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Abstract 

Real-time data are commonly prone to errors due to irregular fluctuations, seasonal biases, and 

missing values in the data. The erroneous data causes inaccurate forecasting which leads to 

business loss. Moreover, the concept drift problem is a known problem in time series forecasting 

that also results in poor forecasting accuracy. The execution time of a machine learning model is 

also crucial when it is deployed in a real-time environment. This work presents an Adaptive 

Batched-Ranked Ensemble (ABRE) model that reduces the effect of fluctuation using the time-

variant windowing technique. A data aggregation technique is developed and integrated with the 

offline training phase of the proposed model to tackle the concept drift problem. A meta-model is 

developed in the online forecasting phase which ensures faster execution for incoming data. The 

model is implemented for the medical workload prediction after testing and comparing with a 

few other heterogeneous ensemble models. The comparison results show in terms of the root 

mean squared error, the proposed model performs at least 65.7% better than the heterogeneous 

stacked ensemble models on the experimental dataset. Moreover, in comparison to the other 

standalone models considered in this experiment, the ABRE model reduces the prediction error 

by approximately 73.6%. 

Keywords: Time-series forecasting, Irregular fluctuation, Concept drift, Batched-ranked, Multivariate 

forecasting model, Ensemble modeling.  
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1. Introduction 

   The prediction accuracy of time series data is crucial in almost every industry since inaccurate 

forecasting leads to business loss. Real-time data is erroneous, for which maintaining high 

forecasting accuracy is a challenge [1][2]. Machine Learning (ML) forecasting models can tackle 

this challenge and provide higher forecasting accuracy [3].  As different ML models have their 

own benefits and drawbacks, researchers sought to combine them for forecasting, which brings 

forth the idea of ensemble modeling [4]. Multiple ML algorithms are combined to develop an 

ensemble model. It is proved that the prediction accuracy of an ensemble model for a complex 

dataset is much higher than a standalone model [5]. This ensemble technique uses a meta-

learning stage which ensures the highest accuracy [4] [6]. The parallelization of multiple 

algorithms at the same time ensures faster training time [7]. For that reason, the ensemble 

modeling method is widely adopted for predictions on online streaming data [8].   

   Predictive models for time series forecasting are trained using historical data. In real-world 

applications, data is online or streamed, i.e., data is available over time. In common cases, the 

statistical properties of the online data also change over time which makes the data non-

stationary [9]. This type of data can have non-linear trends, multi-seasonality, and irregular 

fluctuations [10]. Fluctuations in the data may occur due to the noise or due to the concept drift 

[11] [12]. The noise in the data refers to irregular fluctuations [13]. On the other hand, concept 

drift is a term used in time series forecasting to indicate how the statistical parameters and 

underlying relationships of the input and target variables change over time [14].  For example, 

patients’ waiting times may change over time depending on the workload distribution of a health 

care system.  

   The prediction accuracy of online time-series data may suffer from irregular fluctuations and 

concept drift, which makes the prediction model obsolete [15]. Learning in non-stationary 

environments where data is available over time, may change the underlying relationships 

between the input and output variables [12]. In the ML domain, the problem of changing 

relationships over time is known as concept drift [14].  Prediction on online time-series data 

requires faster execution time [16]. Models with faster execution time may result in poor 

prediction accuracy [17]. The use of an ensemble method can balance this tradeoff between 

execution time and accuracy [18].  In this research, we have proposed an ensemble model to 
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predict incoming time-series data. Online or streaming time-series data usually exhibit time-

varying behaviors, which may result in large variations between old and incoming data causing 

concept drift [19]. To overcome the problem, a new incremental learning method is applied in 

this study by continuously retraining the proposed model after a fixed time interval. However, 

retraining an ensemble model may increase the computational costs [20]. Besides, irregular 

fluctuations in time-series data may result in poor prediction accuracy [21]. To minimize the 

retraining cost and to ensure faster execution time, a hybrid offline training and online prediction 

framework is implemented in this research. Also, a new time-variant batch window method is 

proposed in this study to handle the effect of irregular fluctuation in data.              

    Thus, the main contributions of this research are as follows. 

● Developing a new time-variant training window technique to denigrate the influence of 

irregular fluctuations on prediction accuracy. 

