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Abstract. The present study formulates the dynamic analysis of concrete arch dam-
reservoir systems using FE-(FE-TE) approach. In this technique, dam and reservoir are
discretized by solid and 
uid �nite elements. Moreover, the GN high-order condition is
imposed at the reservoir truncation boundary. This task is formulated by employing a
truncation element at that boundary. It is emphasized that reservoir far-�eld is excluded
from the discretized model. The formulation is initially explained in detail. Subsequently,
the response of the idealized Morrow Point arch dam-reservoir system is obtained for two
conditions of fully re
ective and absorptive reservoir bottom/sidewalls for all three types
of excitations. Di�erent orders of GN condition are considered and convergence process is
evaluated. Furthermore, the results are compared against exact solutions which are based
on rigorous FE-(FE-HE) approach. It is shown that the technique reaches convergence prior
to the beginning of instability problems known to exist for high orders in GN condition.
It must be emphasized that although time harmonic analysis is considered in the present
study, the main part of formulation is explained in the context of time domain. Therefore,
the approach can easily be extended for transient type of analysis.
© 2022 Sharif University of Technology. All rights reserved.

1. Introduction

It is a well-known fact for dam specialists that dynamic
analysis of concrete arch dam-reservoir systems can
be carried out rigorously by FE-(FE-HE) method in
the frequency domain. This means that the dam is
discretized by solid �nite elements, while the reservoir
is divided into two parts, a near-�eld region (usually an
irregular shape) in the vicinity of the dam and a far-
�eld part (assuming uniform channel) which extends to
in�nity in the upstream direction. The former region
is discretized by 
uid �nite elements, while the latter
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is modeled by a three-dimensional 
uid hyper element
[1{5]. It is also understood that employing 
uid hyper-
elements would lead to the exact solution (in numerical
sense) of the problem. However, it is formulated in
the frequency domain and its application in this �eld
has led to many special-purpose programs that were
demanding from programming point of view.

Furthermore, engineers have often tried to solve
this problem in the context of pure �nite element
programming (FE-FE method of analysis). In this
approach, an often-simpli�ed condition is imposed
on the truncation boundary or the upstream face of
the near-�eld water domain. Thus, the 
uid hyper-
element is actually excluded from the model. Two of
these widely used methods are based on Sommerfeld
and Sharan (more accurately, modi�ed-Sharan condi-
tion adjusted for three-dimensional cases) truncation
boundary conditions [6,7]. The main advantage of
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these conditions is that it can be readily used for
time domain analysis. Thus, they are also vastly
employed in nonlinear seismic analysis of concrete
dams. However, their major shortcoming is that the
results have signi�cant errors when low normalized
reservoir lengths (in the order of L=H = 1) are
utilized.

Of course, there have also been many researches in
the last three decades to develop more accurate absorb-
ing boundary conditions to be applied for similar 
uid-
structure or soil-structure interaction problems. It
should be emphasized that many of these studies have
actually limited their works to two-dimensional cases.
Perfectly matched layer [8-15] and high-order non-
re
ecting boundary condition [16-22] are among the
two main popular groups of methods that researchers
have applied in their attempts. It is emphasized that
these techniques have become very popular in recent
years given that they could be applied in time domain
as well as the frequency domain.

The present study proposed formulation based
on FE-(FE-TE) procedure for dynamic analysis of
concrete arch dam-reservoir systems. The technique
is described in great detail. The core of the method
is based on utilizing a truncation element at the U/S
truncation boundary of the reservoir near-�eld domain
and excluding the far-�eld region of the reservoir. This
truncation element is formulated based on the GN-
type high-order condition applied at that boundary.
Moreover, a special-purpose �nite element program is
enhanced for this investigation based on the explained
formulation. Thereafter, the response of idealized
Morrow Point arch dam is studied due to stream,
vertical, and cross-stream ground motions. Several
cases are de�ned by changing the GN condition order
and the convergence process is studied. Moreover, two
conditions of fully re
ective and absorptive reservoir
bottom/sidewalls are considered.

The results are also compared for di�erent cases
against the corresponding exact responses that are
obtained by the rigorous FE-(FE-HE) type of analysis.

It should be also emphasized that the present
formulation allows one to readily apply it for transient
type of analysis. However, it was decided that the for-
mulation would be applied presently for time harmonic
excitation to ensure a better evaluation of convergence
process and proof of its e�ectiveness independent of
any speci�ed earthquake excitation.

