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Abstract. Separation of the desired from undesired objects is one of the most important
challenges in computational geometry. In this respect, this study tends to cover the desired
objects in one or a couple of geometric shapes such that all of the desired objects are
included in the covering shapes while excluding the undesired objects. To this end, this
study investigated the separation of polylines by minimal triangles with a given �xed angle
and using present O(NlogN)-time algorithm, where N is the number of all the desired and
undesired polylines. A minimal triangle represents a triangle whose edges are tangential to
the convex hull of the desired polylines. The motivation behind analyzing this separation
problem lies in the need for separating the bichromatic objects that are modeled by polylines
rather than points in real-life scenarios.
© 2022 Sharif University of Technology. All rights reserved.

1. Introduction

Separation of points is one of the essential and practical
problems in computational geometry. Two sets P and
Q of blue and red points and a speci�c geometric shape
in the plane were taken into consideration in this study.
The blue points of P are to be covered by a speci�c
geometric shape such that none of the red points of
Q are covered. Di�erent versions of the separation of
objects have been de�ned with the main focus on the
optimization of parameters such as perimeter, area,
and number of edges of the separating shape. The
polygon with the minimum number of edges is triangle
which is considered as a separating shape in this paper.
Separation of the points has di�erent applications in
facility location [1], VLSI layout design [2], image
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processing [3], data mining [4], computer graphics [5],
and statistics and classi�cation [6].

This study took into account a new version of the
problem and presented an O(NlogN)-time algorithm
to separate two bichromatic object sets called P and
Q by �xed-angle minimal triangles which contain all
objects of P and exclude all objects of Q. As mentioned
earlier, these triangles are minimal; in other words,
their three sides are tangential to the convex hull of
P . The objects considered here are polylines. The
motivation for investigating this separation problem
lies in the need for separating the bichromatic objects
which are modeled by polylines rather than the points
in real-life scenarios. For this purpose, �rst, the
algorithm needed for the lines was proposed and then,
it was extended to polylines given in Section 3.6.

The four main steps of the algorithm are elabo-
rated in Sections 3.2{3.5. Each section outlines one
step, proves the involved lemmas, and gives its time
complexity. In Section 3.2, Seara's [1] idea is considered
in making a star-shaped structure to compute the
separating triangles. In Section 3.3, the trajectory
of � � vertex of � � triangles is taken into account.



2406 Hosseinzadeh Moghaddam and Bagheri/Scientia Iranica, Transactions D: Computer Science & ... 29 (2022) 2405{2417

In Section 3.4, by using the third main step of the
algorithm, the event points are computed. Finally, in
Section 3.5, event points as well as the pseudo-code of
the proposed algorithm are considered as a whole.

2. Related works

A fair number of studies have been conducted on di�-
erent types of separators so far. For instance, in 1983,
a linear-time algorithm was proposed for separation
of the colored points by a line [7]. In 1986, O'Rourke
et al. solved the problem of separating the points by
a circle [8].

Edelsbrunner and Preparata [9] solved the above-
mentioned problem using a convex polygon with the
minimum number of edges. In addition, Fekete [10]
remarked that separation of points by a general poly-
gon with the minimum number of edges was an NP �
complete problem and an approximation algorithm was
proposed based on polynomial time in [11]. In a
study on the separation of points, separators in the
form of strips and wedges were also explored [12].
Sarkar and Stojmenovic [13] considered the polygon
separation problem and presented a parallel algorithm
to construct a separating convex k � gon with the
smallest k. In 2002, Eckstein et al. [14] worked on
the problem of �nding an axis-aligned rectangle B
such that P \ B = � and the cardinality of Q \ B
was maximized. Liu and Nediak conducted a study
on �nding an axis-aligned rectangle B that could
maximize the di�erence between points of Q and P
inside B, i.e., jB \Qj � jB \ P j [15].