● Implementing a new method for aggregation of incoming data with the existing trained 

data to tackle the effect of concept drift. 

● Implementing new incremental learning using an averaging approach to prevent data 

from growing over time.  

● Implementing a modified batch ranked method in ensemble modelling to boost up the 

training phase. 

● Implementing a hybrid online and offline prediction framework for prediction to ensure 

faster execution with the offline retraining phase. 

   This paper is organized as follows: 

   Related research on ensemble modelling design and implementations of ML algorithms about 

short-term time series has been described in Section 2 of this paper. Section 3 describes the 

proposed method. In Section 4, a short description of the working dataset has been stated. 

Models’ evaluation and key findings have been discussed in Section 5. Section 6 concluded the 

applicability of the model.  

 

2. Literature review 
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   The ensemble method is an advanced ML technique that combines several algorithms for 

prediction. Inside the ensemble model, each ML algorithm performs prediction based on its 

capacity and strengths. Hence, most often, the outcome of an ensemble model outperforms a 

single model’s prediction [21]. In recent years, ensemble models have been widely used in 

different industries across different problem domains such as forecasting, classification, 

regression, error reduction, and feature selection. Predictions based on streaming data are 

commonly performed using ensemble models since a single model may result in high prediction 

errors for streaming data [7]. Ensembling of multiple models provides higher accuracy, plus the 

parallelization ensures lower execution time [21]. Ensemble modeling can be based on any of the 

three hypotheses namely bagging, boosting, and stacking. A bagging method lowers the model’s 

variance [22]. A boosting method decreases the model’s bias [23], and stacking enhances the 

model’s predictive power with fine accuracy [24]. In this research, a staking method is used for 

the prediction of time-series data.    

   Anifowse et. al. [6] proposed an ensemble model using Artificial Neural Network (ANN) to 

predict the porosity and permeability of petroleum reservoirs. The experimental result shows the 

proposed model outperformed Random Forest (RF) model and ensemble model with traditional 

bootstrap aggregation method. Later, the same authors [25] proposed an ensemble model of 

Extreme Learning Machine. The experimental result of that study indicated the ensemble models 

perform better than individual algorithms used as the base learners. A modified version [26] of 

the proposed model demonstrated the ANN ensemble model with increased search space can 

provide a higher performance of the model. However, these proposed models did not address the 

concept drift problem. 

   Several approaches have been proposed to handle the concept drift depending on how quickly 

the drift is detected and adopted. Depending on the concept drift handling approach, ensemble 

models can be further classified into passive and active [27]. In Active approaches, when a drift 

is detected, typically new predictive models are created to learn the new concept and thereby 

help the system recover from the drift problem [28]. Passive approaches maintain an ensemble of 

base models for prediction. Weights are assigned to the models based on their prediction errors. 

These weights indicate the best corresponding model for the current concept [29]. Ensemble-

based approaches dealing with concept drift are categorized into homogeneous and 
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heterogeneous. Active homogeneous approaches are based on single learners combined with a 

Drift Detection Method (DDM). A threshold point is assigned for drift detection, and when this 

point is reached the model recognizes it as the occurrence of the concept drift. A common way to 

learn the new concept is to reset the single learner [30]. Several methods have been suggested for 

drift detection. DDM is a statistical process for detecting concept drift [31]. It measures an 

online-learning model's probability of producing minimal error over time and its associated 

standard deviation. Early Drift Detection Method (EDDM) [32] is similar to DDM but calculates 

the distance between two misclassifications instead of the error rate. The Statistical Test in Equal 

Proportion measures the concept drift by comparing the accuracy among the latest examples and 

the total accuracy from the start of the learning [33]. However, this produces many false 

positives near the drift points [34]. Passive learning methods do not depend on drift detection 

techniques, instead, they maintain an ensemble of learners. When a concept drift occurs, a new 

learner is created to learn the new concept and an older learner is discarded from the ensemble 

due to its poor performance. Established passive ensembles are implementing dynamic model 

selection approaches for the inclusion or exclusion of base learners. Most of the heterogeneous 

ensemble techniques that exist for online data rely on meta-learning [8] which helps to determine 

which learning techniques are more appropriate for the data. 

