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Abstract. In this paper, a mathematical negotiation mechanism is designed to minimize
the negotiators' costs in a distributed procurement problem at two echelons of an
automotive supply chain. The buyer's costs are procurement cost and shortage penalty
in a one-period contract. On the other hand, the suppliers intend to solve a multi-period,
multi-product production planning to minimize their costs. Such a mechanism provides
an alignment among suppliers' production planning and order allocation, also supports the
partnership with the valued suppliers by taking suppliers' capacities into account. Such
a circumstance has been modeled via bi-level programming, in which the buyer acts as
a leader, and the suppliers individually appear as followers in the lower level. To solve
this nonlinear bi-level programming model, a hybrid algorithm by combining the Particle
Swarm Optimization (PSO) algorithm with a heuristic algorithm based on A� search is
proposed. The heuristic A� algorithm is embedded to solve the Mixed-Integer Nonlinear
Programming (MINLP) sub-problems for each supplier according to the received variable
values determined by PSO system particles (buyer's Request For Quotations (RFQs)). The
computational analyses have shown that the proposed hybrid algorithm called PSO-A�
outperforms PSO-Simulated Annealing (PSO-SA) and PSO-Greedy algorithms.
© 2024 Sharif University of Technology. All rights reserved.

1. Introduction

Negotiation-based procurement mechanism design has
recently attracted much attention in academic studies.
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Typically, real-world procurement problems emerge as
the negotiation mechanism in decentralized circum-
stances, in which decision-makers take action in a
hierarchical structure. The Multi-Level Programming
(MLP) methods are developed to solve the decen-
tralized problems with multiple decision-makers in a
hierarchical structure. The Bi-Level Programming
Problem (BLPP) is a special case of MLP problems
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with two levels of decision-makers. In the BLPPs,
each decision-maker tries to optimize its own objective
function without considering the objectives of other
decision-makers, yet the decision of each party a�ects
the objective values of the other parties [1,2].

The reason for interdependence between two lev-
els lies in the way of creating the inducible region for
the upper-level decision-maker. The inducible region
is determined through optimizing the variables of the
lower-level decision-makers, based on feasible values of
the upper-level variables. Eventually, the upper-level
decision-maker �nds its optimal variable values in this
inducible region. It should be noted that the bi-level
programming is an NP-hard problem [2,3], even if all
the objective functions and constraints are convex. For
more details about bi-level programming, the reader is
referred to [4,5].

In the following, the main areas in the literature,
including the bi-level programming for decentralized
procurement problems and available solution algo-
rithms will be brie
y reviewed. The BLPP is a special
case of MLP, which is categorized as a non-convex
programming problem that is NP-hard [3]. Several
methods have been presented to solve BLPP, like
methods based on Kuhn-Tucker conditions [6], fuzzy
approach [7{9], Metaheuristic algorithms like the Ge-
netic Algorithm (GA) [2], Particle Swarm Optimization
(PSO) [10{12], and hybrid Metaheuristics [1].

Recently, the PSO algorithm has been used for
di�erent BLPPs [13]. In many papers, it has been
shown that the PSO algorithm, especially in combi-
nation with the search method, is more e�ective and
e�cient than the evolutionary algorithms such as GA.
For example, Kuo and Han [1] developed a method
based on a hybrid of GA and PSO for BLPPs. Wan
et al. [14] presented a hybrid algorithm by combining
the PSO with a chaos searching technique for solving
the nonlinear BLPPs, which was more e�ective than
an evolutionary algorithm. Soares et al. [12] modeled
the interaction between a retailer and consumers as
a BLPP. However, if the lower level problem, which
deals with the optimal operation of the consumer's
appliances, is di�cult to solve, it may not be possible
to obtain its optimal solution. They proposed a
hybrid PSO for the Mixed Integer Programming (MIP)
model to estimate good quality bounds for the Upper
Level (UL) objective function. Jang and Chung [11]
developed a bi-level PSO model as a robust opti-
mization approach to solve the aggregate production
planning problem for maintaining the e�ectiveness
and responsiveness of manufacturing and supply chain
systems.

The most relevant study to this paper is [15]; they
developed a game-theoretic model to analyze a single
manufacturer-multiple supplier, multi-period, make-to-
order supply chain. They assumed that the supply

chain faces a price and lead-time-sensitive demand,
which is common in a make-to-order production. The
vertical interaction within the supply chain is played
as a Stackelberg game, where the manufacturer is
considered the leader and the suppliers as the followers.
A brief literature review including this paper's contri-
butions in the last row is presented in Table 1.

This paper concentrates on solving a real-world
procurement problem, where the partners intend to
maintain their valuable partnerships according to their
objectives in a distributed situation. This study aims
at developing bi-level programming to deal with a
negotiation-based procurement problem, according to
realistic assumptions. Therefore, procurement plan-
ning and order allocation to the suppliers are mod-
eled via bi-level programming, in which the buyer is
considered as a leader and makes optimal decisions
according to suppliers' proposals, and the suppliers (as
followers) act following the leader's decisions. Such
a mechanism provides an alignment among suppliers'
production planning and order allocation, to avoid
the instantaneous orders, suppliers' inability to supply
the orders, and imposing the high inventory cost.
Besides, it supports the partnership with valued sup-
pliers through suitable order allocation by considering
suppliers' capacities.

As Table 1 indicates, the majority of the relevant
works on procurements problems have proposed single-
level models to solve the problem. However, the
problem's decision-making process has a hierarchical
nature and single-level models are not capable of
satisfying/optimizing the interests of all the partners
involved in the transactions. Therefore, in this regard,
bi-level models have an apparent advantage over single-
level models. Our proposed approach can deal with
simultaneous interactions between the buyer and each
supplier in a one-period contract and captures the
hierarchical nature of the decision-making process. Our
lower-level model is a set of Mixed-Integer Nonlinear
Programming (MINLP) subproblems with a discrete
space where Karush-Kuhn-Tucker conditions (KKT)
cannot be applied. Using a centralized (single-level)
model or the KKT optimality conditions [16,17] incor-
rectly eliminates the distributed nature of the problem
and creates the wrong impression that the buyer
directly in
uences the suppliers' production planning
(the followers' decision variables) toward its own inter-
ests.

In addition, unlike other bi-level works reviewed
in Table 1, our proposed model considers the most
comprehensive set of costs, as well as accommodates
multiple products (items), negotiations, and the num-
ber of vehicles. These assumptions, together with the
proposed novel hybrid solution mechanism, provide the
main contributions of this paper.

