithms are almost equal.
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5. Concluding remarks

Optimal design of the multi-span real-world 3D rein-
forced concrete bridge with a large number of variables
and several constraints based on standard codes is a
challenging problem that has recently been studied
by a limited number of research and optimization
algorithms. Therefore, in this study, a method is
implemented to optimally design the deck of non-
prismatic reinforced concrete box girder bridges. The
performances of the water strider algorithm, enhanced
colliding bodies optimization, and enhanced vibrating
particles system were compared in order to optimize
the cost of bridge. The water strider algorithm was
developed newly and for the �rst time, it we employed
in this paper to optimize the bridges. A computer tool
that creates a link between the CSiBridge and Matlab
software has been used for the optimization process.
The comparison of the results indicates that the best
cost for the ECBO algorithm is lower than that for the
other two algorithms and the best cost for the WSA is
better than EVPS algorithm.
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