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Abstract. The present study aims to establish a manufacturer-retailer integrated
inventory model to jointly compute the optimal values of order quantity, lead time, reorder
point, and number of shipments considering the e�ect of learning-forgetting phenomenon
on the setup cost. The fabrication process of the manufacturer is not perfect; therefore,
a certain level of product quality can be obtained for an additional cost. Service level
constraint is incorporated into the inventory model to evade the backorder, which has
negative impact on the company reputation. The lead time is also reduced by crashing
cost. The proposed inventory model is illustrated through an example according to which
centralized decision is preferred over the decentralized one. In addition, the analysis reveals
that players should make a compromise concerning their pro�t if they wish to enhance the
service level and product quality. The pro�t of the centralized system increases under the
e�ect of learning-forgetting on the setup cost.
© 2022 Sharif University of Technology. All rights reserved.

1. Introduction

All members of the supply chain should have some pre-
liminary information to meet their consumer demands.
In addition, a favorable level of coordination between
the decisions of both manufacturers and retailers is
required. In this respect, the manufacturer-retailer
inventory problem has received considerable attention
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in recent years. With the growing necessity for estab-
lishing an integrated system, decision-makers should
have a better understanding of the causal relations
that exist in current systems in order to e�ectively
formulate and implement supply chain collaboration
strategies. Decision-makers must perfectly understand
how to manage stocks throughout the whole supply
more e�ciently with well coordination to decrease the
setup cost by a natural phenomenon called learning-
forgetting. Decision-makers are also aware of the
fact that decreasing the lead time without diminishing
customer service is a signi�cant factor in the acquisition
of competitive advantage with the competitors. In
addition, they know quite well that defective items
are produced in the manufacturing processes. There
are four options with regard to defective products:
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reject, repair, rework, or taking back defective ones
upon customer request. They incur considerable costs
in all of these cases. For this reason, in an imperfect
fabrication system, the manager needs to invest capital
in the quality improvement programs.

Among di�erent industries, mobile and fashion
industries enjoy particular characteristics in common
such as short product lifecycle, unpredictable demand,
and high diversity of products available in the market.
Therefore, an e�cient integrated system is required
to manage these characteristics. This paper puts its
main focus on the customer service level constraint
which basically depends on the shorter lead time.
Consequently, this research established an integrated
inventory model by determining the order quantity,
lead time, reorder point, and number of shipments.

As observed in the literature, several researchers
and academicians have studied the collaboration
among the partners of supply chains. Goyal [1]
investigated the joint optimization of the total cost in a
single-vendor-single-buyer inventory model. A decade
later, Banerjee [2] formulated the Goyal's [1] inventory
model by including a �nite production rate where
the vendor implemented a lot-for-lot strategy. Then,
Goyal [3] relaxed the lot-for-lot supposition put forward
by Banerjee [2] and derived a more general joint
economic lot sizing inventory model. Pan and Yang [4]
created an integrated production-inventory problem
with controllable lead time. Basically, they developed
an algorithm to determine the optimal operation policy.
One year later, Goyal [5] revisited the inventory model
of Pan and Yang [4] and proposed a simple algorithm
to determine the operation policy. In addition, Joint
Economic Lot Size (JELS) model was studied and
extended in numerous forms. The studies on JELS
are classi�ed into diverse categories based on di�erent
subjects such as deteriorating items [6], quality [7],
setup and order cost reduction [8], controllable lead
time [9], multiple buyers [10], and stochastic lead
time [11], to name a few. Ben-Daya et al. [12] presented
an ample review of the JELS problem. Lin [13]
developed an inventory model where both ordering
cost and lead time decreased with investment. Ye
and Xu [14] derived an asymmetric Nash bargaining
model to allocate the cost proportion and share the
bene�ts of both members in a decentralized supply
chain with controllable lead time. Later, Li et al. [15]
addressed the issue of coordination in a decentralized
supply chain comprised of a buyer and a vendor. Since
the buyers face service level constraint, they consider
additional costs to decrease the lead time. Yadav
et al. [16] developed an inventory model considering
several decision variables such as the order quantity,
lead time, and backorder price discount. While the
probability density function of the demand for lead
time cannot be determined, the �rst two moments can

be calculated. They employed minimax distribution
method to determine the optimal values of decision
variables. At the same time, Arkan and Hejazi [17]
extended the inventory model for a two-level supply
chain composed of a single supplier and a single buyer,
considering the credit option. They stated that uncer-
tain demand was normally distributed and lead time
was reduced by crashing cost, indicating that lead time
was manageable. Afterwards, Song et al. [18] applied
Stackelberg game framework to model the interactions
between a manufacturer and a retailer, where the lead
time demand had free distribution and the mean and
variance were uniquely known. Later, Heydari [19]
proposed a coordination mechanism based on per-order
extra payment with the objective of avoiding aggrega-
tion of the lead times of both supplier and retailer.
In recent times, Zhu [20] considered a decentralized
supply chain with one supplier and one retailer where
the demand was simultaneously a�ected by price and
lead time. Zhu [20] employed a Stackelberg game where
the supplier (leader) determined the wholesale price
and capacity and the retailer (follower) determined the
lead time and sale price. Sarkar and Mahapatra [21]
presented a periodic review of fuzzy inventory model
with decision variables of lead time, reorder point, and
cycle length. They considered a logarithmic investment
function for lost-sale rate reduction. Heydari et al. [22]
proposed a scheme to coordinate an integrated system
by means of controlling the lead time. They supposed
that lead time could be reduced by spending more
and using the fast-shipping mode. They suggested
an incentive mechanism to motivate the buyer to
participate in the joint decision-making. Ben-Ammar
et al. [23] formulated and solved an integrated model
with a known dynamic demand. They pointed out
that the lead times of the order were independent and
discrete random variables with known and bounded
probability distributions. They developed Genetic
Algorithm (GA) to obtain optimal values for lead times
and safety stock. They concluded that under certain
assumptions, it is better to optimize the planned lead
times rather than to implement safety stocks.