This paper proposes an innovative hybrid algo-
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Table 1. Summary of the reviewed literature.

rithm based on the PSO algorithm, in which an A�
search is applied to solve the nonlinear MIP subprob-
lems for each supplier in the lower level. Applying
a metaheuristic algorithm is well-founded owing to
some attributes such as the inherent complexity of the
BLPPs, the discrete inducible region, and the abun-
dance of integer and binary variables. Furthermore,
applying a population-based algorithm is preferable
because our problem deals with plenty of local solutions
as agreement points on the inducible region which
makes it di�cult to detect the buyer's optimal solu-
tions. Among population-based algorithms, the PSO
algorithm has many advantages such as short run time
and less memory requirement [18]. These properties
are especially important when the PSO algorithm is
combined with the A� search.

In the proposed model, the leader employs a
hybrid PSO algorithm as a decision-making strategy
to make an alignment among separate transactions
and to achieve a near-optimal solution. Decision-
making in the lower level is done according to the
received variable values frequently determined by PSO
particles. Through embedding the A� search for each
supplier, the suppliers in the lower level model are

considered as problem-solving entities whose decision-
making strategy is based on the A� search.

2. Mathematical modeling of the negotiation
mechanism

The distributed procurement problem is modeled
through bi-level programming, in which the buyer is
considered as the leader, and suppliers are considered
as independent followers. The lower-level model is a
set of subproblems, which are multi-period and multi-
product production planning problems for each sup-
plier, while the UL is a one-period contracting, in which
the buyer aims to procure a bundle of similar items.
The upper-level decision-maker intends to minimize
the procurement cost and shortage cost due to the
suppliers' delays in delivery concerning the requested
due date. The buyer determines the quantity of the
allocation to each supplier and two predetermined due
dates, including early and late acceptable due dates.
Meanwhile, the suppliers are aware of the early due
date, and their delay penalty is calculated based on
it. On the other hand, the buyer shortage cost is
calculated based on the late due date, which means
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Table 1. Summary of the reviewed literature (continued).

the buyer may have encountered the shortage after this
time. In the lower level, each supplier makes decisions
separately about items' prices and quantities in each
delivery and announces them to the UL.

The detailed description of our proposed model
is as follows: First, the upper-level decision-maker
allocates orders to each supplier to satisfy its demand
for each item. According to the allocated quantities to
each supplier, supplier i compares its available inven-
tory with the order quantity for item j. If the allocated
quantity is below the inventory, the orders will be sent
from the warehouse; otherwise, the production line
must be launched to meet the remaining demand for
item j. Working periods (including ordinary time and
overtime), as well as the upper bound of production
capacity for each supplier in each period (considering
the processing time of each item), are de�nite. The
production rate in ordinary time and overtime is
similar, but their production costs are di�erent. The
manufactured items are kept in the warehouse, so
each supplier deals with the capacitated inventory and
inventory cost during the working period and in the
interval between the two consecutive working periods.
The delivery cost is calculated according to a �xed
cost for each used truck, and a variable cost, which
is a product of a determined coe�cient and the loaded
items. The lower-level decision-makers aim to minimize

their total cost, including production cost, delivery
cost, inventory cost, setup cost, and delay penalty
according to the allocated items, and the due date
stated by the buyer. In this way, the delivery cost
implicitly is considered in bid prices. Delay penalties
for suppliers only reduce the supplier credit and do not
a�ect the price, and consequently do not lead to any
kind of bene�t for the buyer. It should be noted that
the delay cost is a product of the number of items sent
with a delay and the time delay, which is adjusted by a
coe�cient. Each of the suppliers, according to the total
cost minimization and the lowest acceptable interest
rate of pro�t, announces items' prices and quantities
for each delivery to the buyer. The model assumptions
are listed as follows:

1. Only one contract period is considered;
2. The orders are delivered instantaneously to the

buyer in several steps and during the periods;
3. The suppliers' production capacities are di�erent;
4. The production cost of each item includes setup

cost, but the setup time is not considered;
5. Each period includes ordinary working time and

overtime, and production cost is higher in overtime;
6. The delivery cost depends on vehicle rental and the

number of loaded items;
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7. There are �nite numbers of available vehicles in
each period;

8. The inventory is considered for �nished items, but
not for semi-�nished items. Inventory cost depends
on the number of items at the unit of time;

9. The buyer determines a pair of due dates and the
suppliers are aware of the earlier due date, and
calculate their delay cost based on it. However, the
buyer's delay cost is calculated based on the later
due date;

10. The suppliers' delay cost is not pro�table for the
buyer;

11. The suppliers are not aware of each other's propos-
als;

12. The raw material price for all suppliers is a �xed
and de�nite parameter so it is not considered;

13. An initial safety stock for each type of �nished item
is considered at the beginning of the time horizon.

2.1. The bi-level programming model
In this section, the proposed mathematical model
will be explained. The parameters and deci-
sion variables are given below. The set S1 =
fqij ; xij ; updctijg are the variables that are controlled
by the buyer in the UL, and the set Si2 =
fpij ; yrtij ; yntij ; sendtvij ; lodctij ; x0ijt; x00vijt; Itijg denotes
the variables that are controlled by each supplier at the
lower level. The variables exchanged between the two
levels include qij , pij , and sendtvij . The mathematical
model will be presented after de�ning the variables and
parameters.

- Indices:
t: Period's index, t = 0; :::; T
i: Supplier's index, i = 0; :::; n
j: Item's index, j = 0; :::;m
v: Vehicle's index, v = 0; :::; V

- Decision variables in the UL:
qij : The allocated quantity of item j to supplier i
(an integer variable);
xij : The binary variable for allocating the item j
to supplier i;
updctij : The shortage cost for buyer due to the
delay of supplier i to deliver the item j.

- Parameters in the upper-level model:
Dj : Buyer's total demand for item j;
[LTlower; LTupper]: The due date range suggested
by the buyer to all suppliers;
[Qmin

ij ; Qmax
ij ]: The upper bound and lower bound

for allocating the item j to supplier i;
�: Delay adjustment factor for the buyer;
aij : Ordering cost to supplier i for item j.

- Decision variables in the lower-level model:
pij : The j-th item's price o�ered by supplier i;
x0ijt: Binary variable for producing the item j by
supplier i in period t;
x00vijt: Binary variable for delivering the item j by
vehicle v from supplier i in period t;
yrtij : The production volume of the item j by
supplier i in ordinary time in period t;
yntij : The production volume of the item j by
supplier i in overtime in period t;
sendtvij : The integer variable for the volume of
item j in each delivery through vehicle v by
supplier i in period t;
Itij : Inventory of item j at the end of the t-th period
for supplier i;
lodctij : The penalty for supplier i due to the delay
of item j in period t;
TCij : Total cost for supplying the item j by
supplier i.