It is also worthwhile to mention that the Morrow
Point arch dam considered herein has been investigated
thoroughly in many recent studies. Some of these works
relate to linear analysis by Wavenumber approach [23],
direct �nite element method [24,25], or HW high-order
boundary condition [26]. There are others related to
nonlinear response [27], modal identi�cation [28], or
even mode shapes of this particular dam [29].

2. Method of analysis

As mentioned, the analysis technique utilized in this
study is based on the FE-(FE-TE) method, which is
applicable to a general concrete arch dam-reservoir
system. The coupled equations can be obtained by con-
sidering each region separately and then, the resulting
equations are combined.

2.1. Dam body
Upon concentrating on the structural part, the dy-
namic behavior of the dam is described by the well-
known equation of structural dynamics [30]:

M�r + C_r + Kr = � ~MJag + BTP; (1)

where M, C, and K in this relation represent the
mass, damping, and sti�ness matrices of the dam
body. Moreover, r is the vector of nodal relative
displacements, ~M is the same as M matrix except that
no columns are excluded due to restraints, J is a matrix
with each of three rows equal to a 3�3 identity matrix
(its columns correspond to unit cross-stream, stream,
and vertical rigid body motion), and ag denotes the
vector of ground accelerations. Furthermore, B is a
matrix that relates vectors of hydrodynamic pressures
(i.e., P) and its equivalent nodal forces. It should be
also emphasized that ag denotes the vector of ground
accelerations in three directions.

2.2. Water domain
Upon applying the weighted residual approach to the
governing equation of water region (i.e., wave equation
[31,32]), the �nite element equation of the reservoir is
obtained, which may be written as:

G �P + qLII _P + HP = RI �B�r� ~BJag: (2)

In this relation, G H are the generalized mass and
sti�ness matrices of the 
uid domain and P is the
vector of nodal pressures. Of note, all boundary condi-
tions are already considered in Eq. (2). In particular,
the one related to the reservoir's bottom/sidewalls
surface (i.e., �II ; Figure 1), dam-reservoir's interface
(i.e., �III), water surface, and the contribution related
to the truncation boundary condition is symbolically
denoted by the vector RI . It should be mentioned
that admittance or damping coe�cient q utilized in the
above equation may be related to a more meaningful
wave re
ection coe�cient � [33]:

� =
1� q c
1 + q c

; (3)

which is de�ned as the ratio of the amplitude of
re
ected hydrodynamic pressure wave to the amplitude
of incident pressure wave normal to the reservoir's
bottom/sidewalls. For a fully re
ective reservoir's
bottom/sidewalls condition, � is equal to 1 which leads
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Figure 1. Schematic view of a typical reservoir (i.e.,
water domain). The near-�eld reservoir domain 
, the
truncation boundary �I , and the far-�eld region D
(excluded in the FE-(FE-TE) type of analysis).

to q = 0. It is also noted that parameter c corresponds
to water pressure wave velocity.

Furthermore, matrix B in Eq. (2) results from the
dam-reservoir boundary condition that also appears in
Eq. (1). Matrix ~B is the same as matrix B, except that
no columns are excluded due to restraints, and it has
contributions due to reservoir bottom/sidewalls as well
as the dam-reservoir interface. Moreover, the vector RI
of the truncation boundary is obtained by assembling
the following boundary integrals of the 
uid elements
adjacent to that surface (i.e., �I):

Re =
1
�

Z
�e

N (@nP ) d�e: (4)

With N being the vector of element's shape functions,
� is the water density, and n denotes the 
uid element's
outward normal direction.

2.3. Dam-reservoir system
The necessary equations for both dam and reservoir
domains were explained in previous sections. Thus,
combination of the main relations (1) and (2) would
result in the FE equations of the coupled dam-reservoir
system in its initial form for the time domain:�

M 0
B G

��
�r
�P

�
+
�

C 0
0 qLII

��
_r
_P

�
+
�

K �BT

0 H

��
r
P

�
+
�

0
�RI

�
=
� � ~MJag
�~BJag

�
: (5)

It is noted from the above equation that vector RI
still needs to be de�ned by some appropriate condition.
This is related to the truncated boundary �I . It is
interesting to note that one may presume that there
exists a truncation-element attached at this boundary
similar to hyper-element. The purpose of this element
is to produce the vector RI based on the GN high-order

boundary condition. The element will have generalized
mass, damping, and sti�ness matrices similar to usual
solid or 
uid �nite elements. The details are discussed
below.