In the real world, estimation of the stockout cost
is actually problematic due to ever-existing intangible
losses such as damages to the credibility and reputation
of �rms. Of note, the stockout impacts the customers'
satisfaction in a negative form since they fail to pur-
chase the goods required at the time they need, hence
the dissatisfaction and low loyalty of customers. There-
fore, it is suggested that a service level constraint be in-
cluded in the objective function instead of the stockout
cost. For this reason, several inventory practitioners
have included a service level constraint into their
proposed inventory models. In this regard, Ouyang
and Wu [24] incorporated a service level constraint into
the objective function instead of the stockout cost. Jha
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and Shanker [25] derived a two-echelon supply chain in-
ventory model considering both service level constraint
and controllable lead time. Bijvank and Vis [26] stud-
ied the optimal replenishment, base-stock, and (R; s; S)
policies in an inventory system. Moreover, they derived
lower and upper limits on the order up to level and
also proposed an e�ective and e�cient algorithm to
compute the order up to level. Sarkar et al. [27] carried
out a continuous review of an inventory system that
could jointly determine the lot size, backorder price
discount, reorder point, lead time, and process quality.
Basically, they derived two inventory models. While
the lead time demand had a normal distribution in the
�rst inventory model, it did not have any particular
probability density distribution in the second inventory
model. However, the mean and standard deviations
were calculated. Shin et al. [28] proposed two di�erent
inventory models: In �rst case, they assume that lead
time demand has a normal distribution; in the second
case, they suppose that lead time demand does not
have a particular probability distribution. However,
both mean and standard deviation values were known.
They considered the service level constraint in their
modeling to prevent backorder cost. Albrecht [29]
analyzed the inventory problem considering the service
level as the objective or constraint, which was also the
key performance indicator in retail environments where
customers requested complete deliveries. Gruson et
al. [30] evaluated the impact of service level constraints
on the inventory policy in the context of capacitated
and incapacitated lot sized inventory problems. They
assumed the demands as deterministic and consid-
ered backlogging over a �nite time horizon. They
also considered several service level constraints taken
from the stochastic inventory literature to evaluate
the impact of First In First Out (FIFO) policy and
found that it could improve the solutions. Sakulsom
and Tharmmaphornphilas [31] designed an integrated
inventory model to determine an ordering policy for the
two-echelon case to minimize the inventory cost on con-
dition that the expected service level constraint be sat-
is�ed. At the end of retailing, the demand was consid-
ered seasonal with a short cycle. Recently, C�ardenas-
Barr�on et al. [32] revisited the inventory model opti-
mization with the objective of understanding service
inventories to enhance the overall performance.

Speci�cally, in their inventory model, Rosenblatt
and Lee [33] supposed that defective products could
be immediately remanufactured with additional costs.
They concluded that the existence of defective items
would encourage fabrication of smaller lot sizes. Teng
and Thompson [34] derived an inventory model for a
new product and established some price and quality
policies. Through the maximum principle, they deter-
mined the optimal price and quality levels over time on
condition that the unit cost decreased due to learning