- Parameters in the lower-level decision model:
corij : The production cost during ordinary time;
covij : The production cost during overtime;
orcij : Production capacity in ordinary time;
ovcij : Production capacity in overtime;
PTij : Processing time;
Hij : Inventory cost for each unit of item j by
supplier i during each period;
H 0ij : Inventory cost for each unit of item j by
supplier i in the time interval between two periods;
scij : The setup cost for producing the item j by
supplier i;
ssij : The safety stock of the item j for supplier i;
V Capij : The capacity of the i-th supplier's vehicle
for delivering the item j;
InCapij : The capacity of the i-th supplier's ware-
house for delivering the item j;

: Delay adjustment factor for the suppliers
gi: Acceptable pro�t rate for supplier i.

- The buyer's decision-making model (upper-level
decision-maker) is:

minZ
S1

= w1 �
nX
i=1

mX
j=1

(pijqij + xijaij)

+w2 �
nX
i=1

mX
j=1

TX
t=1

xij � updctij ; (1)

s.t.:
nX
i=1

qij = Dj 8j; (2)

xijQmin
ij � qij � xijQmax

ij 8i; j; (3)
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�(t�LTupper):
VX
v=1

sendtvij � updctij 8i; j; t; (4)

xij = f0; 1g 8i; j; (5)

qij � 0; int; updctij � 0 8i; j; t: (6)

- The suppliers' decision-making model (a set of non-
linear MIP subproblems in lower level) is:

Min
Si2

= fZ1; Z2; :::; ZijZi =
mX
j=1

TCij ; i = 1; :::; ng;
(7)

Eq. (8) is shown in Box I. s.t.:

yrtij � orci
PTij

8i; j; t; (9)

yntij � ovcit
PTij

8i; j; t; (10)

yrtij + yntij �M � x0ijt 8i; j; t; (11)

TX
t=1

yrtij + yntij = qij 8i; j; (12)

Itij = yrtij + yntij + It�1
ij �

VX
v=1

sendtvij 8i; j; t;
(13)

Itij � InCapij 8i; j; t; (14)

TX
t=1

VX
v=1

sendtvij = qij 8i; j; (15)


 (t� LTlower)
VX
v=1

sendtvij � lodctij 8i; j; t;
(16)

sendtvij � x00vijt � V Capij ; 8i; j; t; �; (17)

sendtvij � InCapij 8i; j; t; �; (18)

VX
v=1

x00vijt � V 8i; j; t; (19)

pij =
(1 + gi)
qij

 
TCij �

TX
t=1

lodctij

!
8i; j; (20)

yrtij ; yn
t
ij ; send

t
vij ; I

t
ij � 0; int 8i; j; t; (21)

lodctij � 0 8i; j; t; (22)

x0ijt; x00vijt = f0; 1g 8i; j; t; �; (23)

i 2 f1; :::; ng ; j 2 f1; :::;mg ; t 2 f1; :::; Tg ;
v 2 f1; :::; V g : (24)

The buyer's objective function at the UL is
presented in Eq. (1), which aims to minimize the
procurement cost and the delay penalty cost. The
corresponding weight for each objective is determined
through the interviews with the experts in a large
supplying automobile parts corporation. As the delay
cost is more important than the procurement cost, its
corresponding weight has to be higher. Eq. (2) shows
the total allocated quantities for each item should not
be above the total demand of the buyer for the item.
Eq. (3) states that the order of each item allocated
to a particular supplier must be lower than or equal
to a speci�c maximum order quantity and greater
than or equal to a certain minimum order quantity.
The lower bound and upper bound of allocation is
determined based on the business partnership history, a
guess about the level of suppliers' satisfaction with the
allocated quantity, quali�cations' grade for each item,
and suppliers' technological capability. Eq. (4) explains
the delay cost is a product of the number of items sent
with a delay and the time delay in comparison with
the latest acceptable buyer due date. Eq. (5) expresses
that xij is a binary variable to accept or reject the
supplier's proposal. Eq. (6) shows that qij is a non-
negative integer variable.

In the lower level, each supplier individually
computes appropriate bid prices for allocated items
while minimizing its total costs. In doing so, their
objective is to minimize their total costs separately in
Eq. (7). Eq. (8) computes the total cost according to
the ordinary and overtime production cost, setup cost,
delay cost, inventory cost, and delivery cost. Eqs. (9)
and (10) shows the ordinary and overtime production

TCij =
TX
t=1

2664 corij � yrtij + covij � yntij +Hij � PTij � 1
2

�
VP
v=1

(sendtvij)
2 + (Itij)

2 � (It�1
ij )2

�
+H 0ijItij+

VP
v=1

�
�(x00vijt) + �(sendtvij)

�
+ lodctij + scijx0ijt

3775 8i; j:
(8)

Box I
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max
�

Order quantity � Processing time
Ordinary capacity of time

;
Order quantity

Number of vehicles�min fVehicle capacity; Inventory capacityg
�
:
(25)

Box II

capacities. Eq. (11) shows if production occurs, the
�xed setup cost will be considered. Eq. (12) shows the
supplier must satisfy the allocated quantity and leave a
safety stock for the next time horizon. Eq. (13) shows
the inventory equilibrium equation. Eq. (14) shows the
inventory capacity for each �nished item type. Eq. (15)
shows the delivered quantities of each item are equal to
the buyer's order. Eq. (16) explains the delay penalty
calculation for each supplier and each item. Eq. (17)
shows the constraint related to using a vehicle or not,
according to the vehicle capacity and delivered quantity
for each item. Eq. (18) considers the inventory capacity
before delivery. It means the volume of item j in each
delivery through vehicle v by supplier i in period t
should be less than the amount of InCapij , which is
the capacity of i-th supplier's warehouse for delivering
the item j. Eq. (19) shows the constraint of available
vehicles in each period. Eq. (20) shows the acceptable
unit price is a product of the least acceptable pro�t
and total cost (without considering the delay cost) for
each item. Eq. (21) shows the non-negative integer
variables. Eq. (22) shows the non-negative variables,
and Eq. (23) shows the binary variables.

It should be noted that the number of periods in
a �nite time horizon is estimated according to Eq. (25)
as shown in Box II. In the next section, two types of
negotiation protocols in bi-level programming will be
compared.

2.2. A comparison between two types of
negotiation protocols in bi-level
programming

Despite the availability of mathematical models for the
negotiation mechanisms in the literature (e.g. [10,19]),
there has not been a strict de�nition of the negotiation
structure in mathematical models. Two important
components in each negotiation, including protocol and
strategy; negotiation protocol provides clear rules to
conduct the interactions of the negotiating parties that
it has to be apparent to all the parties. On the other
hand, Negotiation strategy is the way in which each
party decides to attain the best outcome of the nego-
tiation [20]. There are three categories of negotiation
protocols: bidding, auction, and bargaining.