Demaine et al. [16] studied the separability of the
two-point sets inside a polygon using chords or geodesic
lines and provided necessary and su�cient conditions
for the existence of a chord or geodesic path to separate
the two sets. Sheikhi et al. studied the separability of
the two-point sets in the case of an L-shaped separator
with the orientation of � [17]. Moslehi and Bagheri
solved the problem of whether or not the two-point
sets could be separated by two disjoint isothetic rectan-
gles [18]. Sheikhi et al. investigated the separability of
imprecise bichromatic points [19] and proposed several
algorithms to obtain certain separators (which could
separate the bichromatic points with a probability
of 1), possible separators (which could separate the
bichromatic points with non-zero probability), most
likely separators (which could separate such points with
maximum probability), and maximal separators (which
could maximize the expected number of correctly
classi�ed points). Bandyapadhyay and Banik [20] con-
sidered a collection of geometric problems containing
the points in two colors, referred to as bichromatic
problems, and presented low polynomial time exact
algorithms for those problems. Xue et al. [21] studied
the linear separability problem for stochastic geometric

objects under the well-known uni-point and multi-point
uncertainty models. They assumed that S = SR [ SB
was a given set of stochastic bichromatic points and
n = minfjSRj; jSB jg and N = maxfjSRj; jSB jg were
de�ned. They also demonstrated that the separable-
probability of S was computed within O(nNd�1) time
for d � 3 and O(minfnN logN;N2g) time for d =
2, while the expected separation margin of S was
computed in O(nNd) time for d � 2.

In 2018, Har-Peled and Jones [22] studied the
separability of n points in the plane using the minimum
number of lines to separate all its pairs from each
other. They found that the minimum number of lines
that could separate n points, which were randomly and
uniformly picked, in the unit square, was calculated as
�(n2=3).

Bonnet and Lampis [23] worked on the separation
of two bichromatic point sets using a minimum-size set
of lines and separated them from each other. According
to their �ndings, parameterized by the number of lines
k in the solution, the problem was unlikely to be
solved signi�cantly faster than the brute-force nO(k)-
time algorithm, where n represents the total number
of points. In addition, the problem of separation with
a minimum-size set of axis-parallel lines can be solved
in O(9�) time (assuming that � is the smallest set).

Abrahamsen et al. [24] remarked that separation
of groups of objects in the plane by the shortest fences
was shown as NP � hard for a case where the input
included polygons in two colors with n corners in
total and gave a randomized 4/3.1.2965-approximation
algorithm for polygons and any number of colors.

Arkin et al. investigated the problem of sepa-
rating cycle [25] and aimed to �nd a simple tour of
minimum length that separated the two points of each
pair to di�erent sides. They proved the hardness of the
problem and proposed some approximation algorithms
in di�erent settings. Misra et al. [26] worked on a
special case of the separation problem in which the
points were on a circle and demonstrated a polynomial-
time algorithm for that case.

Acharyya et al. [27] worked on di�erent problems
regarding a set of bichromatic points on a plane
and proposed some in-place algorithms to compute
an arbitrarily oriented monochromatic rectangle of
the maximum size of R2 as well as an axis-parallel
monochromatic cuboid of the maximum size of R3.

Di�erent versions of the separation of points based
on other objects such as L-shape and well-covered
rectangles were also suggested. Seara carried out a
thorough study [1]. In addition, in 2017, Moslehi
and Bagheri examined the separation of two sets of
bichromatic points by a minimal triangle with a �xed
angle [28] and solved an O(n log n)-time algorithm.
The current research aimed to examine the separation
of polylines using a triangle and presented an algorithm
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relevant to O(N logN)-time; in other words, the pre-
vious solutions for polylines were generalized.

3. Preliminaries and algorithm description

First, some rudimentary de�nitions should be taken
into account. Section 3.1 shows that the separation
of line segments is di�erent from separation of points.
Given that the vertices of separating the triangle points
cannot be placed anywhere in the plane, Section 3.2
determines the area suitable for them, i.e., A. Since the
angle of the separating triangles is �xed, Section 3.3
speci�es the trajectory of their corresponding vertex
which is a set of arcs called � � cloud. Section 3.4
shows the topology of the separating triangles which
may change at some event points. Section 3.5 shows
how to handle these events and pseudo-code of the
proposed algorithm. Finally, Section 3.6 extends the
results to the polylines.

3.1. Separating blue and red lines by a triangle
Let P = fp1p̂1; p2p̂2; � � � ; pnp̂ng be a set of n blue line
segments and Q = fq1q̂1; q2q̂2; � � � ; qmq̂mg a set of m
red line segments. The objective here is to calculate
the minimal triangles with a �xed angle such that each
of them would include all members of P and exclude
all members of Q.

First of all, make sure whether this problem
can be reduced to a bichromatic point set separation
problem. An important question may arise here: Is
it possible to only consider the end points of the red
and blue lines and distinguish these two-point sets to
separate the red from the blue lines? According to the
�ndings, the mentioned idea is wrong. As shown in
Figure 1, the red-end points are separated from the
blue ones by a triangle, yet they may contain some
parts of the red lines.