   Ensemble modeling with stacking is extensively used for the prediction of streaming data [35]. 

An ensemble model with a hybrid incremental learning approach is proposed for short-term 

electric load forecasting to overcome the effects of drift [17]. Zhu et al. [36] have proposed an 

ensemble model with parallel incremental learning to bypass the effect of concept drift. As 

incremental learning results in the continuous growth of data, an ensemble model with a 

forgetting factor is proposed by Yu and Webb [12] which keeps the data within a specified size 

and reduces the model’s complexity. Ren et al. [37] have proposed a selection-based resampling 

ensemble model for faster execution on imbalanced online data. An incremental regression 

framework using an ensemble model is developed [38] to lower the gradual drifting effect on 

prediction. Li et al. [14] have proposed a dynamically updated ensemble for learning imbalanced 

data streams with concept drift. A rank-based ensemble is proposed [16] to predict short-term 

online data which allows lower runtime of the ensemble model. Similar to the ranked-based 

approach, a heterogeneous dynamic weighted majority [20] method is also applied to the 

ensemble modeling. Ancy and Paulraj [39] have used dynamic sampling on their proposed 
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ensemble model to handle imbalanced data with concept drift. A mixture of neural network and 

support vector machine-based ensemble methods using transfer learning and incremental 

learning is developed [21] to lower the effects of concept drift. A schema-enabled knowledge 

graph embedding method is proposed [40] to address the concept drift challenge in the ML 

domain. Also, a statistical drift detection method is proposed [15] where data distribution is 

tracked to tackle the concept drift problem. However, the integration of these drift detection 

methods with the ensemble model makes the model more complex.  

   Ahmad et al. [41] proposed a hybrid ensemble model to forecast crude oil prices. They 

combined Group Method Data Handling (GMDH) with the median ensemble empirical mode 

decomposition to achieve higher forecasting accuracy. However, the execution time of GMDH 

method is high for the large dataset. Also, the concept drift problem is not addressed in their 

study. Yang et al. [42] proposed a concept drift tolerant transfer learning technique using the 

ensemble model. The learners are assigned a weight based on their prediction accuracy and then 

the higher weightage learners are selected. The learners are updated based on the adaptive 

weighted correlation alignment. However, this model can perform well when the input attributes 

are highly correlated. Priya and Uthra [19] also proposed an ensemble model to handle the 

concept drift problem in streaming data. They used the ‘Majority weighted minority 

oversampling’ technique to address the imbalanced class problem, and the ‘Diversity for dealing 

with drifts’ method to deal with the concept drift problem. Their result shows the ensemble 

model can provide high accuracy; however, the model's execution time is high.  

   In our proposed model, rank based learner selection approach is used to reduce the weight 

assignment complexity. The batch aggregation and training method are also implemented to 

handle the concept drift problem. Finally, the offline training and online prediction with the 

meta-model is proposed to reduce the model’s execution time. From the studied literature, it is 

noticed that only a few research considered multivariate regression problems on streaming data. 

It is also observed that the fluctuation reduction technique is not addressed in the previous 

literature where multivariate-streaming data is used. As best to our knowledge, the concept drift 

handling technique with incremental learning is not addressed in the previous literature where 

multivariate regression problem on streaming data is considered. Table 1 lists the recent research 
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studies based on ensemble modeling and provides a comparison of the models’ capacity with our 

proposed model.  

 

 

3. Methodology 

   In this section, the methodology of the Heterogeneous Stack Ensemble (HSE) model is first 

described. Then the methodology of the proposed Adaptive Batch-Ranked Ensemble (ABRE) 

model is mentioned. The HSE model is used as a benchmark model to compare the proposed 

ABRE model’s performance. 

3.1 Heterogeneous stack ensemble (HSE) model 

   We have used the HSE model as our benchmark model where several predictive algorithms are 

stacked.  These predictive algorithms are commonly termed the base learners. The predictions of 

these base learners on the training data, where the target variable is known, produce an error 

matrix. The formation of this matrix is based on the k-fold cross-validation. Each column of this 

matrix is the prediction error of individual base learners. After training all base learners, the 

corresponding values of the target variables are combined to form the final matrix, which is 

known as the training metadata. The base learners are then exposed to the incoming test data 

where the target variables are unknown. Each base learner performs prediction on the test data 

and the values of the prediction are stored as a column to produce another error matrix termed 

input metadata. A logistic regression model [43] is then trained on the training metadata and 

performs the prediction on the input metadata. Figure 1 shows the working methodology of the 

HSE model. 