To clarify the type of negotiation protocol in
our procurement problem, two types of negotiation
protocols that can be captured through bi-level pro-
gramming will be compared. To this end, a relation

between the negotiation concepts and the BLPP can
be mapped.

Generally, in negotiations, the auction protocol is
ordinarily used when these conditions are satis�ed: (1)
Exactly one issue (price) to be considered; (2) Does not
need two-way communications between parties, and a
party precisely decides based on received proposals,
and (3) It is not necessary to exercise di�erent ne-
gotiation strategies with di�erent partners. On the
other hand, the bargaining protocol is usually applied
when these conditions are satis�ed: (1) Both sides can
o�er (two-way communication) and (2) Multiple issues
can be included. Therefore, our proposed negotiation
mechanism based on bi-level programming has the
third property of auctioning and the �rst and second
properties of bargaining.

Unlike our bi-level negotiation mechanism, in
auction-based (reverse auction) negotiations, suppliers
specify the acceptable quantities and prices and reform
their proposals to maximize the winning probability
and minimize their total cost. Additionally, the buyer
as an auctioneer just accepts or rejects the proposals.
To illustrate this matter, [21] de�ned a reverse auction
in which the auctioneer speci�es the whole demand for
each item; and sellers submit a set of requests, which
each of them includes the number of the items and price
for the bundle of requested items in a combinatorial
auction. Therefore, in auction-based negotiation, the
buyer's total demand is apparent for all suppliers, and
the time horizon needs to be �xed by the buyer, also
the delay is not allowed.

Nevertheless, in our problem, the buyer deter-
mines the amounts of order allocations and frequently
reallocates to achieve an approximate optimal solution
for the bi-level programming model. According to
this explanation, although the buyer will not o�er the
prices, the applied protocol is a combination of bar-
gaining and reverse auction. Finally, in this simulated
negotiation, the buyer's strategy is a hybrid PSO-A�
algorithm, which deals with a bi-level programming
model. Moreover, the suppliers' strategy is the A�
search, which searches the desired state for each sup-
plier's production planning.

3. The proposed solution procedure in a
distributed system

In this paper, a hybrid algorithm is implemented to
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resolve the bi-level procurement problem. In regular
bi-level programming, in which the lower-level model
is continuous, it is simple to apply the KKT optimality
conditions and convert to a centralized single-level
model. Furthermore, in this condition, if there are
several decision-makers at the lower level, it is possible
to overcome this decentralization by applying the KKT
optimality conditions. However, this action is not ap-
plicable in our proposed model because the lower model
is a set of nonlinear MIP problems. Furthermore,
this paper strongly emphasizes the system distribution,
so the proposed algorithm is supposed to capture the
decentralized nature of the problem.

As previously mentioned, the UL (leader) controls
the transaction. In other words, the leader must
be able to change its position toward its objective,
according to the followers' decisions, and �nd its near-
optimal solution in the inducible region. It should be
stated that the followers' proposals are set according
to the leader's variable values (particles in the PSO
population). Therefore, through implementing PSO, it
is rational to say the particle swarm intelligence makes
a simultaneous negotiation with individual suppliers.
The reason for this assertion is that each particle
in the PSO algorithm is considered as the buyer's
Request for Quotations (RFQs), which are sent to
the suppliers. Moreover, according to the constructive
communication between particles in PSO as a swarm
intelligence algorithm, the buyer's RFQs in each it-
eration is a combination of earlier RFQs with some
changes (update the velocity and the position of each
particle) in comparison with the prior iteration.

Also, as previously mentioned, the lower-level
problem is a set of MINLP sub-problems that makes
the problem harder. It takes a long time to �nd
a solution through an exact problem solver. The
reason for its computational complexity is the plethora
of integer and binary variables. Thus, a heuristic
algorithm based on A� search is embedded in the
metaheuristic algorithm. By incorporating an A�
search for each supplier, the suppliers in the lower
level model are considered as problem-solving agents.
The problem-solving agents are applied to deal with
the decentralization at the lower level. Each problem-
solving agent according to the buyer's RFQs (particles
in the PSO population) attempts to solve its problem
through an A� search.

The details of a novel hybrid PSO-A� algorithm
for solving the proposed BLPP model will be presented
in Section 3.1. The overall steps to solve our proposed
bi-level problem is expressed as follows:

- Step 1. (Upper-level problem): Generate a set
of feasible solutions for upper-level decision vari-
ables (population particles in PSO algorithm) as the
leader's RFQs (allocated quantity to each supplier);

- Step 2. (Lower-level problem): Optimize the
followers' actions for each initial value of the upper-
level decision variable, and return the optimal or
near-optimal reactions to the leader's model. The
subproblems for each supplier are solved through an
A� search, and the value of its variables is returned;

- Step 3. (Upper-level problem): Evaluate the
leader's objective value for the variable values in the
UL and corresponding values in the lower level;

- Step 4. (Upper-level problem): If the termina-
tion condition has not been met, the leader's variable
values will move to new positions and go to step 2
until a proper stop criterion is met and an optimal or
near-optimal solution is achieved.

The details of the PSO algorithm for the bi-level
problem and the A� based heuristic algorithm will be
described in Sections 3.1 and 3.2, respectively.

3.1. Details of the proposed PSO algorithm
In the previous section, the overall solution procedure
for our proposed bi-level programming model was
introduced. Now, the details of our proposed PSO
algorithm are described to solve the bi-level problem.
For a general review of di�erent versions of the PSO
algorithm, the reader is referred to [12,18,22]. The
essential reasons for applying the PSO algorithm are
brought as follows:

1. Among the population-based metaheuristic algo-
rithms especially the evolutionary algorithms, the
PSO algorithm needs the shortest run time and
memory requirement [18]. These properties are
especially important for combining the PSO algo-
rithm with a search method (A� search) in our
proposed mechanism;

2. Each particle in the PSO algorithm is considered as
a buyer's RFQ which is sent to suppliers. On the
other hand, it should be mentioned that the PSO
algorithm, unlike the evolutionary algorithms which
are based on the survival of the �ttest principle, is
based on the constructive cooperation among the
particles, so the next buyer's RFQs is based on its
best experience and the global best.

The steps of our proposed linearly decreasing
inertia weight PSO algorithm are described as follows:

Step 1. Initialization: The solution representa-
tion is a matrix in which each row corresponds
to a supplier, and each column corresponds to an
item, and also its elements represent the allocated
quantities. To satisfy the demand of each item, a
supplier is randomly selected and a number between�
Qmin
ij ;min

�
Qmax
ij ;Remaining demand

	�
is assigned

to its element, this action is repeated frequently
to �ll all elements of the initial positions' matrix
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Figure 1. The representation of PSO solution.