From now on, the blue and red lines are shown by
thin gray lines and thick black lines, respectively.

Since a triangle is convex and the convex hull
of a collection of objects is de�ned as the minimum
convex polygon that includes the relevant objects, the

Figure 1. End points separated by a triangle while line
segments not separated.

Figure 2. Separation of blue and red lines.

Figure 3. Supporting lines of a point.

separating triangle of the relevant objects includes the
convex hull of P , i.e., CH(P ). Of note, all three sides
of the minimal separating triangle are tangential to
CH(P ). If there is a triangular separator, CH(P ) will
be monochromatic; otherwise, two sets of P and Q will
be empty of any triangular separator resulting from
the convexity of a triangle. Obviously, CH(P ) and its
monochromatic state in O(n log n) time can be calcu-
lated. Then, we suppose CH(P ) as monochromatic.
Figure 2 shows the convex hull of the blue lines rather
than red lines.

3.2. Calculation of feasible area A
This section gives three necessary de�nitions related to
the subject under study.

De�nition 1. Assume a convex polygon Y and a point
x outside Y . Here, by the supporting lines of x to
Y , we mean the two lines passing through x that are
tangent to Y . For more information, refer to Figure 3.
The supporting line can be calculated in O(n logn)
time [29].

De�nition 2. Assume a convex polygon Y and a
line segment L outside Y . Here, by the supporting
lines of L to Y , we mean the two common internal
tangent lines of L and Y . For more information, refer
to Figure 4.

De�nition 3. The vertices of a separating triangle
cannot lie in some areas de�ned by the red line
segments as well as their extension of their supporting
lines to CH(P ). Consider a red line segment Si = qiq̂i.
The extension of its supporting lines de�nes the four
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Figure 4. Supporting lines of a line.

Figure 5. Forbidden area Ai.

areas in the plane where CH(P ) lies. The opposite
area is called the forbidden area Ai of Si.

The vertices of a separating triangle do not remain
in the forbidden areas mainly because if the vertex of
a separating triangle lies in the forbidden area, a part
of the red line segment Si will also lie in this area. In
other words, if A = [m1 Ai, the area allowed for vertices
of a separating triangle is a complimentary area of A
(see Figure 5).

The area A is star-shaped, often unlimited with
borders where CH(P ) is located in its kernel [4]. The
border of this forbidden area consists of line segments
of the set Q and extension of their supporting lines
(in [4], a similar idea is used) which can be calculated
in O(N logN) time, where N = n+m [1]. We denote
it by �.

3.3. Computing the trajectory of � � vertex of
� � triangles around CH(P )

In this section, we have some de�nitions.

De�nition 4. A � � triangle is a triangle with an
interior angle of �.

De�nition 5. The � � vertex of a � � triangle is a
vertex such that the angle between the corresponding
edges is �.

Assume that in Figure 6, the two supporting lines
to CH(P ) intersect at the point x, and the internal
angle between them is �. Once the tangency points of
the supporting lines are �xed, the locus of the point x
becomes a circular arc. In this regard, the � � vertex
of a separating � � triangle lies at the trajectory � . It

Figure 6. � � cloud � by circular arcs.

consists of the mentioned circular arcs and is obtained
when the � � vertex of a � � triangle that is tangent
to CH(P ) which rotates over a full 2� turn around
CH(P ). For more details, see [30].

De�nition 6. � � cloud is the trajectory � of the
� � vertex [31].

Lemma 1. The � � cloud can be constructed from
CH(P ) in O(n) time and it contains O(n) vertices and
circular arcs [8].

3.4. Calculation of event points
Through determination of the ��cloud, the separating
triangle is examined based on the position of the
� � vertex in � . Clearly, the set of points belonging
to � inside the forbidden area is unusable, and it is
not possible to locate the vertex of separating triangle
in them. In this respect, � is divided into intervals
to determine whether or not a separating triangle is
suitable for all points of the intervals, considering the
position of the vertex at the points of the intervals.
Two supporting lines were drawn from �� vertex w to
hit the �rst point in the forbidden area, considering the
supporting lines as the directed vectors starting from w.
The supporting line on the right side of which CH(P )
lies is called l(w), and the other one is called r(w).
The �rst intersecting point of l(w) with � is called x
(if it exists), and the �rst intersecting point of r(w)
with � is called y (if it exists). The tangential lines of
CH(P ) passing through x and y are called L and R,
respectively (see Figure 7).