   Instead of using the same type of base learners (e.g., collection of RF learners), the predictive 

learners with different characteristics and prediction capabilities are chosen to make the model 

robust. The learners used to develop the HSE model are RF, ANN, Support Vector Regression 

(SVR), Gradient Boosting Machine (GBM), Extreme Gradient Boosting (XGBoost), Multilayer 

Perceptron (MLP), and Generalized Linear Model (GLM). GLM is the most common technique 

for regression which is easy to implement and interpret. RF is one of the best supervised-learning 

algorithms containing the capabilities of providing reliable feature engineering, and working on 
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fewer data points. ANN can handle complex data efficiently. GBM is built for higher accuracy 

by generating complex tree structures. XGBoost is highly scalable which provides faster 

execution. MLP is a powerful supervised learning algorithm for regression and multidimensional 

mapping, which can efficiently handle nonlinear data. The learners’ chosen for the HSE model 

contains different hyperparameters which are listed in Table 2.  

3.2  Adaptive Batch-Ranked Ensemble model 

   In the proposed ABRE model, the offline training method is used to train the model. A set of 

expert learners are selected during the training and are grouped as an integrated model. An offset 

of this trained model is made available online to predict the incoming data. At the training phase, 

the available data is broken down into multiple time windows   [ nbs  , 𝑤ℎ𝑒𝑟𝑒 𝑛 = 0 𝑡𝑜 (𝑛 −

1)] of 15 minutes. Available data in each window is trained with different ML algorithms known 

as base learners, 1...lL .Based on the performance of the base learners, the highest performed 

learner is selected as the expert learner for that specific time window. This process is carried out 

for every available time window ( nbs ) on the dataset to identify a set of expert learners ( 1...ME

)along with the weights ( jw ). These expert learners with corresponding weights are passed to the 

online prediction phase as an integrated model. The incoming test window of the next 15 minutes 

is fed to that model and the predictions of the expert learners are combined using the weighted 

average technique. Figure 2 shows the block diagrams of the proposed ABRE model.   

   The online data windows are aggregated with the main training data after accumulating 96 data 

windows, or in other words after every (96*15minutes = 1440 minutes) 24 hours. The offline and 

online phases of the model are described in the next parts of this section. 

3.2.1 Offline phase 

   The offline phase mainly focuses on the model’s training. The time series prediction model 

commonly suffers from the concept-drift problem. Retraining the model at a fixed interval is 

required to tackle this problem [14]. Retraining the ensemble model increases the model’s 

computational costs and results in the delay prediction. In the proposed ABRE model, the offline 

phase is used to retrain the model so that it does not affect the prediction run time. The training 

phase is mainly incorporated with two approaches: i) construction of the time-variant training 
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window, and ii) the selection of the expert learners. These two approaches are described in the 

following subsections.  

i.   Time variant training window 

   The available time-series data is divided into 15 minutes time intervals that provide 96 data 

windows for any given day, and approximately 35,040 windows for a given year (or 35,136 

windows for leap year). If the number of input features is denoted as d, the input domain for each 

window becomes ; 1...96t ts d

tX R t


   . The available instances in each time window are 

denoted as  1 2, ,...,i i i i

ds x x x , where 
i

ts X  and 1 i s  . The data instances of the same time 

window with the same days and the same months, but different years are aggregated together. 

For the numeric target variable, the values of the target variable are averaged for the same input 

label. If the input labels are not matched, the sample is added as an instance on that specific 

window. As an example, the data of January first, 2019 and January first, 2020 have 96 windows 

each. If window one for both dates has the same input labels, the numeric target variables are 

averaged and for the different labels, it adds as an instance on window one of January first. The 

incoming data is also added with these fixed-sized training windows after every 24 hours. To add 

the incoming test window, we first match the window numbers of the corresponding day and 

month. If there is no match, the training dataset is updated with the incoming test windows’ 

window numbers, days, months, and corresponding instances. If there is an exact match found 

for the window number, day, and month, we then check the input features of instances for both 

data. If input features are exactly matched, the known target variable of the incoming test 

instances are averaged with the existing training instances. Figure 3 shows the process of the 

time-variant window.      