2.4. De�nition of RI vector for general
excitations

The e�ect of truncation boundary condition will be
treated in this section. For this purpose, let us now
assume that this boundary (i.e., �I) is parallel to x� z
plane (Figure 1). It is apparent that RI vector is
obtained by assemblage of contributions from di�erent

uid �nite elements (i.e., Re

I). To this end, one may
utilize Eq. (4) to obtain Re

I , if there is merely stream
excitation (i.e., y-direction in Figure 2(b)). However,
the following equation must be employed in general
conditions where vertical (i.e., z-direction) or cross-

Figure 2. Discretization of dam-reservoir system: (a)
Dam body, (b) water domain for FE-(FE-TE) model (
uid
�nite elements (L=H = 1), and the truncation element),
and (c) water domain for FE-(FE-HE) model (
uid �nite
elements (L=H = 1), and the 
uid hyper-element).
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stream excitations (i.e., x-direction) may also exist:

Re
I =

1
�

Z
�eI

N (@nP s) d�e: (6)

It is noted that P s (scattered pressure) term is sub-
stituted for P (total pressure) and they are related as
follows:

P s = P � P i: (7)

P i is the incidence pressure contribution that is due to
ground acceleration imposed at bottom/side-walls of
uniform channel extending to in�nity in the upstream
direction (Figure 1). It is noted that this portion is
actually eliminated in our current discretization since
it is beyond the truncation boundary. However, the
impact of incidence pressure is included in the present
FE-FE approach through Eqs. (6) and (7).

Now, P s is substituted by another function �0
which is utilized in writing the GN high-order boundary
condition later on:

�0 = P s: (8)

Employing this function, Eq. (6) may be rewritten as
follows:

Re
I =

1
�

Z
�eI

N (�@y�0) d�e: (9)

It is noted that the negative sign in this relation is
due to the fact that the outward normal is opposite
to the y-direction for 
uid �nite elements adjacent to
the truncation boundary (Figure 1). It is obvious that
simpli�ed relations (e.g., Sommerfeld condition) may
be utilized in Eq. (9) to explicitly de�ne that vector.
However, that would not produce accurate results for
low values of normalized reservoir length as previously
mentioned. Therefore, one would prefer to resort to
high-order conditions as presented in the next section.

3. GN type truncation-element

3.1. Extraction of basic relations
As mentioned, high-order conditions are adopted
herein for the truncation boundary. In particular, GN
condition is employed in the present study [17]. This
condition was initially written to absorb propagating
waves at the applied boundary. However, that can
be generalized to include also evanescent waves. Ac-
cordingly, one can write the GN condition of Order
N , M (i.e., ON-M) in the following for the truncation
boundary:�YM

j=1
(c @y � bj)

� �YN

j=1
(c @y � aj@t)

�
�0 = 0:

(10)

Alternatively, it may be written in a more simpli�ed
form:

�YM

j=1

�
@y � �bj

�� �YN

j=1
(@y � �aj@t)

�
�0 = 0; (11)

with the following de�nitions for normalized coe�-
cients �aj and �bj :

�aj =
aj
c

; j = 1; : : : ; N; (12a)

�bj =
bj
c

; j = 1; : : : ;M; (12b)

where c is the pressure wave velocity of 
uid. Obvi-
ously, Eq. (11) may also be written similar to its initial
form [17]:�YM+N

j=1
(@y � �aj@t)

�
�0 = 0: (13)

However, one should employ the following relation in
that transformation:

�bj = �aN+j@t; j = 1; : : : ;M: (14)

Of course, Eq. (13) may also be written as follows by
de�ning auxiliary functions �j (x; y; z):

�j = (@y � �aj@t)�j�1; j = 1; : : : ;M +N; (15)

�M+N = 0: (16)

It is recalled that �0 is the same as function P s
(scattered pressure wave) which itself should satisfy
the governing wave equation in the 
uid domain.
Therefore, all auxiliary functions �j would also satisfy
a similar equation, since they are related through an
operator as easily veri�ed in Eq. (15):

r2�j = �c2 ��j ; �c =
1
c
: (17)

Moreover, these auxiliary functions should satisfy
boundary conditions at intersection between truncation
surface and reservoir bottom/side-walls of the canyon
similar to �0:

@n��j = �q@t�j : (18)

It is worthwhile to emphasize that n� is normal to
that intersection boundary in x� z plane (curved line,
Figure 1) and admittance coe�cient q is related to
re
ection coe�cient � through Eq. (3).