(Figure 1). Furthermore, the parameters of the
algorithm, including population size (the number of
particles), inertial weight, and two learning factors
are also set up. The initial velocity is set to zero,
and velocity intervals are determined based on a
coe�cient of the quantity interval length.
Step 2. Initial personal best (P-best) and
global best (G-best): The set of all matrices in
the �rst step (initial population particles) are local
solutions and the best among them is considered as
the global solution.
Step 3. Generate the new population: To gen-
erate the new population, the velocity and position
of each particle are updated as follows:

Step 3-1. Velocity update: Velocity of each
particle updates according to:

vtij = wvt�1
ij + c1r1(pt�1

ij � xt�1
ij )

+c2r2(Gt�1
ij � xt�1

ij ): (26)

If the new velocity is out of the default interval, its
value is modi�ed to the upper or lower bound of
velocity according to:

vtij =

(
vmax vtij > vmax

vmin vtij < vmin
(27)

If an initial position is zero, the zero value is
replaced with Qmin

ij � " to update the position; this
action causes slight changes of velocities during the
�nal stages. It should be stated that the inertia
weight is updated with a decreasing trend according
to:

w = wmax � wmax � wmin

itermax
� iter: (28)

Step 3-2. Position update: Position of each
particle updates according to:

xtij = xt�1
ij + vtij : (29)

Because of the decimal velocity vector, the new
positions will be decimal. So the 
oor of positions is
checked in demand satisfaction constraint and sent
to lower-level decision-makers.

Step 4. Demand satisfaction constraint and
the new population modi�cation: The 
oor of
newly generated solutions (integer solutions) may not
be equal to the total demand for each item and the
constraint

Pn
i=1 qij = Dj may be violated. So the

summation of allocation solutions (new positions) is
compared with the total demand for each item. If
those are equal, the generated solutions do not need
to be modi�ed. If it is smaller (or larger), a supplier is
randomly selected, and pluses (or subtracts) one unit
to its value by taking prede�ned quantity interval into
consideration. If the equalization is not satis�ed, this
action is frequently repeated to achieve equalization.
It must be noted that adding a unit to a position
value when its value is zero, means it is replaced with
the lower bound of quantity allocated, and vice versa
according to:(

xtij + 1 = Qmin
ij xtij = 0

xtij � 1 = 0 xtij = Qmin
ij

(30)

After going out of the modifying loop, to prepare for
the next generation the zero positions are replaced
with Qmin

ij � ", and the decimal part of the solution
is added to the modi�ed solution.
Step 5. Transactions between the two lev-
els: The generated matrix is sent to the lower-
level decision-makers, equipped with A� search, to
obtain their optimized variables, then the upper-
level objective function is calculated. It should be
stated that the new positions are decimal because
of the decimal velocity vector. So the 
oors of new
positions (quantity values) are sent to lower-level
decision-makers. By the way, it is assumed that if
new positions are smaller than the lower limit, they
are replaced with zeros before being sent to the lower
level.

Step 5.1. At �rst, the order quantity should
be compared with the initial inventory. If the
inventory is enough, the order is sent from the
warehouse, and its cost is based on total cost except
for overtime production cost and setup cost. Then
the algorithm is �nished, otherwise, go to Step 5.2.
Step 5.2. The start node is considered as the state
in which the supplier faces the remaining demand,
and tries to set up the production line. This node
is added to the open-list;
Step 5.3. The selected node in the open-list is
considered as a parent, and branched as follows:

Step 5.3.1. Ordinary production could be the
integer numbers between [0, min (remaining de-
mand, ordinary production capacity)].
Step 5.3.2. If the ordinary capacity is fully
utilized, the overtime capacity will be used. The
overtime production could be the integer numbers
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between [0, min (remaining demand, overtime
production capacity)].
Step 5.3.3. The number of deliveries and deliv-
ered quantity in each period is determined (the
details will be explained in the subsequent part of
the paper).

Step 5.4. The generated nodes add to the open-
list, and the parent (start node) is added to the
closed-list and the parent's costs (f , g, and h) are
memorized;
Step 5.5. If the number of members in the open-
list exceeds the default number, the default number
of nodes with the lowest cost is memorized in the
open-list and others are ignored;
Step 5.6. The f(n) cost for each node in the open-
list is calculated. The node with the lowest cost is
selected, and the parent node is replaced with this
node. Branching is done on this new parent;
Step 5.7. If a node with zero demand (total
delivery is equal to the total demand) is added
to the closed-list (as the lowest cost node in the
open-list), then the goal state is achieved and the
algorithm is terminated; otherwise, repeat Steps 5.3
to 5.7.

Step 6. P-best and G-best update: the function
value of each particle is compared with the old
personal best and global best in the last iteration
according to:(

P tij = xtij if f(xtij) < P t�1
ij

Gtij = xtij if f(xtij) < Gt�1
ij

(31)

- Step 7. Termination: Terminate if the maximum
number of iterations is reached, otherwise repeat
Steps 4 to 7. In the end, return the global best and
its function value.

3.2. The A�-based heuristic algorithm
There are many problem-speci�c heuristics for MIP
problems [23,24], but barely an e�cient and e�ective
heuristic can be found. To solve the lower-level MINLP
sub-problems a heuristic algorithm based on A� search
will be proposed in this paper. A� search is optimally
e�cient for any given heuristic function, and no other
optimal algorithm is guaranteed to expand fewer nodes
than A� [25]. The interested reader is referred to [26]
for more information.

Through embedding the A� search for each sup-
plier, the suppliers in the lower level model are consid-
ered as problem-solving agents. The problem-solving
agents are applied to solve the MINLP subproblems for
each supplier in the lower level. Problem-solving agents
as a kind of goal-based agent have been introduced
by Russell and Norving [25]: \Problem-solving agents
decide what to do by �nding sequences of actions that
lead to desirable states". Before describing the algo-
rithm steps, some de�nitions have to be introduced.
An A� search tree for a numerical example has been
illustrated in Figure 2 and the members of the Open-
list and Closed-list in each period have been indicated
in Table 2 [27].

The initial state in our problem is a state in
which a supplier is, for the �rst time. Initial state
attributes include the initially available inventory and
the total allocated order quantity. Operators are any

Figure 2. The A� search tree for a numerical example.
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Figure 3. The representation of an A� solution.

Table 2. The members of the Open-list and Closed list for
the example in Figure 2.