and increased if the quality was made greater. On the
contrary, Salameh and Jaber [35] supposed that the de-
fective products were sold as a single lot at a discounted
price before the arrival of the subsequent lot. Jaber and
Bonney [36] developed an economic lot-sizing inventory
model from the manufacturer's perspective and studied
the e�ect of learning and forgetting in setup and
product quality. Yang and Pan [37] established an
inventory model considering the variable lead time and
quality improvement investment when the demand had
a normal distribution. In their study, stockout cost
was not taken into account and the reorder point was
a given parameter. Then, Ouyang et al. [38] revisited
and readdressed the inventory model proposed by Yang
and Pan [37] by incorporating the stockout cost and
optimizing the reorder point. They concluded that the
lot size increased upon increase in the proportion of
imperfect quality pieces. Chen et al. [39] introduced
an inventory model considering the imperfect product
process with its shortages. They also evaluated the
e�ect of learning in the unit production time on optimal
lot and built an e�ective algorithm to determine the
optimal production quantity and shortages at each
cycle to minimize the total inventory cost. Hsu and
Yu [40] conducted a study on the inventory model of
Salameh and Jaber [35] considering the quality issue.
Roy et al. [41] proposed an inventory model that took
into account an exponential partial backlogging rate
and the lot had imperfect quality pieces. Pal et al. [42]
investigated an inventory model with an imperfect
fabrication system over two kinds of cycles. In the
�rst cycle, the retailer vends only products of perfect
quality at a regular price and in the second cycle, the
retailer vends those of imperfect quality with a discount
price. Jaber et al. [43] revisited the inventory model
of Salameh and Jaber [35], supposing that a distant
supplier could provide shipment; therefore, it was not
possible to substitute the imperfect pieces with an
additional order from the same supplier. To handle
this constraint, they presented two inventory models.
In the �rst inventory model, imperfect pieces were sent
to a repair shop to change the cost plus a markup
margin. Imperfect pieces in the second inventory
model were substituted by perfect ones from a local
provider at a higher cost. Kumar and Goswami [44]
presented an inventory model considering the imperfect
product process with partial backlogging and evaluated
the e�ect of the unit production time learning on
the optimal lot size in an uncertain environment.
They used fuzzy expectation and signed the distance
method to defuzzify the fuzzy random cost function
into an equivalent crisp function. Giri and Glock [45]
examined a single-manufacturer single-retailer supply
chain inventory model under the e�ect of learning and
forgetting in production and inspection of returned
items. The main objective of the inventory model was
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to obtain the optimal number of shipments, shipment
size, and retail price. They stated that the pro�t of the
closed-loop supply chain was much greater than that of
the basic inventory model which ignored worker learn-
ing. Jaggi et al. [46] built a two-warehouse inventory
model for deteriorating products with imperfect quality
when the supplier o�ered to the buyer a permissible
delay in payments. Nobil et al. [47] formulated and
solved a multi-machine economic production quantity
for products considering scrapped, rework, shortages,
and allocation decisions. Other relevant research works
were conducted by Gautam and Khanna [48], Guatam
et al. [49], Khanna et al. [50], Khanna et al. [51], and
Kishore et al. [52]. Dey and Giri [53] developed an
integrated inventory model to determine the optimal
number of shipments and shipment size of the vendor.
They presumed that the vendor's production system
was not perfect; hence, buyer would receive the ordered
quantity from the vendor in a number of equal-sized
shipment and carry out a screening process upon
delivery of each batch; however, it was assumed that
the screening process was erroneous, hence susceptible
to misclassi�cation errors (Types I and II). The e�ect
of learning in the screening process is discussed here.

Table 1 presents a comparison among the contri-
butions of several recent research works.

In the case of the integrated inventory models pre-
sented in Table 1, none of these researchers considered
the well-known human phenomenon called learning-
forgetting in their studies. Thus, it can be concluded
that the issue of integrated inventory model to obtain
the optimal decisions under service level constraint
and controllable lead time, with the assumption that
the setup cost is reduced due to learning-forgetting

e�ect, has never been adequately examined. The
main contribution of this paper is the development of
an integrated inventory model with emphasis on the
following issues:

1. To calculate the value of the stockout cost, the
constraint of the service level instead of the stockout
cost was taken into account to bind the occurrence
of the stockout in each cycle;

2. The negative exponential crashing cost and com-
ponent crashing cost functions were employed to
reduce the lead time, i.e., the response time to �ll
the customer demand;

3. It was supposed that the manufacturing process was
not perfect and the defective units were immedi-
ately reworked;

4. Two inventory situations were also taken into con-
sideration: in the �rst situation, the manufacturer
and the retailer pursue conicting objectives and
work as di�erent entities. In the second situation,
both are coordinated to form a supply chain and
work as a single unit;

5. In fact, learning-forgetting is a human phenomenon.
Hence, the e�ect of learning-forgetting in the setup
cost should be considered.

The rest of this research work is organized as follows.
Section 2 elaborates on the assumptions and notation
under which the two di�erent inventory models, i.e.,
non-coordinated and coordinated supply chain models,
were developed. Section 3 illustrates the proposed
inventory models using a numerical example. Section 4
gives concluding remarks and suggests future research
areas.

Table 1. A comparison of the contributions of some research works.

Author(s) Supply
chain

Lead time reduction Service
level

constraint

Learning
and

forgetting

Quality
improvementComponent wise

crashing cost
Exponential
crashing cost

Li et al. [15] X X X
Jha and Shanker [25] X X X
Shin et al. [28] X X
Ouyang et al. [38] X X X
Ouyang et al. [54] X X
Hoque [55] X X
Sarkar and Majumder [56] X X
Jha and Shanker [57] X X X
Moon et al. [58] X X
Sarkar and Moon [59] X X X
Sarkar et al. [60] X X X
Li et al. [61] X X X
Kim and Sarkar [62] X X X
Sarkar et al. [63] X X
This paper X X X X X X
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2. Formulation of integrated inventory model

The following notation and assumptions are de�ned.