   The idea of averaging the incoming input space has several benefits. One of them is 

maintaining the input space with a minimum number of training instances which lowers the 

model’s training time [21]. Averaging of target variables also minimizes the irregular 

fluctuations in the time series data that helps to avoid the concept drift [44].  

ii. Selection of expert learners 
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   A set of learning algorithms 1...lL   are used in the training phase, where 0l  . The experimental 

dataset is divided into multiple windows based on time as discussed in the above section. Instead 

of the conventional approach of dividing the whole dataset into training and testing instances, 

each window is further divided into 80% of training and 20% of test data. In the conventional 

approach, ML algorithms commonly use the cross-validation (CV) technique with a specified K-

fold to gain higher prediction accuracy. Wherein, the dataset is divided into K number of sets and 

each set is used to validate the trained model. This process is complex and computationally 

costly [3] [45]. To reduce this complexity in this study, 20% of each time window is assigned as 

test data. Each window is transferred through the learning algorithms set lL . Each learning 

algorithm termed as the base learner is trained using 80% of the window data, and is ranked jr   

using Equation (1) based on their performances on the 20% test portion of the data. 

1

0

n

j L

bs

r r





                                                                                                                         

(1) 

where 1... ( 1... )L land j M L     

  Thus, each algorithm in 𝐿𝑙 gets a rank for each window. Root Mean Squared Error (RMSE) is 

used to determine the performances of these base learners. A learner, which produces the 

minimum error for a specific window is attained rank one and is considered as an expert learner (

ME )for that window. This ranking process carries on throughout the training process for all 

time- dependent windows. The total rank ( MR )for expert learners is calculated using Equation 

(2). 

1

M

M j

j

R r


                                                                                                                                 

(2) 
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 After training all windows ( nbs ), the rank one learners are grouped to develop the ensemble of 

expert models. The weight ( jw ) of each expert learner is determined by the total number of times 

an expert learner attains rank one using Equation (3).  

j

j

M

r
w

R
                                                                                                                                        

(3) 

The selected expert learners are then passed to the online phase to perform predictions on the 

incoming test data. 

3.2.2 Online phase 

   The selected expert learners from the offline phase are grouped and work as a meta-model in 

the online phase. The predictions of individual expert learners are combined and averaged using 

the meta-model.  The rank-based expert learner selection process is performed in the offline 

phase as it requires higher training time and memory space. Only the meta-model is deployed in 

the online phase to reduce the computational complexity. 

   The learners ( ME ) in this meta-model individually forecast on the incoming 15 minutes time 

window. These forecasted outputs (
M

y ) are multiplied with the corresponding weights ( jw )of 

the expert learners. The resulting numbers are summed up and divided by the total weight ( MW ) 

calculated using Equation (4), which gives us a single prediction output provided in Equation (5).  

1

M

M j

j

W w


                                                                                                                                     

(4) 

   
1

1 t

j M

M

F y w y
W

 
  

 
                                                                                                                   

(5) 

  The weighted average technique allows the model to forecast with higher accuracy. There are 

multiple advantages to using this weighted average method over other available techniques, such 

as boosting or bagging. First, it is simple to implement which reduces the computational costs. 
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Second, it captures the relative importance of the experts from the training phase, and these 

important factors indicate which expert learner’s predictions can get more focus to ensure better 

prediction results [46]. Third, it can save the model from overfitting while keeping the prediction 

variance optimal. The final prediction of the meta-model along with the incoming test data are 

stored temporarily in the online data windows database. These data are appended to the original 

training database after accumulating the 96 windows of the online incoming test data and 

corresponding online predictions.  