Period Open-list Closed-list

1 fstartg f g
2 fa, dg fstartg
3 fb, dg fstart, ag
4 fd, cg fstart, a, bg
5 fc, eg fstart, a, b, dg
6 feg fstart, a, b, d, cg
7 f g feg

action, including ordinary time production, overtime
production, and delivery volume, which change the
system state and generate another state. State-space
is the set of all states reachable from the initial state
by any sequence of actions, including available inven-
tory in the current period and remaining of allocated
demand. The Path is any sequence of actions leading
from one state to another state, such as the decision-
making about production, storage, or delivery. The
goal state is a state, in which the remaining allocated
order is zero and the buyer's demand is satis�ed. The
goal test is done at the end of each period in a �nite
time horizon, and path cost is according to the lower-
level objective function. Together, this initial state,
operator set, goal test, and path cost function de�ne
each supplier's problem. It should be stated that the
node selecting in A� search is based on combining two
evaluation functions, including the g(n) cost and h(n)
cost according to Eq. (32) [28]. The g(n) cost gives the
path cost from the start node to the current node, and
the h(n) cost is an estimated cost of the cheapest path
from the current node to the goal.

f(n) = g(n) + h(n): (32)

The A� search usually runs out of space long before it
runs out of time [25], so a limitation for the number
of open-list members should be considered to reduce
the memory requirement and overcome this di�culty.
The heuristic algorithm steps for each supplier and the
calculated order quantity of each item are shown in
Step 5 in Subsection 3.1.

3.3. Evaluation functions for the A� search
The g(n) and h(n) cost functions are two evaluation
functions in A� search which are calculated according
to the objective function in the lower level decision-
making model. The h(n) function never overestimates

the cost of achieving the goal state (optimistic cost
function). For example, the estimation of production
cost for next periods optimistically calculates through
considering the ordinary cost (instead of overtime cost)
for overtime productions as a lower bound. In fact,
the heuristic function estimates the future costs less
than it is, so this heuristic is admissible. The solution
representation for the lower-level decision-makers is
shown in Figure 3.

The calculations associated with the proposed
algorithm are presented in Appendix A. Some essential
points in the calculation of the heuristic cost function
are as follows: (1) The inventory cost is not considered
between two consecutive periods, (2) The ordinary
production cost is considered for overtime production
(instead of overtime production cost). The variable
values, which are supposed to be sent to the upper-
level model, are determined according to the proposed
procedure by �nding the desired state. A 
owchart of
the A� search algorithm for �nding the best proposals
for each supplier is provided in Figure 4. Also,
the 
owchart of the negotiation is based on bi-level
programming and the PSO algorithm in Figure 5 [29].

4. A case study

Our research is established based on a Supplying
Automotive Parts Company (SAPCO), which provides
the required parts for one of the largest automotive
manufacturers in Iran. Thus, SAPCO has the es-
sential role of managing transactions with multiple
suppliers and maintaining valuable partnerships in the
automotive supply chain. In general, this research
has been conducted based on the assumptions derived
from the interviews with the experts in SAPCO and
their partners. Moreover, our proposed algorithm
was carried out with the real data collected in these
companies. The collected data are related to 25 glass
types for di�erent cars that are supplied by 5 local
suppliers.

4.1. Computational analysis
This section contains the computational results of the
proposed algorithm that was practically applied to
solve our BLPP. All algorithms have been implemented
as a computer program in MATLAB software and exe-
cuted on a Core i5 3.2 GHz processor with 4 GB of main
memory. To illustrate the main outputs of the PSO-
A� algorithm, the results of two hypothetical examples
solved through PSO-A� are summarized in Tables 3
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Figure 4. Flowchart of the A� search algorithm for �nding the best proposals for each supplier.

Figure 5. Flowchart of the negotiation based on bi-level programming and PSO algorithm.
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Table 3. The results of the PSO-A� algorithm for a hypothetical example with one item and 5 suppliers with qj = 1150.

Upper-level objective value

Suppliers Qmin
i Qmin

i qi pi w1 = 0:4; w2 = 0:6 w1 = 1; w2 = 0

1 180 500 201 6622.862

1071478 2676542
2 150 500 221 3292.537

3 150 500 150 10932.740

4 200 500 426 4331.018

5 150 500 152 9501.610

Table 4. The results of the PSO-A� algorithm for a hypothetical example with 5 items and 3 suppliers with
q = 500; 500; 500; 1000; 800.

Upper-level
objective value

Item Qmin
1j Qmin

2j Qmin
3j Qmax

1j Qmax
2j Qmax

3j q1j q2j q3j p1j p2j p3j
w1 = 0:4,
w2 = 0:6

w1 = 1,
w2 = 0

1 100 110 110 250 300 300 193 172 135 2885.2 2947.6 3814.8

3339497 8348068
2 120 130 130 250 300 300 187 130 183 1777.6 2537.3 1793.5

3 140 150 150 250 300 300 140 221 279 3057.3 2266.9 1931.9

4 145 155 155 500 500 500 241 277 482 2075.6 1719.5 1039.8

5 145 155 155 300 500 500 156 387 257 19788 5640.8 8630.0

Table 5. Factors and their corresponding levels for the PSO-A� algorithm.

Number of
iterations

Number of
particles

Cognitive
coe�cient

(c1)

Social
coe�cient

(c2)
wmin wmax

1 2 3 4 1 2 1 2 3 1 2 3 1 2 3 1 2 3

80 90 100 110 20 30 1.5 2 2.5 1.5 2 2.5 0.1 0.2 0.3 0.7 0.8 0.9

and 4. To evaluate the performance of the PSO-A�
algorithm, the computational results of the PSO-A�
mechanism for several problems are compared with
two other algorithms called PSO-Greedy and PSO-
Simulated Annealing (PSO-SA). The greedy search
�nds the desired state based on the estimated cost
through the proposed heuristic function (h(n)) and
prefers to follow a single path, without considering
whether this will be best in the long run. The heuristic
function used for greedy search is similar to that of the
A� search.

The typical drawback of heuristic algorithms is
their inability to escape local optima. However, it
is possible to remedy that by embedding various
mechanisms to escape local optima. To evaluate
the proposed algorithm, the output of the PSO-A�
algorithm with those of the hybrid PSO-SA algorithm
has been compared. SA is a local search algorithm,
which avoids the local optimum by accepting a non-
improving neighboring solution with a probability; the
initial solution of SA is generated from greedy search,

also the neighboring solution is generated based on a
random selection from the feasible space. The initial
temperature is set large enough such that almost all
the transitions are accepted in the initial stages.

Each of PSO-A�, PSO-Greedy, and PSO-SA al-
gorithms is carried out ten times to solve each sample
problem. The deviation of solutions from the best-
found solution (for each problem through three algo-
rithms) is calculated according to Eq. (33) as shown
in Box III. It should be stated that the parameters of
these algorithms are set up in an appropriate setting
by performing several experiments.

Since di�erent parameters and factors a�ect the
performance of a hybrid algorithm, choosing the
best combination of the parameters can intensify the
search process and prevent premature convergence [30].
Therefore, based on several experiments, in which
the algorithm is carried out with di�erent levels of
algorithm parameters (Table 5), in which the best value
of each parameter is indicated in bold.