According to Eq. (15), one can also de�ne the �rst
partial derivative of function �j�1 as:

@y�j�1 = �j + �aj@t�j�1; j = 1; : : : ;M +N: (19)

Now, the operator @y should be applied to Eq. (15)
which yields:

@y�j =
�
@2
y � �aj@yt

�
�j�1: (20)

Utilizing Eq. (19) for j and j� 1 in Eq. (20) results in:
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�j+1 + �aj+1@t�j = @2
y�j�1 � �aj@t (�j + �aj@t�j�1) ;

(21)

which may be rewritten as follows:

�a2
j@

2
t �j�1 � @2

y�j�1 + (�aj + �aj+1)@t�j + �j+1 = 0:
(22)

By employing Eq. (17) for j�1, Eq. (22) is transformed
as:

(�a2
j � �c2) ��j�1 +

�
@2
x + @2

z
�
�j�1 + (�aj + �aj+1) @t�j

+�j+1 = 0: (23)

At this point, the weighted residual approach is applied
to Eq. (23) by multiplying it by a weighting function
w and integrating it with the truncation boundary for
each 
uid �nite element.

1
�

Z
A
w[(�a2

j � �c2) ��j�1 +
�
@2
x + @2

z
�
�j�1

+(�aj + �aj+1) @t�j + �j+1] dxdz = 0: (24)

This may also be visualized as integration on the
surface of each sub-element of the truncation-element
that is going to augment our model at the truncation
boundary. Interpolation of functions in Eq. (24) leads
to the following matrix equation for each sub-element:

(�a2
j��c2)

�
1
�

Z
A

NNTdA��e
j�1

�
+
�

1
�

Z
s

N@n��j�1ds
�

�
�

1
�

Z
A

�
NxNT

x + NzNT
z
�
dA _�e

j�1

�
+(�aj + �aj+1)

�
1
�

Z
A

NNT dA _�e
j

�
+
�

1
�

Z
A

NNT dA�e
j+1

�
= 0: (25)

This relation can be written in a more simpli�ed form
as follows:

(�a2
j � �c2)LeI ��e

j�1 �Qe
I

_�e
j�1 �De

I�
e
j�1

+(�aj + �aj+1)LeI _�e
j + LeI�

e
j+1 = 0: (26)

By utilizing the following matrix de�nitions, we have:

LeI =
1
�

Z
A

NNT dA; (27a)

Qe
I =

q
�

Z
s

NNT ds; (27b)

De
I =

1
�

Z
A

�
NxNT

x + NzNT
z
�
dA: (27c)

Assembling Eq. (26) for di�erent sub-elements would
lead to the following relation, which is valid for the
truncation element.

(�a2
j � �c2)LI ��j�1 �QI _�j�1 �DI�j�1

+(�aj + �aj+1)LI _�j + LI�j+1 = 0;

j = 1; :::;M +N � 1: (28)

These relations hold at di�erent j values and the last
auxiliary vector must be a null vector:

�N+M = 0: (29)

Eq. (28) are valid when all terms would be devised
for propagating waves in GN condition as in Eq. (13).
However, these relations are changed for certain j
values when there are N and M propagating and
evanescent terms, respectively, as in Eq. (11). Under
these circumstances, Eq. (28) may be written at di�er-
ent j values as follows:

(�a2
j � �c2)LI ��j�1 �QI _�j�1 �DI�j�1

+(�aj + �aj+1)LI _�j + LI�j+1 = 0;

j=1; ::; N � 1; (30)

(�a2
N � �c2)LI ��N�1 �QI _�N�1 �DI�N�1

+�aNLI _�N + �b1LI�N + LI�N+1 = 0; (31)

��c2LI ��N+k�1 + �b2kLI�N+k�1 �QI _�N+k�1

�DI�N+k�1 + (�bk + �bk+1)LI�N+k

+LI�N+k+1 = 0;

k=1; ::;M � 1 or j=N+1; ::; N+M�1: (32)

It is worthwhile to mention that Eqs. (31) and (32) are
transformed from Eq. (28) by employing Relation (14).
Moreover, the last auxiliary vector should also satisfy
Eq. (29), as mentioned previously.

Apart from the above basic equations, certain
other relations are required, which are discussed in the
next sub-sections.