 

4. Description of dataset  

   The proposed model of this study is developed by focusing on a dataset containing 

radiologists’ activities. The radiologist dataset is a multivariate time series data, which is sourced 

from the IntelePACS server. The proposed ABRE model is a part of an integrated monitoring 

system of all treatment phases along with the efficient workload distribution in each phase. The 

target variable in this data is the radiologists’ workload. The prediction of the radiologists’ 

workload in advance can allocate the optimal time for their workload, which results in increased 

productivity. The dataset contains 22 input features and one target variable with 579,799 

instances, spread over a two years time horizon. The input features are the mixture of numeric 

(such as patients’ arrival timestamp, date, hours, minutes, etc.) and categorical variables (such as 

order area, order priority, order modalities, etc.). The target variable contains the numeric values; 

thus, the developed model is performing regression. The performance of the ABRE model is also 

tested with ten publicly available datasets listed in Section 5.  

 

 

5. Experimental results 

   In the experiment, first, the HSE model is used to predict the workload from the radiologists’ 

data divided into 80% training and 20% testing sets. The model training time with k-fold CV is 

recorded. The model is tested with the test data and the performance is recorded. The HSE model 

is then used to predict the workload for the next 15 minutes in a recurrent fashion based on the 

incoming data.  
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   The ABRE model is also trained with the available 35,136 time-variant windows. Each 

window contains 
sx   input instances, where 𝑠 is the number of instances. The instances in each 

window are further divided into 80% of training and 20% of testing data, where 5s  . The 

windows containing 5s   instances are not considered in the training phase. Each window is 

passed sequentially to the base learners lL , and each base learner learns from the 80% training 

instances. Based on their learning, the base learners make predictions on 20% of the testing 

instances, and their predictions are ranked according to their RMSE. The learner with the lowest 

RMSE gets rank-1. All rank-1 learners for 35,136 are grouped to form the ensemble of experts (

ME ). Table 2 shows the highest rank ( jr ) assignment to the base learners for each window to 

identify the expert learners along with their weight ( jw ).             

   The base learners used in this study with different hyperparameters are shown in the first 

column of Table 2. The second column shows the number of times a base learner has attained 

rank-1. We have only four expert learners for the initial training of the ABRE model. These four 

expert learners are stacked, and an offset of this stacked model is made available online for 

prediction. To understand the prediction’s strength of ensemble modeling for regression, we have 

recorded the individual performance of the expert learners of the ABRE model. These results are 

compared with the HSE model and the ABRE model on the experimental dataset, which are 

shown in Table 3.     

   From Table 3, it is observed that the ABRE model’s execution time is slightly higher than the 

SVR, because of the ranking process. However, compared to the error measure, the ABRE model 

outperforms the others. The ABRE model lowers the RMSE by approximately 65.86% and the 

MASE by approximately 75.84% in comparison with the HSE model. Among the standalone 

models, XGBoost performed better than RF, SVR, and MLP. However, the average RMSE of 

the ABRE model is 86.1% less than the XGBoost. Figure 4 shows the comparative performance 

results of the models using a two-factor Analysis of variance (ANOVA) test (Zimmerman and 

Zumbo, 1993). 

   It is noticed from the ANOVA test that the ensemble technique works better than RF, SVR, 

MLP, and XGBoost for the Radiologist dataset. Further, we have tested the ABRE model with 

ten publicly available time-series datasets and compared the performances with the HSE model. 
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To provide the streaming data characteristics on these public datasets, the timestamps are 

mutated into years, months, days, hours, and minutes. The ‘minutes’ attribute is grouped into 15 

minutes time windows and the last 96 windows are considered as the incoming data with the 

unknown value of the target variables. The comparative results are shown in Table 4. 

   From the experiment on the public datasets, it is observed that for high volume complex 

datasets the runtimes of the ABRE model improve more than the HSE model. As an example, the 

ABRE decreases the runtime by 21% for the “ICU” dataset which has 7931 instances with 14 

features. Whereas, it decreases the runtime by 57.7% for the power system data which has 

5,02,373 instances with 19 features. For the percentage of improvement in RMSE, the ABRE 

model works better than the HSE model. However, the HSE model performed better for the 

traffic data of Brazil which has only 135 instances with 18 attributes. The reason is the lack of 

data in the ABRE model’s time-variant data windows, which have impacted the training phase of 

the ABRE model, and thus, produce erroneous results.     