The averages of deviations for each problem in
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devPSO�A� =
solPSO�A� � solbest found

solbest found
; devPSO Exact =

solPSO exact � solbest found

solbest found

devPSO Greedy =
solPSO greedy � solbest found

solbest found
; devPSO SA =

solPSO SA � solbest found

solbest found

solbest found1 = Min
k
fsolPSO�A� ; solPSO Exact; solPSO Greedyjk : test numberg

solbest found2 = Min
k
fsolPSO�A� ; solPSO SA; solPSO Greedyjk : test numberg : (33)

Box III

Table 6. Comparison between the deviations from the best-found solution for small-size problems.

PSO-Greedy PSO-A�

Problem
no.

Number of
suppliers

Exact
average

runtime (s)

Average
deviation

from exact
(%)

Average
runtime

(s)

Average
deviation

from exact
(%)

Average
runtime

(s)

1 1 739.356 0.09 39.761 0.04 106.222
2 2 941.219 0.23 56.291 0.06 175.811
3 3 1341.510 0.19 71.732 0.00 251.930
4 5 1789.864 0.35 106.541 0.01 418.643
5 7 2988.494 0.21 138.511 0.00 579.781
6 1 1089.965 0.20 51.192 0.04 218.118
7 2 1780.312 0.28 73.529 0.00 296.397
8 3 6321.341 0.25 98.543 0.08 379.331
9 5 13741.782 0.43 131.984 0.00 550.528
10 7 38954.910 0.54 169.631 0.00 718.459
11 1 1341.631 0.27 71.620 0.06 349.762
12 2 2385.612 0.51 99.731 0.00 441.451
13 3 9941.139 0.49 116.411 0.02 596.561
14 1 1834.561 0.31 89.819 0.00 437.797

Average { { 0.31 93.95 0.02 394.342

all implementations by each algorithm are brought in
Table 6. It can be concluded that PSO-A� algorithm is
more e�ective compared with the two other algorithms.
Although the runtime of the PSO-Greedy is mostly
less than that of PSO-A�, the deviations of PSO-A�
solutions are signi�cantly less than the PSO-Greedy,
and consequently, PSO-A� is more e�ective than PSO-
Greedy. The comparisons among three algorithms for
large-size problems are shown in Table 7.

The PSO-A�, PSO-Greedy, and PSO-SA for
large-size problems have been conducted with random
data. Random data have been generated by �tting
the appropriate distribution function to the collected
data. For example, to produce the random data for the
demand parameter, a uniform distribution in the range
of 300 to 1000 has been applied; also the production
time is generated from a uniform distribution in the

range of 3 to 5.5, and so on. As shown in Table 7, the
solution of the PSO-A� algorithm is superior to those
of the PSO-SA algorithm. In general, the proposed
PSO-A� algorithm outperformed other algorithms.

In addition, we performed a sensitivity analysis
for di�erent weights of objective functions and di�erent

 (delay adjustment coe�cient), the results of which
are reported in Figure 6. The sensitivity analysis
demonstrates that: (1) for small amounts of w1,
especially for w1 = 0, 0.1, and 0.2 and the values of
gamma between 0.8 and 0.9 the buyer's cost decreases
as the reduction of delay cost exceeds the increment
of the procurement cost. It is because by increasing
the value of 
, the suppliers' delay cost increases, so
they prefer to use their overtime capacity, and thereby
their operational cost and proposed prices will magnify.
On the other hand, the buyer's shortage cost, which is
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Table 7. Comparison between the results of PSO-A�, PSO-SA, and PSO-Greedy for large-size problems.

Average deviation (%)
Problem no. # of suppliers # of items PSO-SA PSO-Greedy PSO-A�

1 8 30 0.03 0.35 0.00
2 8 50 0.00 0.47 0.03
3 10 50 0.18 0.34 0.00
4 10 70 0.00 0.37 0.01
5 15 70 0.13 0.39 0.00
6 15 80 0.03 0.45 0.00
7 20 80 0.19 0.28 0.00
8 20 100 0.08 0.43 0.00

Average { { 0.08 0.38 0.005

Figure 6. Sensitivity analysis of the model for di�erent weight values of each objective and gamma coe�cient.

a�ected by the suppliers' delay, is more important than
procurement cost, so the concentration of suppliers for
avoiding the delay raises the buyer's cost.

After a stable state, suggesting the balance be-
tween the delay cost and procurement cost, there is
a slight growth in buyer cost. This is because the
development of procurement cost exceeds the reduction
in delay cost for the gamma values between 0.95 and
0.97. It can be concluded that the suppliers' attention
to avoid delays is beyond the importance of delay
for the buyer. (2) regarding the large value of w1,
especially the values of �rst weight between w1 = 0:5
to 1, by increasing the 
 values between 0.8 and 0.9
the buyer's cost increases and the reduction of delay
cost will not be signi�cant. This is attributed to the
fact that for w1 = 0:5 to 1 the delay cost loses its
importance for the buyer so the suppliers' attention
to delay avoidance magni�es the buyer's cost. (3) For
w1 = 0:3 and 0.4, the buyer's cost is not sensitive to
the gamma values.

The percentage of average price reduction, in
u-
enced by the reduction of suppliers' operational costs is
provided in Table 8. As shown in this table, the prices,

as one of the PSO-A� algorithm outputs, are compared
with the collected price data for the number of items
supplied by �ve suppliers. The results demonstrate
that applying our proposed algorithm for solving the
real-world procurement problem is satisfactory, and it
could be applied for similar procurement problems.

5. Conclusions and future research

This paper addresses a distributed decision-making
process in a procurement problem designed based on
bi-level programming. In decentralized systems, gen-
erally, achieving a near-optimal solution that promotes
the parties to gain the agreement is more preferable
to the optimal solutions for each partner separately.
Also, by taking into account the suppliers' production
planning in order allocation, the inventory and delay
costs will reduce and last-minute orders will be avoided,
which are bene�cial to all parties. In this approach,
negotiated parties, based on the nature of the bi-
level programming can reform their decision variable
values while considering the other parties' constraints,
without any strict controls.

Table 8. The percentage of average cost reduction.

Item category 1 2 3 4 5 6 7 8 9
Average price reduction 39% 44% 32% 41% 38% 36% 29% 43% 31%
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We presented a bi-level nonlinear mixed-integer
programming for a real-world problem in an auto-
motive part supplier company. Typical negotiation
components perfectly match the bi-level programming
model and its solution procedure. The results have
shown that the Particle Swarm Optimization (PSO)-A�
algorithm is more e�ective compared to PSO-Greedy
and PSO-Simulated Annealing (PSO-SA) algorithms.
The output of this study can be applied as a pre-
negotiation tool in a real-world procurement problem,
and the model provides the parties with the oppor-
tunity to achieve near-optimal solutions that enhance
their bargaining possibilities.