3.2. Explicit form of RI vector
The original objective of introducing truncation-
element is to calculate RI term in Eq. (5). Subsection
2.4 made a reference to the procedure to calculate RI
vector under general conditions. This task will be
completed in the present subsection. For this purpose,
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one may substitute @y�0 in Eq. (9) by employing
Eq. (19) for j = 1 which yields:

Re
I =

1
�

Z
�eI

N
���a1 _�0 � �1

�
d�e: (33)

This relation may also be visualized as being pertinent
to each sub-element of the truncation-element. By in-
terpolating functions _�0 and �1 using shape functions,
the above relation can be written into the following
relation:

Re
I = ��a1LeI _�e

0 � LeI�
e
1: (34)

Assembling these vectors results in:

RI = ��a1LI _�0 � LI�1: (35)

Of note, �0 (equivalent to P s) may be replaced through
Eq. (7). Therefore, one would obtain:

RI + �a1LI
�

_P� _Pi
�

+ LI�1 = 0: (36)

3.3. Complementary relation to de�ne
incidence pressure wave vector

It was noticed that the incidence pressure wave vector
(Pi) was introduced to Eq. (36). Therefore, this
vector is also required to be de�ned through another
complementary relation, which is discussed in this sub-
section.

The incidence pressure wave function obeys the
following governing equation:

+�c2 �P i � �@2
x + @2

z
�
P i = 0: (37)

This is apparent since it is a function independent
of y direction. Moreover, apart from the top surface
condition (P i = 0), it should satisfy the following
boundary condition:

@n�P i = �q P i � � an�g : (38)

Now, we apply the weighted residual approach to Eq.
(37) by multiplying this relation by weighting function
w and integrating it for each sub-element of truncation-
element. This is written as:

1
�

Z
A
w
�

+�c2 �P i � �@2
x + @2

z
�
P i
�

= 0: (39)

Interpolating w, P i, and �P i in Eq. (39) by employing
shape functions will lead to the following relation,
which is true for each sub-element:

�c2
�

1
�

Z
A

NNT dA
�

�Pie

+
�

1
�

Z
A

�
NxNT

x + NzNT
z
�
dA
�

Pie

�1
�

Z
s

N
�
@n�P i

�
ds = 0: (40)

This relation may be rewritten by employing Eqs. (27)
and (38):

�c2LeI �Pie + De
IP

ie � 1
�

Z
s

N
��qP i � � an�g � ds = 0:

(41)

Furthermore, P i may be interpolated by the help of
shape functions and an

�
g is written in terms of ground

acceleration vector. Thus, one obtains:

�c2LeI �Pie + De
IP

ie + Qe
I

_Pie

= �
�Z

s
N
�
n�x 0 n�z

�
ds
�

ag: (42)

It is further simpli�ed as:

�c2LeI �Pie + De
IP

ie + Qe
I

_Pie = �Eie
I ag; (43)

by utilizing following matrix de�nition:

Eie
I =

Z
s

N
�
n�x 0 n�z

�
ds: (44)

It should be noted that Eq. (43) is true for each sub-
element and the right-hand side exists only for sub-
elements adjacent to canyon boundary. Assembling it
would lead to:

�c2LI �Pi + QI _Pi + DIPi = �Ei
Iag: (45)

3.4. Generalized matrices of GN type
truncation-element

Eq. (45) is the last required matrix relation for GN-type
truncation-element. Therefore, a complete equation set
is obtained that comprises Eqs. (30), (31), (32), (36)
and (45). It is again emphasized that the last auxiliary
vector in Eq. (32) should satisfy Eq. (29), which can be
easily implemented in that equation. These relations
are now written in the following compacted form:

MI �PI + CI _PI + KIPI + ~RI = FI : (46)

It is worthwhile to de�ne the following vectors em-
ployed in Eq. (46):

PI =
�
PT �T

1 : : : �T
N �T

N+1 : : :

�T
N+M�1 PiT �T ; (47)

~RI =
�
RT
I 0 : : : 0 0 : : : 0 0

�T ; (48)

FI =
�

0 0 : : : 0 0 : : : 0
��Ei

Iag
�T�T :

(49)

Moreover, details of generalized matrices (i.e., MI ;CI ;
KI) are provided in Tables 1-3.
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Table 1. Explicit form of generalized matrix MI .