 

6. Conclusion 

   A nonlinear multivariate time-series regression model to deal with online streaming data is 

proposed in this study. The proposed model is developed based on the medicare scenario where 

the radiologists’ workload is predicted for 15 minutes in advance. This prediction is used in 

another existing model for better scheduling, which is out of scope in this study and has not been 

described. Prediction accuracy plays a critical role in such a system where a slight increase in 

prediction accuracy boosts up profits. Ensemble technique by combining multiple predictive 

algorithms is a proven method that produces better predictions compared to a single model. The 

proposed ABRE model incorporates this ensemble technique to achieve better accuracy in 

prediction. Sometimes this higher prediction accuracy may result in a model’s overfit. In this 

research, the prediction horizon is 15 minutes which is a short-term prediction. So, the 

overfitting problem can be overlooked. The HSE model used in this study is a traditional stack 

ensemble model, which is also used as a benchmark model to be compared with the proposed 

ABRE model. A meta-learning stage is used to make the HSE model more powerful. Execution 

time is also an important factor in predicting online streaming data where a lower execution time 

is required. A CV technique provides higher model accuracy, but it is computationally costly. A 
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rank-based model selection technique is implemented in the proposed ABRE method instead of 

the traditional CV technique to lower the execution time. The experimental results of this study 

show the ABRE model provides 48.27% faster execution than the HSE model, when the power 

system dataset with 60 minutes intervals is applied. For the power system data with 30 minutes 

intervals, the ABRE model has provided a 54.67% faster runtime in comparison to the HSE 

model. The proposed ABRE model has produced even faster execution, approximately 57.71% 

faster than the HSE model, when the power system data with 15 minutes intervals is used. This 

result suggests the ABRE model’s execution performance increases for a shorter time period. 

Most often, time-series data suffer from gradual concept drift problems which can be either 

incremental or decremental. Incremental learning is a proven method to handle concept drift 

[21]. The ABRE model uses the same technique of incremental learning by adding the incoming 

15 minutes data to the training dataset and retraining the model after every 96 data windows. The 

prediction accuracy of a time-series model may fall short because of irregular fluctuation in 

training data. The ABRE model uses an aggregated instances technique for each unique batch of 

data to handle the fluctuation problem. Moreover, the fixed number of batches for training data 

also ensures the lower retraining time of the model. 

   Real-time data is complex which may consist of high dimensionality combined with errors in 

data. The dataset used in this study also has a very large number of records combined with a 

large number of input features. Some parts of the data are inputted by humans, and the other 

parts are from machine generation. Data errors are common in such datasets. The experimental 

results show that the ABRE model performs better in such complex scenarios. The proposed 

model is tested on several publicly available datasets, and the result is compared with our base 

model’s (HSE) prediction on those datasets. Based on the results, the following conclusions are 

made:  

1. The substitution of the CV process with ranking lowers the model execution time.  

2. The time-variant training window learning is beneficial to minimize the influences of 

irregular fluctuations for short-term time-series forecasting.  

3. The proposed ABRE approach outperforms single structure models. The ABRE also 

provides the desired accuracy without the meta-learning stage described in the HSE 

model.  
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4. The offline retraining phase eliminates the effects of concept drift on time series 

modeling.  

   It is noticed that if the number of training instances is too low, the HSE model performs better 

than the ABRE model, which is the observed limitation of the proposed ABRE model. The 

ABRE model is developed for single target prediction where we are predicting the workload of 

the Radiologists. Developing this model for multi-target predictions is our future scope.                  
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Figure 1: Prediction methodology of the Heterogeneous Stack Ensemble (HSE) model. 

Figure 2: Block diagram of the Adaptive Batch-Ranked Ensemble (ABRE) model. 