Notation
Decision's variables
Q Retailer's order quantity (units)
L Length of the lead time (unit of time)
m The number of lots where the

manufactured goods are sent from the
manufacturer to the retailer in one
cycle (an integer number)

Dependent variable
r Reorder point (units)

Parameters
D Demand rate (units/ unit of time)
p Retailer's retail price ($/unit)
A Retailer's ordering cost ($/order)
hr Retailer's holding cost ($/unit/unit of

time)
X Lead time demand (units)
� Average lead time demand (units)
E(X) Mathematical expectation of X

X+ max fX; 0g
E(X � r)+ Expected shortage amount at the end

of the cycle (units)
P Manufacturer production rate; P > D

(units/ unit of time)
~Si Manufacturer's setup cost for the ith

cycle ($/setup)
w Manufacturer's wholesale price

($/unit)
c Manufacturer's fabrication cost

($/unit)
hm Manufacturer's holding cost ($/unit/

unit of time)
�1 Probability of the manufacturing

process going out of control
x Manufacturer's rework cost ($/unit)
y Manufacturer's opportunity cost of

capital ($/unit)

Assumptions
1. There is one manufacturer and one retailer in the

integrated system;

2. The demand X, through the lead time L, has a
normal probability density function (p.d.f) f(X)
with the �nite mean of �L and standard deviation
of �
p
L;

3. The retailer operates with a continuous review
inventory policy. In other words, he or she makes
replenishment when the stock level reaches the
reorder point r. The reorder point r is calculated by
the sum of the expected demand during lead time
and a safety stock: r = �L + k�

p
L where k is a

safety factor;
4. The retailer orders a lot of size Q and the manufac-

turer fabricates the product in lots of size mQ at
a �nite production rate of P (P > D) at one setup;
however, he sends Q units to the retailer over m
times. The retailer incurs an ordering cost for each
order and the manufacturer incurs a setup cost for
each production run;

5. A negative exponential crashing cost function as in
the study of Wu et al. [64] is considered. The total
crashing cost is represented as follows:

R(L) = �e��L:

The value of the lead time crashing cost for the
value of l is utilized to calculate the parameters
� and �. The service level is higher than 50%
and this constraint is imposed to reduce the cost
associated with the distribution-free continuous-
review inventory model;

6. When the manufacturer is manufacturing a lot, the
fabrication process may go out of control with a
probability �1; another piece is manufactured each
time. The manufacturing process is supposed to
be under control at the beginning of the fabrication
process. In case the manufacturing process becomes
out of control, the manufacturing process produces
defective pieces [65];

7. The manufacturers' capital investment, W (�1), in
enhancing the process quality to decrease the out-
of-control probability from �0 to �1 follows a loga-
rithmic function. Mathematical speaking: W (�1) =
b log(�0=�1) for 0 < �1 � �0 where b = 1=�. Here, �
represents the proportion decrease in �1 per dollar
increase in investment W (�1) [66].

2.1. Learning-forgetting in setup cost (from
Jaber and Bonney [36])

Wright [67] was probably the �rst researcher who
formulated the relations among learning variables in
a numerical manner. Wright's [67] learning curve is
given by:

Ti =

(
T1j�e if j < js
Tmin if j � js

where Ti is the time (cost) needed to do (manufacture)
the jth repetition (unit), T1 the time (cost) to do
(manufacture) the repetition (unit) at the �rst time,
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and e the slope of the learning curve. In addition,
e = �(log('=100))= log 2 where ' is the learning rate
given in percentage and js the number of repetitions
(units) necessary to be done to achieve the minimum
time (standard time). Moreover, Tmin considers a
parallel learning relationship which is related to the
setup so that if we consider S1 the cost of the �rst
setup, the cost of the nth setup is given by:

Sn =

(
S1n�e if n < ns
Smin if n � ns (1)

where Sn represents the cost of the nth setup and Smin
the minimum setup cost obtained as n = ns.

It is supposed that the function that de�nes
forgetting or knowledge decay in the setup follows the
function of Loftus [68] as expressed below:

di(�t) = die��t; (2)

where di(�t) is the residual of the knowledge assimila-
tion (or the strength of memory) of the ith repetition
by lapsed time �t. The lapse time is calculated as
�t = tr � te where te and tr are the times when the
information is encoded and retrieved, respectively. In
addition, di is the quantity of knowledge assimilated
at repetition i and  the forgetting exponent. By
generalizing Eq. (2) for setup i, the strength of memory
at the beginning of setup i is written as follows:

mi =
i�1X
j=0

de�(tri�tej ) � 1; 1 � i � n: (3)

Here, te0 = 0 is the time when the �rst setup occurs and
trj the retrieval time of knowledge obtained in i setup.
In addition, d = 1 and n is the number of setups. Using
Eqs. (1) and (3), we have:

~Si =

(
S1(mi + 1)�e if mi < ns
Smin if mi � ns (4)

where ~Si represents the cost of the ith setup resulting
from forgetting or knowledge decay.

The setup cost variation in di�erent repetitions of
setups is shown in Table 2. Suppose that d = 1 unit of
information is acquired at Repetition 1 at time 0; thus,
let the period of two consecutive setups be 10 units, e.

Figure 1. Two-level supply chain model.