As shown in Lemma 3, the existence of the sepa-
rating triangle depends on the external angle between
L and R. In case the external angle between L and
R is not less than 180�, the two sets P and Q of
the bichromatic line segments can be separated by
a minimal triangle. Once w on � is rotating, two
groups of important points called event points emerge.
These event points divide � into some intervals. The
points belonging to an interval are characterized by the
same properties regarding the existence of separating
triangles. The two types of event points are as follows:

� Event points of type 1: This event occurs when
R or L is changed by turning w on � . While w moves
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Figure 7. l(w) and r(w) intersecting two supporting lines.

on � , R (followed by L) is changed after a change
is made to the intersection point of the extension of
r(w) (followed by l(w)) with border �;

� Event points of type 2: They are formed by inter-
section of � and �.

In order to trace the changes of L and R and test the
external angle between L and R during the rotation
of w on � , it is required to consider the intersecting
points of r(w) and l(w) with �. Given the two
intersection points on the border of the forbidden area
which consists of line segments of set Q as well as the
extension of their supporting lines and unlimited areas,

six cases are to occur which are equal to
�

3 + 2� 1
2

�
(including two combinations of the three parts of the
forbidden area with repetition).

Case A. The tangential lines l(w) and r(w) hit the
border, �, of the forbidden area at the extensions of
some line segments of the set Q. The parameters used
in Figure 7 are de�ned as follows:
w The vertex of a separating triangle

with the angle �
l(w) Tangential line to CH(P ) from the

point w, on the right side of which
CH(P ) lies

r(w) Tangential line to CH(P ) from the
point w, on the left side of which
CH(P ) lies

L The �rst line segment from the border
which does not belong to Q and is
extended from one of the supporting
lines of one of red line segments.
The extension of l(w) creates an
intersection at point x on the right
side of which CH(P ) lies and L is
tangential to CH(P ) by extension

Figure 8. Induction judgment of Lemma 2.

R The �rst line segment from border
which does not belong to Q and is
extended from one of the supporting
lines of one of red line segments.
The extension of r(w) creates an
intersection at point y, on the left
side of which CH(P ) lies and R is
tangential to CH(P ) by extension

i The intersection point between L and
l(w)

j The intersection point between R and
r(w)

x The intersection point between L and
r(w)

y The intersection point between R and
l(w)

The two edges of the hypothetical separating triangle,
which is one of its vertices, are located on the extended
lines of l(w) and r(w). The third side (in front of w)
is located on the line segment l(w) at one end and on
the line segment r(w) at the other end.

Lemma 2. Consider a convex polygon Y with n
edges, a point g outside it, and two supporting lines
of g and their tangency points s and t. For each point
h inside the bounded area by Y and two supporting
lines of g (the gray area in Figure 8), the extensions
of the supporting lines of point h intersect \both" two
line segments gs and gt.

Proof by Induction method. In this section, we
�rst assumed that the polygon under study is a triangle
(for n = 3) to examine the induction basis. In this
regard, if we draw the supporting lines from a point
such as h inside the bounded area (sgt) to any selected
point, both s and t will be tangential to the same
points. In addition, as h gets closer to st than to g,
the angle \sht will then be larger than the angle \sgt
and the supporting lines will intersect both gs and gt
by extension. More details are given in Figure 9. In
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Figure 9. Induction basis of Lemma 2.

case the whole triangle is within the triangle hst, the
claim is e�ective too.

Induction hypothesis: It is assumed to be true for
n = k;

Induction judgment: The aforementioned statement
was proved to be true for n = k + 1.

Consider a convex polygon with k + 1 edges and draw
two tangential lines from a point outside it, similar to
g in Figure 8 where the tangency points are denoted by
s and t. In case the two points are connected to each
other, a convex polygon whose edges are less than k+1
will be obtained. A convex polygon is divided into two
polygons by drawing one of its chords. If the connecting
line, st, is located on one side of the polygon, it will
be the same as our induction basis, which has been
already discussed. Consequently, the presupposition
judgment will be proved e�ective for the polygon. As
a result, the supporting lines of any point inside the
area restricted by the main polygon with k+1 edges as
well as the tangential lines of hu and hz will intersect
both line segments of gs and gt by extension; hence,
the assumption for a polygon with k + 1 edges will be
e�ectively true. �

In this study, L and R are referred to as tw
directed vectors such that CH(P ) lies on the right
side of R and on the left side of L. Both external
and internal angles between R and L are de�ned as a
standard way, as shown in Figure 10.