P T �T1 �T2 �TN �TN�1 �TN+M�2 �TN+M�1 P iT

P 0 0 0 0 0 0 0 0
�1 (�a2

1 � �c2)LI 0 0 0 0 0 0 �(�a2
1 � �c2)LI

�2 0 (�a2
2 � �c2)LI 0 0 0 0 0 0

�N 0 0 (�a2
N � �c2)LI 0 0 0 0 0

�N+1 0 0 0 ��c2LI 0 0 0 0
�TN+M�2 0 0 0 0 ��c2LI 0 0 0
�TN+M�1 0 0 0 0 0 ��c2LI 0 0

P i 0 0 0 0 0 0 0 �c2LI

Table 2. Explicit form of generalized matrix CI .

P T �T1 �T2 �TN �TN�1 �TN+M�2 �TN+M�1 P iT

P �a1LI 0 0 0 0 0 0 ��a1LI
�1 �QI (�a1 + �a2)LI 0 0 0 0 0 QI

�2 0 �QI (�a2 + �a3)LI 0 0 0 0 0
�N 0 0 �QI �aNLI 0 0 0 0
�N+1 0 0 0 �QI 0 0 0 0

�TN+M�2 0 0 0 0 �QI 0 0 0
�TN+M�1 0 0 0 0 0 �QI 0 0

P i 0 0 0 0 0 0 0 QI

Table 3. Explicit form of generalized matrix KI .

P T �T1 �T2 �TN �TN�1 �TN+M�2 �TN+M�1 P iT

P 0 LI 0 0 0 0 0 0
�1 �DI 0 LI 0 0 0 0 DI

�2 0 �DI 0 LI 0 0 0 0
�N 0 0 �DI �b1LI LI 0 0 0
�N+1 0 0 0 �b21LI �DI

��b1 + �b2
�
LI LI 0 0

�TN+M�2 0 0 0 0 �b2M�2LI �DI
��bM�2 + �bM�1

�
LI LI 0

�TN+M�1 0 0 0 0 0 �b2M�1LI �DI
��bM�1 + �bM

�
LI 0

P i 0 0 0 0 0 0 0 DI

4. Coupled equations of dam-reservoir system

The matrix equation of the dam-reservoir system was
already presented in Subsection 2.3 (i.e., Eq. (5)).
Combining that equation with Eq. (46) would result
in the coupled equation of dam-reservoir system in its
�nal form:�

M 0
�B �G + �MI

��
�r
��P

�
+
�

C 0
0 q�LII + �CI

�
�

_r
_�P

�
+
�

K ��BT

0 �H + �KI

��
r
�P

�
=

 � ~MJag
��~B Jag + �FI

!
: (50)

It is noted that vectors ~RI and �RI cancel each
other during this process. Furthermore, the bar sign
over matrices emphasizes that they are expanded by
including additional zero terms for size consistency
purposes. Additionally, the following de�nition for �P
vector is utilized:

�P =
�
PT �T

1 : : : �T
N �T

N+1

: : : �T
N+M�1 PiT �T : (51)

It should be mentioned that the di�erence between �P
and PI vectors is merely the additional pressure degree
of freedom in PT part of the former vector (i.e., it
includes all nodes in the reservoir domain except the
ones on the impounding water surface). Moreover, it
is now apparent based on Eq. (50) that the proposed
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� �!2M + (1 + 2�i) K ��BT

�!2 �B �!2 ��G + �MI
�

+ i!
�
q�LII + �CI

�
+
��H + �KI

� �� r
�P

�
=

 � ~MJag
�~BJag + �FI

!
:
(52)

Box I

approach is suitable for transient analysis. However, we
should simplify this relation for time harmonic analysis,
which is the main scope of present study. Under these
circumstances, one may write Eq. (50) in Eq. (52) as
shown in Box I. In this relation, it is assumed that the
damping matrix of the dam is of hysteretic type. This
means:

C = (2�=!) K: (53)

5. Modeling and basic parameters

The introduced methodology is employed to analyze an
idealized dam-reservoir system. The details of mod-
eling aspects such as discretization, basic parameters,
and the assumptions adopted are summarized in this
section.

5.1. Models
An idealized symmetric model of Morrow Point arch
dam on the rigid foundation is considered. The
geometry of the dam may be found in [2]. The dam
is discretized by 40 20-node isoparametric solid �nite
elements (Figure 2(a)).