According to Table 2, setup cost in the case of
forgetting is always higher than that in the case of
without forgetting. Of note, when there is no decay
in setup knowledge and i = n, we have mn = n � 1
based on Eq. (3); hence, Eq. (4) turns into Eq. (1).
However, it is necessary to modify Eq. (3) with the
purpose of accommodating the supposition of equal
lot sizes, which is equivalent to the equal cycle times:
tei = Q=D where i = 1; 2; � � � ;m. Therefore, Eq. (3) is
expressed for i 2 [1;m] as:

mi =

(Pi�1
j=0 e

�(i�1�j)Q
D � 1;  > 0

i� 1;  = 0

or:

mi =

8<:� e�(i�1)Q
D �1

e
Q
D �1

;  > 0

i� 1;  = 0
(5)

This study aimed to develop an integrated inventory
model for a two-level supply chain with a single
manufacturer and a single retailer (see Figure 1) where
the manufacturer ful�lls the retailer's demand.

2.2. Non-coordinated supply chain model
First, the optimal policies for the manufacturer and
retailer are obtained independently. In this non-
coordinated situation, each supply chain participant
maximizes its pro�t individually.

Figure 2 depicts the structure of the supply chain.
It consists of a single-setup multi-delivery policy for
a single-supplier and single-retailer chain. The order
the manufacturer sends to the retailer is in m batches.
If the retailer's order quantity is of Q units, the
manufacturer fabricates mQ units in one setup at a
manufacturing rate of P , when P > D, to decrease the
setup cost. In order to decrease the inventory cost, the
manufacturer sends the lot size Q to the retailer over
m times where m is a positive integer. Therefore, the
length of each production cycle for the manufacturer is
mQ=D and that of each retailer ordering cycle for the
retailer is Q=D.

Table 2. Setup cost in di�erent repetitions of setups.

Second repetition
of setup

Third repetition
of setup

Fourth repetition
of setup

Setup cost ($)
(with forgetting,  = 0:04)

879.63 828.77 801.69

Setup cost ($)
(without forgetting,  = 0)

840.89 759.83 707.10
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Figure 2. The inventory pattern for manufacturer and
retailer.

2.2.1. The retailer's inventory model
The main assumption in this subsection is that the
retailer operates a continuous review of inventory
policy (Figure 2). In the inventory policies of the
deterministic review, the order quantity is frequently
computed under the supposition of constant lead time.
However, it can be stated from the practical point of
view that the lead time is manageable by the crashing
cost. To obtain a more realistic inventory situation,
the e�ects of the function of the investment cost for
the lead time reduction should be carefully studied. To
be speci�c, the role of the capital investment R(L) in
reducing the lead time is a function of the lead time L.
The investment needed for shortening the lead time is
a convex and strictly decreasing function. The retailer
takes into account the usual (Q; r) continuous review of
inventory policy with deterministic variable lead time.

The retailer's expected pro�t is calculated by the
di�erence between the revenue and total inventory

costs. Here, the total inventory cost is comprised of
purchasing, ordering, holding, and lead time crashing
costs. If we consider p as the selling price, w is the
purchasing cost and D the demand; then, pD is the
retailer's revenue and wD the purchasing cost. The
retailer's orders quantity is Q and the expected cycle
length is Q=D. Therefore, the ordering cost for the
retailer is AD=Q. When the amount of stock reaches
the reorder point r, an order of Q units is placed by
the retailer. The expected stock level prior to the
reception of an order is r � �L, and the expected
amount of the stock after the arrival of the order is
Q+ r��L. The average amount of the stock during a
cycle is determined as

�
Q
2 + r � �L�, indicating that

the retailer's expected holding cost is computed as
hr
�
Q
2 + r � �L�. The lead time crashing cost function

for the retailer is D�e��L
Q . Thus, the retailer's pro�t

function is:

(p�w)D�AD
Q
�hr

�
Q
2

+r��L
�
� D
Q
�e��L: (6)

The main objective here is to maximize the retailer's
pro�t subject to an indicated �ll rate. The �ll rate
is de�ned as the partial demand covered directly from
the stock. The �ll rate is in fact a service measure
represented by � which is determined by Eq. (7) shown
in Box I. The �ll rate (�) is the fraction of the
customers' demands satis�ed normally as expressed
below:

� = 1� E(X � r)+

Q
) E(X � r)+ = (1� �)Q: (8)

Let K = r � �L where K is the safety stock. Thus,
from Eq. (6), we have:

TPR=(p� w)D�AD=Q�hr
�
Q
2

+K
�
�D
Q
�e��L:

(9)

According to Gallego and Moon [69], the following
inequality is required to obtain the least favorable
distribution in F :

E(X � r)+ �
p
�2L+ (r � �L)2 � (r � �L)

2
;

for any F 2 F :

� =
Expected demand satis�ed per replenishment cycle

Expected demand per replenishment cycle
: (7)

Box I
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Of note, the upper bound is tight. The value of K� can
be obtained considering K� as the safety stock with
respect to �, as shown in the following:q

�2L+K2
� �K�

2
= (1� �)Q

) K� =
�2L

4(1� �)Q
� (1� �)Q: (10)

According to Eq. (9), TPR(Q;L) is:

TPR(Q;L) =(p� w)D � AD
Q
� hrQ

�
� � 1

2

�
� D
Q
�e��L � �2Lhr

4(1� �)Q
: (11)

Taking the �rst partial derivatives of Eq. (11) with
respect to Q and L, we have:

@TPR(Q;L)
@Q

=
AD
Q2 �

�
� � 1

2

�
hr +

D
Q2�e

��L

+
�2Lhr

4(1� �)Q2 ; (12)

@TPR(Q;L)
@L

=
�D
Q
�e��L � �2hr

4(1� �)Q
: (13)

Now, the necessary conditions for the optimality of
TPR(Q;L) include the following:

@TPR(Q;L)
@Q

= 0;
@TPR(Q;L)

@L
= 0:

The following equations are obtained based on
Eqs. (12) and (13):

AD
Q2 +

D
Q2�e

��L �
�
� � 1

2

�
hr +

�2Lhr
4(1� �)Q2 = 0;

�D
Q
�e��L � �2hr

4(1� �)Q
= 0:

Followed by solving the above two systems of equations,
the lot size and the lead time are given by:

Q =

vuutAD +D�e��L + �2Lhr
4(1��)�

� � 1
2

�
hr

; (14)

L� =
1
�

log
4�D�(1� �)

�2hr
: (15)

Followed by substituting Eq. (15) into Eq. (10), K� is
written as:

K� =
�2

4(1� �)�Q
log

4�D�(1� �)
�2hr

� (1� �)Q:
(16)

Taking di�erent second partial derivatives of Eq. (11)
with respect to Q and L, we have:

@2TPR(Q;L)
@Q2 = �2AD

Q3 � 2D
Q3 �e

��L� 2�2Lhr
4(1� �)Q3 ;

@2TPR(Q;L)
@L2 = �D

Q
��2e��L;

@2TPR(Q;L)
@Q@L

= � D
Q2��e

��L +
�2hr

4(1� �)Q2 :

Now, the optimality condition of TPR(Q;L) can be
veri�ed. Obviously, we have:

@2TPR(Q;L)
@L2 = �D

Q
��2e��L < 0:

For 0:5 < � < 1 and based on Eq. (15), we have:�
@2TPR(Q;L)

@Q2

�
(Q;L�)

= �
�

2AD
Q3 +

2D
Q3 �e

��L

+
2�2Lhr

4(1� �)Q3

�
< 0;

and:�
@2TPR(Q;L)

@Q2
@2TPR(Q;L)

@L2

�
�
@2TPR(Q;L)

@Q@L

�2
!

(Q;L�)

=
D2�2�2e�2�L

Q4

+
2AD2��2e��L

Q4 +
D��hr�2e��L

2(1� �)Q4

+
D���2hre��L

2(1� �)Q4 (�L� 1) > 0:

It can be concluded that TPR(Q;L) is a concave
function in Q and L.

Eqs. (14), (15), and (16) give the optimal values
for the lot size, lead time, and safety stock, respectively.
If we substitute these values into Eq. (11), we can
calculate the optimal pro�t for the retailer.

2.2.2. The manufacturer's inventory model
The setup cost for the ith cycle is ~Si. When the
vendor fabricates the �rst Q units, he or she sends these
units to the retailer and then, the manufacturer delivers
every Q=D unit of time until the inventory level drops
to zero (Figure 2). Therefore, the average inventory
per unit time is computed as follows:

Im =
��
mQ

�
Q
P

+ (m� 1)
Q
D

�
� m2Q2

2P

�
�
�
Q2

D
(1 + 2 + � � �+ (m� 1))

��
D
mQ

=
Q
2

�
(m� 1) + (2�m)

D
P

�
:
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Thus, the manufacturer's holding cost per unit of time
is hmQ

2

�
(m� 1) + (2�m)DP

�
; manufacturer's revenue

is wD where w is the wholesale price and D is the
demand; and manufacturer's manufacturing cost is
cD where w is the fabrication cost and D is the
demand.

The expected amount of the defective items in
a run of size mQ with the given probability of �1
under which the process can go out of control is given
by m2Q2�1

2 . Consequently, the defective cost per unit
of time is xmQD�1

2 ; and opportunity cost of quality
improvement investment is yb

h
log
�
�0
�1

�i
.

As a result, manufacturer's expected pro�t for all
cycles is equal to the revenue minus the total inventory
cost, which is comprised of the setup, manufacturing,
holding, and rework costs as well as the quality im-
provement investment.

TPM (m) =(w � c)D � D
mQ

Pm
i=1

~Si
m

� hmQ
2

�
(m� 1) + (2�m)

D
P

�
� xmQD�1

2
� yb

�
log
�
�0

�1

��
: (17)

The manufacturer decides on the optimal number of
lots m� reacting to the buyer's optimal lot size Q� and
optimal lead time L�.

The optimal number of lot m� has upper mmax
and lower mmin bounds. To compute these bounds, the
following cases of learning should be taken into account.