Lemma 3. Two colored sets of P andQ are separable

Figure 10. Internal and external angles.

by the � � triangle if and only if the external angle,
followed by the extensions of L and R, is not less than
180�.

In order to prove the lemma mentioned above,
it should be considered that when the external angle
of R and L is less than 180�, any line segment which
intersects l(w) and r(w) will overlap CH(P ). As a
result, there will be no separator triangle. Further,
it should be proved that there is no red line in the
restricted area by CH(P ), l(w), r(w), and xi and yj
line segments.

Proof by reductio ad absurdum. According to our
absurd hypothesis, there is at least one red point in the
mentioned area. According to Lemma 2 and given that
l(w) and xi line segments are tangential to CH(P ), it
can be concluded that in case there is a red point in
the restricted area by CH(P ) as well as the mentioned
line segments, the extensions of the supporting lines
will intersect xi and l(w) so that l(w) hits the border
� before L line segment at another point, which is
contrary to our basic hypothesis. Consequently, the
absurd hypothesis was proved false while the judgment
was e�ective. This claim is also true for yj and r(w)
line segments. As illustrated in Figure 7, there is no
red line in the restricted area by CH(P ), l(w), r(w),
xi, and yj line segments mainly because if there is any
red line, its supporting line will intersect l(w) and r(w)
which is contradictory to our basic hypothesis based on
the fact that L and R are the �rst lines from the border
� where l(w) and r(w) will intersect by extension. As
a result, the absurd hypothesis is proved false while
the judgment is e�ective. In addition, any line that
intersects both wx and wy can be the third side of a
separating triangle if and only if the external angle of
L and R is not less than 180�. In this respect, the third
side does not overlap CH(P ) and there is no red line
inside the formed separator triangle.�

Case B. In this case, one of the tangential lines,
either l(w) or r(w), intersects � at one of the red line
segments from the set Q, while the other tangential line
intersects a supporting line (of a red line segment). The
parameters used in Figure 11 are de�ned as follows:

R One of the supporting lines of the
�rst line segment from border � which
belongs to Q and intersects r(w) by
extension such that CH(P ) is located
on its right and will be located in front
of w by extension

x The intersection point between l(w)
and red line which belongs to Q
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Figure 11. l(w) intersecting a red line segment and r(w)
intersects a supporting line.

y The intersection point between r(w)
and a supporting line from the border

L A line passing through x which is
tangential to CH(P ) such that CH(P )
is located on its left

k The intersection point between r(w)
and extension of L

j The end point of the red line segment
opposite to w

i The intersection point between the red
line and the other line extended by R

In this case, Lemma 3 is e�ective, too.

Proof. Unlike Case A, l(w) intersects one of red lines
by extension and any points in the red lines have their
own speci�c L and R. In addition, unlike a supporting
line extension where all the involved points have a
unique line tangential to CH(P ), the red line has a
speci�c tangential line to each point of it. Then, the
condition of the third side of the separator triangle
depends on the point where l(w) or r(w) hits the red
line by extension.

In Figure 11, the external angle between the line
passing through x (i.e., L) and R determines whether
or not the third side of a separator triangle can be
formed. Given that r(w) in this case has already hit
the supporting line by extension and all the involved
points have a �xed R value, similar to Case A for L
and R, the red line can be divided into two parts based
on the extension of R and calculation of its intersection
point with the red line. According to the external angle
of R and considering the relevant L of each point after
point i, which is the intersection point between R and
red line, it can be concluded that the third side of the
separating triangle can be formed without overlapping
the CH(P ) area. Therefore, according to Lemma 3 in
Case A, in case the intersection point of x is located
on the line ij, the third side of the separating triangle
will end in l(w) and r(w) so that it would not overlap

Figure 12. l(w) and r(w) intersecting two red line
segments.

CH(P ); hence, there is no red line in the area restricted
by CH(P ), yi, and xk. In addition, in case there is no
intersection point between R and red line, it lies on
one side of R. However, if it lies on the right side of R,
then there is a separating triangle for any x on the red
line, and if it lies on the left side of R, then there is no
separating triangle. �

Case C. In the third case, the tangential lines to
CH(P ), which cross over w, meet the red lines which
belong to Q while hitting the border �, (see Figure 12).