In the case of the water domain, two strategies
are adopted (Figure 2(b) and (c)). For the FE-(FE-
TE) method of analysis which is our main procedure,
the reservoir near-�eld region is discretized by 
uid
�nite elements and the high-order boundary condition
is employed on the upstream truncation boundary.
This latter task is actually carried out by utilizing a
truncation-element at that boundary. The length of
this near-�eld region is denoted by L and water depth is
referred to as H. A relatively low normalized reservoir
length is considered herein (L=H = 1, Figure 2(b)).
This region is discretized by 200 20-node isoparametric

uid �nite elements.

For the FE-(FE-HE) method of analysis, the
reservoir domain is divided into two regions. The near-
�eld region (L=H = 1) is discretized by 
uid �nite
elements, and the far-�eld region is treated by a 
uid
hyper-element (Figure 2(c)). Of course, it should be
emphasized that this option is merely utilized to obtain
the exact solution [5]. Moreover, it is well known
that the results are not sensitive in this case to the
normalized length of the reservoir near-�eld region or
L=H value.

5.2. Basic parameters
The dam body is assumed to be homogeneous and

isotropic with linearly viscoelastic properties for mass
concrete:

- Elastic modulus (Ed) = 27.5 GPa
- Poison's ratio = 0.2
- Unit weight = 24.8 kN/m3

- Hysteretic damping factor (�d) = 0.05

The impounded water is taken as inviscid and
compressible 
uid with unit weight equal to 9.81
kN/m3 and pressure wave velocity c = 1440 m/sec.

6. Results

All results presented herein are obtained by the FE-
(FE-TE) method discussed under GN-type high-order
absorbing condition applied to the truncation bound-
ary. The only exception is for what is referred to as the
exact response. That particular case is handled by the
FE-(FE-HE) analysis technique [5].

The initial part of the study is focused on the
fully re
ective reservoir base condition (i.e., � = 1).
In this part, four di�erent cases are considered with
di�erent orders of GN high-order truncation condition.
In particular, O1-0, O1-1, O2-1, and O3-1 are utilized.
Subsequently, two other cases are evaluated in which
the reservoir bottom/sidewalls condition is absorptive
for these models (i.e., � = 0:75). The orders O1-0 and
O3-1 are employed for these cases. It is also worthwhile
to mention that all traveling-type parameters of GN
are taken equal (aj = 1). Similarly, all evanescent-
type parameters of GN are also taken equal (bj =
7:4). This latter value is selected by a calibration
strategy mentioned elsewhere for the analysis of gravity
dams [22].

Figures 3 to 5 present the transfer function for
radial acceleration at dam crest, i.e., corresponding
to � = 0 and � = 13:25 (Figure 2(a)). The former
is utilized for stream and vertical ground acceleration
(i.e., y and z directions in Figure 2(b), symmetric
excitations), and the latter for cross-stream ground
motion (i.e., x direction in Figure 2(b), anti-symmetric
excitation). It is noted that the response in each case
is plotted versus the dimensionless frequency. The
normalization of excitation frequency is carried out
with respect to !s1 and !a1 for symmetric and anti-
symmetric excitations, respectively. These are de�ned
as the fundamental frequency of the dam on rigid
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Figure 3. Radial acceleration at dam crest for di�erent
orders of GN condition due to (a) stream, (b) vertical, and
(c) cross-stream excitations for the fully re
ective reservoir
bottom/sidewalls condition (L=H = 1 and � = 1).

foundation with an empty reservoir for symmetric and
anti-symmetric modes, respectively.

In this part, we considered the initial four mod-
els that relate to the fully re
ective reservoir bot-
tom/sidewalls condition (i.e., � = 1). The responses
are plotted in Figure 3. This �gure shows the conver-
gence process as order increases for all three types of
excitation (i.e., stream, vertical, and cross-stream). It
is noted that there is a lot of di�erence in responses
among the �rst case (O1�0) and the last three cases
(O��1). This is mainly because no evanescent-type of
parameter is utilized for the former case. Thus, as is
included, the response at the �rst peak changes sig-
ni�cantly. This is clearly observed for the latter three
cases (O��1) in comparison to the �rst case. Moreover,
it is noticed that the overall response is very close
between the last two cases (i.e., O2-1 and O3-1). This
indicates that the solution has reached convergence.
For a better evaluation of this claim, the response for
the �rst and fourth cases is compared against the exact
solution in Figure 4. It is to be noted that the exact

Figure 4. Radial acceleration at dam crest due to (a)
stream, (b) vertical, and (c) cross-stream excitations for
the fully re
ective reservoir bottom/sidewalls condition
(L=H = 1 and � = 1); comparison between GN condition
and exact results.

solution (in numerical sense) is obtained by employing
hyper-element in the model. Moreover, there are minor
di�erences between O3-1 and exact results. Therefore,
O3-1 results may actually be considered as a converged
solution. There are signi�cant errors in the O1-0 case
in comparison to the exact responses, especially near
the fundamental frequency of the system for symmetric
excitations (stream and vertical) and after the sharp
peaks (corresponding to cut-o� frequencies) in the
response for the anti-symmetric ground motion (cross-
stream excitation).