The advantages of our presented method are as
follows:

1. Despite the development of mathematical models
to capture the negotiation process in many papers
[10,19], there has been no strict de�nition of nego-
tiation structures in mathematical models. In this
paper, typical negotiation components perfectly
match the mathematical model and its solution
procedure. Compared to other bi-level models, the
current work considers the most comprehensive cost
types as illustrated in Table 1;

2. The developed negotiation mechanism presents a
win-win game, which makes the partners follow
their objectives. In other words, the model provides
the parties with the opportunity to achieve near-
optimal solutions, which enhances their bargaining
possibilities. This feature satis�es the partners and
supports the partnership with valued suppliers;

3. An innovative hybrid algorithm for hierarchical dis-
tributed procurement problems is presented, which
performed quite well for solving a real procurement
case.

The practical applications of this research are as
follows:

1. The buyer (auctioneer) can use the output of this
paper as a pre-negotiation tool. The auctioneer can
prepare appropriate requests about the quantity
and due date through this simulated negotiation.
Also, through this mechanism, the interests of each
supplier are satis�ed;

2. Because of the non-cooperative nature of the
decision-making among the partners with di�erent
levels of bargaining power, the partnership may be
unstable. This issue increases the cost in the supply
chain and damage all partners. Especially, because
of some mismanagement in the Iranian automotive
supply chain or similar countries, costs are too high
and the consequences of this occurrence are high
prices and pressure on the consumers. Therefore,
by applying this mechanism, the costs have been

reduced by integrating the partners' con
icting
interests;

3. Since time is a valuable resource for managers
in dynamic systems, a negotiation mechanism
with appropriate time is an essential requirement.
The proposed mechanism makes partners reach an
agreement in a reasonable time.

Possible extensions of this research are the fol-
lowing: (1) Improving the mathematical model by
considering more details such as suppliers' scheduling,
transportation planning, and advanced pricing mech-
anisms; (2) Embedding some learning mechanisms to
use the previous elite proposals for the next periods
in a dynamic multi-period contract; (3) Considering
the exceptions and abnormal situations in procurement
such as supplier negligence to produce certain items in
some periods; (4) Comparing the proposed algorithm
with other metaheuristic algorithms.
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Appendix A

To compute the quantity in each delivery, the inventory
cost and the delivery cost are considered to be equal as

shown in Eq. (A.1). It should be noted that t0 (the
time interval between two sequential periods) is not
considered in this case.

HijPTij(sendtvij)
2

2
= �+ �(sendtvij)

! HijPTij
2

(sendtvij)
2��(sendtvij)��=0: (A.1)

So the allowed quantity in each delivery without inter-
val time is calculated through Eq. (A.2):

allowed quantity(aqij) = min
�

inventory capacity;

vehicle capacity,remaining demand;

� +
p
�2 + 2�HijPTij
HijPTij

�
: (A.2)

In this way, the number of deliveries is calculated by
Eq. (A.3):

min
�

Available vehicles in each period;

Total production in each period
Allowed quantity per transmission

�
: (A.3)

The previous case provides a lower bound for each
delivery volume and the number of vehicles. Now, the
case in which the interval time between two consecu-
tive periods (and inventory cost during this time) is
taken into account; and thereby, the inventory cost
will be higher at the end of the period. Therefore,
delivering the leftover inventory is more preferable to
holding it, and as a result, the delivered quantity
in each period increases as well. Since the unused
inventory at the end of each period could be calculated
through mentioned relations, it is possible to equally
distribute it among in-use vehicles during the same
period. In this circumstance, there are three sequential
decisions: (1) Distributing the inventory among in-
use vehicles; (2) Using extra vehicles, in the case
that the current vehicles are not enough; (3) Holding
the remaining inventory as long as the two previous
decisions are not enough for delivering the leftover
inventory.

To calculate the optimized augmented value to
each delivery, the inventory cost and delivery cost will
be equalized Eq. (A.4). The augmented value may
not be the coe�cient of the number of vehicles, so its
quotient (xij) adds to each delivery and its remaining
redistribute among vehicles (see Figure 4).
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(
nvuse

"
(aqij + xij)

2 � PTij �Hij

2

#
| {z }

1

+

"
(Itij � (nvuse � xij))2 � PTij �Hij

2

#
| {z }

2

+ [(Itij � (nvuse � xij))�H 0ij ]| {z }
3

�
"

(It�1
ij )2 � PTij �Hij

2

#
| {z }

4

)
= �(nvuse)

+�(nvuse � (aqij + xij)): (A.4)

The total allowed volume delivered in each period
is calculated using Eq. (A.5) as shown in Box A.I by
considering the time interval between two sequential
periods:

The remaining inventory is either delivered by
additional vehicles or stocked. It is important to note
that the time interval between two sequential periods
and initial inventory in each period are not considered
in the heuristic cost function (h(n)), but it is considered
in cost from the start node to the current node (g(n)).
In total, for calculating the g(n) cost, the inventory
cost, delivery cost, production cost, setup cost, and
delay cost should be considered according to the lower-
level objective function.

The following factors must be considered to cal-
culate the h(n) cost:

1. TFS: The total quantities delivered in future pe-
riods are calculated according to the remaining
demand and the previous period inventory.

2. TFV: The number of future deliveries which is
calculated through Eq. (A.6):

TV F =min
�

Total quantity to be delivered
Vahicles0 capacity

;

Total quantity of remaining production
Inventory capacity

�
:

(A.6)

3. TFD: The number of future days to ful�ll the orders
according to Eq. (A.7):

TFD=max
�

Number of future deliveries
Available veicles in each period

;

Processing time of the remaining production
Ordinary time and overtime capacity

�
:

(A.7)

4. FDS: The daily delivery;
5. FD: The number of future working days. Thus, the

h cost is calculated through Eq. (A.8):

h(n) = (corij � FPij) + (FD � scij)
+�[TFV ] + �(TFS)

+
[TFV ] � hij �Hij � FAS

2
+ (delay cost):

(A.8)

If the current period plus future working day
runs out of the announced due date. The delay
cost is calculated through Eq. (A.9) as shown in
Box A.II.
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Total allowed quantity
for delivery = min

8<:(Inventory �No: of used vehicles) ;
(Vehicle capacity �No: of used vehicles) +

�
yrtij + yntij + It�1

ij
�

(No: of used vehicles� (aqij + xij))

9=; (A.5)

Box A.I

delay cost = 
 � last�periodP
i=current�period

FDS � i = 
 � FDS last�periodP
i=current�period

i

current period = max f1; t+ 1� LTlowerg
last period = [t+ TFD � LTlower]

(A.9)

Box A.II
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