(i) Maximum learning in the setup cost, i.e., ~Si !
Smin. Eq. (17) turns into the following one:

TPM (m) =(w � c)D � DSmin

mQ

� hmQ
2

�
(m� 1) + (2�m)

D
P

�
� xmQD�1

2
�y
�
b log

�
�0

�1

��
: (18)

If we regard the above equation as a continuous
function of m, then: @2TPM

@m2 = � 2D
m3QSmin < 0,

indicating that TPM (m) is concave with an unique
mmin determined by setting @TPM

@m = 0 to get:

mmin =
1
Q

s
DSmin

hm
2

�
1� D

P

�
+ xD�1=2

: (19)

(ii) No learning in the setup cost, i.e., ~Si = S1.
Eq. (17) turns into:

TPM (m) =(w � c)D � DS1

mQ

� hmQ
2

�
(m� 1) + (2�m)

D
P

�
� xmQD�1

2
� yb

�
log
�
�0

�1

��
: (20)

If we regard the above equation as a continuous
function of m, then @2TPM

@m2 = � 2D
m3QS1 < 0,

indicating that TPM (m) is concave with a sole
mmax calculated by solving @TPM

@m = 0 to obtain:

mmax =
1
Q

s
DS1

hm
2

�
1� D

P

�
+ xD�1=2

: (21)

The optimal number of lotsm� that maximizes Eq. (17)
is enclosed between the bounds given in Eqs. (19) and
(21).

The retailer in the non-coordinated supply chain
selects its optimal policy (Q�; L�) and then, the manu-
facturer determines the optimal numbers of shipments
m�. Thus, the total pro�t of the system is calculated
as follows:
TPNSC(Q�;m�; L�) = TPR(Q�; L�) + TPM (m�):

(22)

2.2.3. The centralized supply chain model
In a centralized model, all supply chain participants
are parts of the same corporation called vertical inte-
gration. It is assumed that there is a sole decision-
maker in a centralized system who has access to
the entire information and determines the maximum
joint expected total pro�t of the centralized model.
Nevertheless, this situation of control mechanism is
not applied unless both manufacturers and retailers
pursue the same objective, i.e., maximization of the
joint expected pro�t rather than their own pro�t
separately. It is also assumed that both manufacturers
and retailers in the inventory model are in a long-
term strategic partnership; hence, they are willing to
cooperate and share information with each other in
order to obtain bene�ts for both parties. This is the
reason why they jointly determine the best policy for
the centralized inventory model. The optimal policy
of this coordinated system is found by solving the
following problem:

TPSC(Q;m;L) = (p� c)D � D
mQ

Pm
i=1

~Si
m

� hmQ2
�
(m�1) + (2�m)

D
P

�
!�xmQD�1=2

� yb
�
log
�
�0

�1

��
� AD

Q
� D
Q
�e��L
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�
�
� � 1

2

�
hrQ� �2Lhr

4(1� �)Q
: (23)

Now, the necessary conditions for the optimality of
TPSC(Q;m;L) for the �xed value of `m' are given
below:
@TPSC(Q;m;L)

@Q
= 0;

@TPSC(Q;m;L)
@L

= 0:

Hence, the following equation can be obtained:

D
mQ2

mP
i=1

~Si

m
� hm

2

�
(m� 1) + (2�m)

D
P

�
� xmD�1

2
+
AD
Q2 +

D�e��L
Q2

�
�
� � 1

2

�
hr +

�2Lhr
4(1� �)Q2 = 0;

D
Q
��e��L � �2hr

4(1� �)Q
= 0:

Followed by solving the above two systems of equations,
the lot size and lead time can be obtained as follows:

Q=

vuuuut D
m

mP
i=1

~Si

m +AD +D�e��L + �2Lhr
4(1��)

hm
2

�
(m�1)+(2�m)DP

�
+xmD�1=2+

�
�� 1

2

�
hr
;
(24)

L� =
1
�

log
4�D�(1� �)

�2hr
: (25)

The main objective here is to maximize TPSC(Q;m;L).
The following results were obtained by taking di�erent
derivatives of Eq. (23) partially with respect to Q and
L:

@2TPSC(Q;m;L)
@Q2 =� 2D

mQ3

mP
i=1

~Si

m
� 2AD

Q3

� 2D
Q3 �e

��L � �2Lhr
2(1� �)Q3 ;

(26)

@2TPR(Q;L)
@L2 = �D

Q
��2e��L; (27)

@2TPR(Q;L)
@Q@L

= � D
Q2��e

��L +
�2hr

4(1� �)Q2 : (28)

Now, the optimality condition of TPSC(Q;m;L) can
be validated. Clearly, there is:

@2TPR(Q;L)
@L2 = �D

Q
��2e��L < 0:

For 0:5 < � < 1 we have:

�
@2TPSC(Q;m;L)

@Q2

�
(Q;L�)

< 0;

�
@2TPR(Q;L)

@Q2
@2TPR(Q;L)
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�
@2TPR(Q;L)

@Q@L

�2
!