In this condition, both l(w) and r(w) intersect
the red lines by extension, and each point on the red
lines has speci�c L and R. Under this condition, the
tangential lines must be drawn from x and y to CH(P )
to determine whether or not a separating triangle
can be formed. If the external angle is more than
180�, there will be a separating triangle; otherwise, no
separating triangle will be formed. Given that there
are an in�nite number of points on these two red lines
and each point must be examined separately, it can be
suggested that by turn of around � , the red lines are
divided into a number of intervals so that all points
at the intervals are characterized by a unique feature
(Figure 13).

As shown in Figure 13, if we consider the in-
tersection point of l(w) with the red line L1 as f2,
which is �xed, and want to examine the position of
the intersection point of r(w) with red line L2 as f1 in
order for a separating triangle to be formed, by drawing
a tangential line to CH(P ) from f2, we can de�ne its
intersection point with the red line L2 as f3. For a
separating triangle to be formed, the external angle of
L and R must not be less than 180�; thus, the other
end of the third side of the triangle must be located at
the interval from f3 to point (a1; b1).

It can now be claimed that in general, when f3
reaches f1, a separating triangle is formed. Therefore,
by assuming F1 as a distance from f1 to the beginning
point of L2 and F3 as distance from f3 to point (a1; b1),
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Figure 13. Turn of w around � � cloud � .

we can decide whether a triangle is formed by F1�F3 so
that by turn of w, when the amount is not positive, the
separating triangle is formed. Through the beginning
of a line segment, we mean the endpoint with the lower
y coordinate.

Keeping the issue in mind, we assume an arc
from � around which w is turned and is related to
a circle with radius one and the center of coordinate
origin. Then, by applying polar coordinates of w and
intersecting red lines, l(w) and r(w), we achieve Eq. (1)
through simple high-school calculations:

F1 � F3 =
�
A1 � sin (�) +A2 � cos (�) +A3

sin (�) +A4 � cos (�) +A5

�
�
�
A6 � sin (�) +A7 � cos (�) +A8

A9 � sin (�) +A10 � cos (�) +A11

�
:

(1)

For all: 0 � � � 2� and Ais as constant coe�cients.
Once the phrase given above is calculated and

the variable x = sin � is changed using the algebraic
identity:

sin(�)2 + cos(�)2 = 1;

we can obtain a polynomial with utmost eight roots.
Therefore, the function intersects the x-axis at utmost
eight points. Here, the function mentioned above
cannot be considered positive at these eight points;
therefore, the red line segments are divided into eight
intervals at most in a way that every point at this
interval has the same L and R. Therefore, it can be
stated that Lemma 3 is e�ective.

Case D. In the fourth case, the extension of one of the
tangential lines to CH(P ) does not hit w crossing the
border � and the other one hits a side of the border �
which does not belong to Q. The parameters used in
Figure 14 are de�ned as follows:

Figure 14. r(w) intersecting a supporting line and l(w)
does not hit border.

L The �rst line segment from the
border � which does not belong to Q;
instead, it is an extension of one of the
supporting lines of a red line segment
where the extension of l(w) creates an
intersection at x in a way that CH(P )
is located on its right

x The intersection point between l(w)
and L

R A line parallel to r(w) and tangential
to CH(P ) in a way that R and r(w)
are located on the opposite sides of
CH(P )

j The intersection point of a line
extended by a tangential line to
CH(P ) which passes through x and
r(w)

i The intersection point between l(w)
and R

Lemma 4. For each convex polygon such as Y
and both parallel lines including R and L which are
tangential to Y and any point such as g in the area
restricted by R and L and outside Y , if we draw two
tangential lines to Y which cross over g, the lines will
intersect both R and L by extension (see Figure 15).

Proof by induction method. According to the
�ndings, for n = 3, the assumption is true when the
convex polygon is a triangle, as shown in Figure 16.

Induction hypothesis: We assume the judgment to
be true for n = k;

Induction judgment: In addition, the judgment was
proved to be true for n = k + 1.

Given that the polygon is convex, if we connect points
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Figure 15. Tangential lines crossing over g intersecting
both R and L.

Figure 16. Induction basis of Lemma 4.

Figure 17. Induction judgment of Lemma 4.

s and t, a convex polygon is obtained; and if we
draw a chord in a convex polygon, it will be divided
into two convex polygons whose edges are less than
n+1. As a result, the judgment can be proven e�ective
for this polygon according to our induction judgment.
Therefore, the extensions of both supporting lines of
each point inside the area restricted by the main
polygon and parallel tangential lines intersect both
parallel tangential lines; hence, judgment is found
e�ective in the case of a polygon with n + 1 edges
(Figure 17). �

In this case, Lemma 3 is also e�ective as proved
in the following.