Figure 3: Aggregation and averaging method for time-variant training windows. 
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Figure 1: Prediction methodology of the Heterogeneous Stack Ensemble (HSE) model 
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Figure 2: Block diagram of the Adaptive Batch-Ranked Ensemble (ABRE) model 

 

 
Figure 3: Aggregation and averaging method for time-variant training windows 
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Figure 4: Different models’ performance measure based on the RMSE 
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Tables: 

Table 1: Review of related papers 

Authors  Streaming 

data 

Multivariate Regression Concept 

drift 

Fluctuation 

reduction 

Incremental 

learning 

Sun, J., et al. (2017) Y Y N Y N N 

Zhu, L., et al. (2018) N N N N Y Y 

Qiu, X., et al. (2018) Y N Y Y N Y 

Yu and Webb (2019) N Y N Y N Y 

Ren, S. et al. (2019) Y Y N Y N Y 

Xiao, J., et al. (2019)      Y N Y Y N Y 

Idrees, M. M. et al. (2020) Y Y N Y N Y 

Li, Z. et al. (2020) Y Y N Y N Y 

Ancy, S., & Paulraj, D. (2020) Y N N Y Y Y 

Wang, J., et al. (2020) Y N Y N Y Y 

Ahmad et al. (2021) N N Y N N N 

Priya and Uthra (2021) Y N N Y N N 

Yang et al. (2021) Y N N Y Y Y 

Chen et al. (2021) Y Y N Y N N 

Micevska et al. (2021) Y Y N Y N N 

Mizan & Taghipour, S (2021)      Y Y Y N N Y 

Proposed ABRE model Y Y Y Y Y Y 
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Table 2: List of rank-based expert learners 

Base learners(𝐿𝑙) Attained rank 1(𝑟𝑗)   Expert learners(𝐸𝑀) Weight(𝑤𝑗)   

RF (number of tree 50)    

RF (Number of tree 100) 5,028 Random forest (#tree 100) 0.1431 

RF (Number of tree 150)    

ANN (#hidden nodes 5)     

ANN (#hidden nodes 7)     

ANN (#hidden nodes 10)     

SVR (Linear kernel)     

SVR (RBF kernel)  19651 SVR (RBF kernel) 0.5593 

SVR (Polynomial kernel)     

SVR (Laplace kernel)     

GBM (depth 100)     

XGBoost (depth 100) 9862 XGBoost (depth 100) 0.2806 

MLP (#hidden layers and nodes 2[7,5])    

MLP(#hidden layers and nodes 

3[10,7,5]) 

595 MLP (3[10,7,5]) 0.0169 

GLM (0.5,1)     
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Table 3: Performance comparison between stand-alone models and ensemble models 

Predictive Model Execution time 

(millisecond) 

Average RMSE for the 

next 96 test frames 

Average MASE for the 

next 96 test frames 

Random Forest 273.2 23.89 21.9 

Support Vector 

Regressor 

259.5 19.34 10.1 

Extreme Gradient 

Boosting 

298.1 11.3 6.7 

Multilayer Perceptron 339.5 33.5 16.4 

HSE model 394.8 8.73 6.5 

Proposed ABRE Model 268.7 2.98 1.57 

 

Table 4: Performance comparison of the ABRE model on some public datasets 

Datasets Instances Features 

HSE model’s 

Execution 

time (ms) 

HSE 

Model’s 

RMSE 

ABRE 

Execution 

time (ms) 

ABRE 

Model’s 

RMSE 

% of 

Improvement 

in runtime 

% of the 

Decrease in 

RMSE 

Canadian_Climate_Normal

s.csv 
30984 16 33.05 4.27 23.09 2.39 30.12 44.14 

AirQualityUCI 9358 15 9.36 0.97 6.84 0.65 26.91 33.06 

Appliances energy 

prediction Data Set 
19735 29 38.15 3.29 27.73 3.22 27.31 1.94 

Power System Data_60 

min 
125594 393 3290.56 243.14 1702.01 16.93 48.27 93.04 

Behavior of the urban 

traffic of the city of Sao 

Paulo in Brazil 

135 18 0.16 0.01 0.13 0.051 21.60 - 412 

Open Power System_30 

min 
251187 56 937.76 44.09 425.05 4.79 54.67 89.13 

Bike Sharing Dataset-

Hourly 
17389 16 18.55 1.07 12.59 0.72 32.10 31.98 

Parking Birmingham 35717 4 9.52 0.61 6.93 0.46 27.28 24.71 

Open Power System 

Data_15 min 
502373 19 636.34 47.02 269.14 4.22 57.71 91.03 

ICU 7931 14 7.40 0.64 5.83 0.33 21.26 48.12 
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