In the second part of this study, two cases of O1-
0 and O3-1 are merely considered under absorptive
reservoir bottom/sidewalls condition (i.e., � = 0:75).
Similarly, these results are also compared against the
exact responses for all three types of excitations in
Figure 5. It is noted again that there are minor
di�erences between O3-1 responses and exact solutions
for all three types of excitations. Therefore, O3-1
results may actually be considered as the converged
solution again and there is no need to consider higher
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Figure 5. Radial acceleration at dam crest due to (a)
stream, (b) vertical, and (c) cross-stream excitations for
the absorptive reservoir bottom/sidewalls condition
(L=H = 1 and � = 0:75); comparison between GN
condition and exact results.

orders. Moreover, it is observed that there are still
errors in the O1-0 case in comparison to the exact
responses, especially near the fundamental frequency
of the system for symmetric excitations (stream and
vertical) and after the cut-o� frequencies (notice that
sharp peaks diminish in the absorptive case) in the
response for the anti-symmetric ground motion (cross-
stream excitation). GN high-order boundary con-
dition creates instability problems as the order gets
larger. This problem occurs in this study for orders
O5-1 and O4-1 under symmetric and anti-symmetric
excitations, respectively. However, fortunately, O3-1
results reached convergence prior to the beginning of
instability problems.

7. Conclusions

The proposed formulation based on FE-(FE-TE) pro-
cedure for dynamic analysis of concrete arch dam-
reservoir system, was described in great detail. The

core of the method is based on utilizing a trunca-
tion element at the U/S truncation boundary of the
reservoir near-�eld domain while excluding the far-�eld
region of the reservoir. This truncation element was
formulated based on the GN-type high-order condition
applied at that boundary. A special-purpose �nite
element program was enhanced for this investigation.
Thereafter, the response of idealized Morrow Point arch
dam was studied due to stream, vertical, and cross-
stream ground motions.

Several cases were de�ned by changing the GN
condition order. Moreover, two conditions of fully
re
ective (i.e., � = 1) and absorptive (i.e., � = 0:75)
reservoir bottom/sidewalls are considered. For the
fully re
ective condition, four GN-condition orders of
O1-0, O1-1, O2-1, and O3-1 are selected. For the
absorptive reservoir study, two GN-condition orders of
O1-0 and O3-1 are merely chosen. The exact results
were also obtained for both reservoir bottom/sidewalls
conditions and all the three types of excitations by the
FE-(FE-HE) method of analysis.

Overall, the main conclusions obtained by the
present study can be listed as follows:
� For the fully re
ective reservoir bottom/sidewalls

condition (i.e., � = 1), minor di�erences were
found between O3-1 and exact results. Therefore,
O3-1 results might actually be considered as the
converged solution. Moreover, there were signi�cant
errors in the O1-0 case in comparison to the exact re-
sponses, especially near the fundamental frequency
of the system for symmetric excitations (stream and
vertical) and after the sharp peaks (corresponding
to cut-o� frequencies) in the response for the anti-
symmetric ground motion (cross-stream excitation);

� For absorptive reservoir bottom/sidewalls condi-
tions (i.e., � = 0:75), there were minor di�erences
between O3-1 responses and the exact solutions for
all three types of excitations. Therefore, O3-1 re-
sults might actually be considered as the converged
solution and there was no need to consider higher
orders. Moreover, it was observed that there were
still errors in the O1-0 case in comparison to the
exact responses, especially near the fundamental
frequency of the system for symmetric excitations
(stream and vertical) and after the cut-o� frequen-
cies in the response for the anti-symmetric ground
motion (cross-stream excitation);

� It is well known that GN high-order boundary
condition creates instability problems as the order
becomes large. For the present study (analysis of
concrete arch dam-reservoir systems), this occurs
for orders O5-1 and O4-1 for symmetric and anti-
symmetric excitation results, respectively. However,
fortunately, O3-1 results reached convergence prior
to the beginning of instability problems.
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