Proof by reductio ad absurdum. Similar to the
previous sections, if the external angle of R and L is
less than 180�, then any line segment that ends in l(w)
and r(w) will overlap; hence, no triangle will be formed.
Of note, there is also no red line on the area restricted

by CH(P ) and l(w) and line segment xj in addition
to the area restricted by CH(P ), r(w), and R. In this
regard, both Lemmas 2 and 4 were considered to prove
this statement.

According to Lemma 2, l(w) and xj are tangential
to CH(P ); therefore, if there is even one red point
inside the restricted area, its supporting lines will
intersect both l(w) and xj by extension. This is
contrary to our basic hypothesis where L is the �rst line
segment from the border which is intersected by l(w).
Then, the absurd hypothesis is false and the judgment
is e�ective. �

According to Lemma 4, given that R and r(w)
are parallel and tangential to CH(P ), if there is even
one red point inside the restricted area, its supporting
lines will intersect R and r(w) by extension. This
is contrary to our basic hypothesis where -r(w) does
not intersect with any border in the forbidden area.
Then, the absurd hypothesis is false and the judgment
is e�ective. As a result, no red line is found inside the
area restricted by r(w), CH(P ), and R.

Case E. In the �fth case, two tangential lines to
CH(P ), which cross over w, do not hit border by
extension. The parameters used in Figure 18 are
de�ned as follows:

L A line parallel to l(w) and tangential
to CH(P ) in a way that L and l(w)
are located on opposite sides of CH(P )

R A line parallel to r(w) and tangential
to CH(P ) in a way that R and r(w)
are both located on sides of CH(P )

i The intersection point between l(w)
and extension of R

j The intersection point between r(w)
and extension of L

In this case, Lemma 2 can be e�ective.

Figure 18. l(w) and r(w) do not intersect the border.
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Figure 19. r(w) intersects a red line segment and l(w)
does not hit the border.

Proof. Similar to the previous part and according to
Lemma 4, Lemma 3 holds. Only the de�nition of R
and L is di�erent, which has no e�ect on Lemma 3. �

Case F. In the sixth case, one of the tangential
lines to CH(P ) which cross over w does not hit the
border by extension, while the other tangential lines to
CH(P ) hit a side of border which belongs to Q. The
parameters used in Figure 19 are de�ned as follows:

x The intersection point between r(w)
and red line

R The tangential line to CH(P ) while
crossing x

L A line parallel to l(w) and tangential
to CH(P ) in a way that l(w) and L
are located on opposite sides of CH(P )

y The intersection point between r(w)
and the extension of L.

In this this case, Lemma 3 is e�ective, too.

Proof. Similar to the Case B, r(w) hits one of the
red lines by extension, and each point in the red lines
has its own speci�c L or R mainly because unlike
the supporting line where all points have a unique
tangential line to CH(P ), any red line has a speci�c
tangential line depending on its di�erent points. In
this respect, the formation of the third side of the
triangle is de�ned based on the point hit by r(w).
The external angle between L and tangential line
crossing R determines whether or not the third side
of the separating triangle is formed. In this case, the
extension of l(w) does not hit the forbidden area where
all points have a �xed L value. If y exists and y 6= x,
then the third side of the separating triangle can be
formed without overlapping CH(P ). In accordance

with the previous lemmas, there is no red line in
the area restricted by CH(P ), l(w), r(w), l and the
tangential line to CH(P ) crossing x. �

The event points can be examined based on all
of possible cases relevant to the extension of l(w) and
r(w). Given that the external angle between the lines
extended by R and L determines whether or not the
set of line segments is separable by � � triangle when
w turns around CH(P ) at � , all points have the same
condition: There is either �� triangle for each of them
or no ��triangle for any of them as long as R and L do
not change; in other words, the sides of border � which
l(w) and r(w) intersect do not change. Depending on
where the extensions of r(w) and l(w) lie, L and R are
updated and in each case, it is determined whether or
not there is any separating triangle.

Therefore, � is divided into a set of intervals which
makes it feasible to examine one point at the interval to
decide whether a separating �� triangle can be formed.

Based on the previous assumptions, we can de�ne
two events as:

The event of R, L change. This event occurs when
R or L changes by turning w on � . While w moves on
� , R (followed by L) is changed when the intersection
point of the extension of r(w) (followed by l(w)) with
border � is changed, which occurs in six Cases A to F.

Based on previous considerations, some points in
� at which R and L are changed are reported as the
event points. However, if the intersection point of the
extension of l(w) and r(w) with border � is located
in the third case, the red line will be divided into 8
intervals at most so that each interval has the same R
and L. Then, 8 events are reported.

The event of departure. This event occurs when
� and � are intersected. For each point in � which is
located inside the forbidden area A, there is not any
� � triangle. Then, the intersection point between �
and � is reported as the point of departure.

Lemma 5. Given two sets of blue and red lines P
and Q of total size N , the total number of events of
Types 1 and 2 is O(N) and can be calculated in O(N)
time.

Proof. The total number of events is corresponding
to the number of the sides of �. The sides consist
of red lines and supporting lines and as we draw two
supporting lines for each red line, the total number of
the sides is at most 3 times the number of red lines.
Then, the total number of events is O(N). When we
extend any side of �, it may intersect � at many points.
The last intersection point of the extension of each side
of � with � is a point related to event of Type 1. The
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intersection point of each side of � with � is related
to the event of departure. We remind that � is star
shaped and CH(P ) is like its kernel. We can de�ne
sort of order for the sides of �. The intersection point
of � and � obeys the order, too. As we have already
calculated the order of sides of �, all points can be
reported in O(N) time. �
3.5. Handling the events
Based on the previous considerations, we need to
determine whether a separating � � triangle is formed
for an arbitrary point except the end-points at each
interval and generalize the results to all points of the
interval. If, for any intervals of � , no separating triangle
is formed, then the set of lines is not separable by
�� triangle. We know that all of event points are saved
in event queue depending on their order in � . While
the event queue is not empty, we can put them out of
the queue in order to process each.

The event of departure. It is clear that if the
two sides related to a concave vertex from � hit � ,
two events of departure can be determined. These
two consecutive sides specify two consecutive events of
departure. There is no � � triangle between the two
events. Therefore, none of the events between the two
events mentioned are processed.

The event of R, L. When we encounter this event,
we update R, L as to decide whether a separating � �
triangle is formed for each of the points between the
present event point and the next one. It must be noted
that these two events are processed in O(1) time.

The algorithm. In this section, the pseudo-code
of our algorithm, as a whole, is given regarding the
previous sections (see Algorithm 1). The algorithm has
four main steps. First of all, the monochromatic state

of CH(P ) is checked. If CH(P ) is not monochromatic,
there is no separating triangle; otherwise, we need
to measure the star-shaped structure and the � �
cloud around CH(P ) as in Sections 3.2 and 3.3. In
Section 3.4, as the third main step, some points in � ,
at which R and L are changed or � and � intersect, are
reported as the event points. Finally, we handle those
event points, as in Section 3.5.

Theorem 1. The algorithm Report Minimal Sepa-
rating Triangles takes O(N logN) time to specify � �
triangle separability of two given bichromatic sets of
lines P and Q of total size N and give a report on all
of the separating triangles.

Proof. We examine all of the algorithm steps to an-
alyze the time complexity of the algorithm. In Step 1,
computing the convex hull of P and its monochromatic
state takes O(N logN) time and in Steps 2 to 6, we
must gain a star-shaped polygon in order to examine
the separability of lines with �� triangle in O(N logN)
time [1] and also, to calculate � in O(N logN) time [8].
We can specify two events of change and departure by �
and � . According to Lemma 3, all events are calculated
in O(N) time. Given that the number of events is
O(N), we can enlist the events in order in O(N logN)
time. We know that each event is processed within a
�xed time. As there are O(N) events, all events need
O(N) time to be processed. Therefore, the algorithm
is carried out in O(N logN) time.

3.6. Extending the results to polylines
Let P be a set of blue polylines with n blue seg-
ments and Q be a set of red polylines with m red
segments. Within O(n logm) time, it is possible to
whether CH(P ) is monochromatic is not; thus, the
problem of triangle separability for polylines is easily
reduced to the problem of the triangle separability for
line segments described in Section 3.1. If CH(P ) is

Algorithm 1. Report, minimal, separating, triangles.
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monochromatic, consider the set of line segments of the
polylines of P and Q and run the algorithm described
in Section 3.5. This can be done at O(N logN) where
N = n+m.

4. Conclusion

This study solved the problem of separating two sets
of polylines in a plane with minimal triangles. The
proposed algorithm reports all combinatorially di�er-
ent minimal separating �� triangles of two sets P and
Q of segments and polylines and it ran in O(N logN)
time. An interesting problem that can be studied is
�nding the minimal rectangles.
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