(Q;L�)

=
2D2��2e��L

mQ4

mP
i=1
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m
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D2�2�2e�2�L

Q4 +
2AD2��2e��L

Q4

+
D��hr�2e��L

2(1� �)Q4 +
D���2hre��L

2(1��)Q4 (�L� 1)>0:
(29)

Therefore, it can be concluded that TPSC(Q;m;L) is
a concave function in Q and L. Obviously:

@2TPSC(Q;m;L)
@m2 = � 6D

m4Q

mX
i=1

~Si < 0:

Therefore, TPSC(Q;m;L) is concave in m for the �xed
values of Q and L, indicating that there must be an
optimal m�� to satisfy the following relation:

TPSC(Q;m;L)(m�� � 1) � TPSC(Q;m;L)(m��)

� TPSC(Q;m;L)(m�� + 1): (30)

3. Numerical illustration

In order to better understand the mechanism of the
inventory model, consider the following case whose
required data was derived hypothetically from the
literature of inventory.

Suppose that ABC is a telecommunication �rm,
assuming a joint venture of two companies called A and
B to manufacture smartphones. This �rm has been es-
tablished due to the strategic tie-up between A and B.
While Company A (known as manufacturer) fabricates
the smartphones, Company B (known as retailer) deals
with the marketing and sales department.

The manufacturing capacity of Company A is
P = 3000 units per year, and its manufacturing cost
per unit is c = $80. For Company A, the wholesale
price per unit is w = $90, and the holding cost of
each unit per year is hm = $30. Given that no
manufacturing system is perfect, Company A invested
a capital amount of (W (�1)) in improving the process
quality (reducing out-of-control probability from �0
to �1), considering �0 = 0:0002, �1 = 0:00016, and
� = 0:0025. The fraction opportunity cost of the
capital invested by Company A is y = 0:1 per $ per
year, and the cost of rework for defective items per unit
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is x = $10. Customers' demands for smartphone at
the end of Company B is D = 600 units a year. In this
regard, Company B employs `Job Training Programme'
to train its employees. As observed, the learning rate
is ' = 0:89 and the forgetting exponent is  = 0:11
of its employees. Company B calculated S1 = $1000
per setup, Smin = $400 per setup, and holding cost per
unit per year as hr = $26. In addition, the ordering
cost is A = $200 per order and as observed, there is
a lead time between placing and receiving the order
with parameter � = 7 units/week. Company B whose
priority is their customer's satisfaction used crashing
cost to reduce the lead time as much as possible with
parameter � = 105, � = 1:4. It also sets the retail price
as p = $100 per unit. Now, a problem may arise, i.e.,
how to determine the optimal number of shipments for
Company A and optimal order quantity, lead time, and
safety stock for Company B in two di�erent situations:
when they work as individual entities and when they
develop an integrated system.

3.1. Decentralized system
In case the system is decentralized, the retailer dom-
inates the manufacturer. In this case, the retailer
decides about the terms and conditions based on which
the manufacturer has to develop the optimal policy to
maximize the total pro�t of the system. As observed
in Table 3, in the case of decentralized system, the
number of shipments does not have any e�ect on the
retailer's decision (see Eqs. (14) and (15)). In this case,
the retailer's optimal policy is as follows:

- Order quantity = 109 units;
- Lead time = 1.22 weeks;
- Safety stock = 2.66 units;
- Pro�t = $3255 per year.

As observed in Table 3, as the manufacturer in-
creases the number of shipments to ful�ll the retailer's
demand, their pro�t increases �rst and then decreases.
In this case, the optimal strategy for the manufacturer
to maximize the total pro�t of the system is suggested
below:

- Number of shipments = 2;

- Pro�t = $1507 per year. So, the total pro�t of the
system is $4763 per year.

3.2. Centralized system
In the case of a centralized system, both retailer and
manufacturer work as a single entity. As observed in
Table 3, the retailer's pro�t from his point of view is
maximum when the number of shipments is 2; however,
the manufacturer assumes his pro�t maximum with a
single shipment. In order to remain in the system, the
retailers need to make a compromise concerning their
interest. In this situation, the optimal solution is given
below and also shown in Table 3:

- Retailer Order quantity = 216 units, Lead time =
1.22 weeks, safety stock = 2.66 units, and pro�t =
$2597 per year.

- Manufacturer: Number of shipments = 1, pro�t =
$2470 per year.

- Integrated system: Pro�t = $5067 per year.

Majors �ndings from Table 3 can be summarized
as follows:

� According to Table 3, when the retailer and manu-
facturer work as a single entity, the retailer's overall
pro�t decreased by 20%, while the manufacturer's
pro�t increased by 63%;

� The pro�t in a centralized system increased by
6%, compared to that in a decentralized one.
Apparently, the centralized system outweighs its
decentralized counterpart. Although the retailers
in the centralized system lose interest to remain
in the supply chain, they are aware that they
are losing to form the system. Therefore, for a
better coordination, the manufacturer must give an
incentive to the retailer in the form of either sharing
the transportation cost or reducing the cost so that
the retailer keeps the interest to coordinate with
each other. In doing so, the e�ciency of the system
increases which is the main objective of all members
of the supply chain. This result provides managerial
insight for di�erent players for better coordination.

Table 3. Summary of the results under decentralized and centralized decisions.

Players Parameters Decentralized Centralized
m = 1 m = 2 m = 3 m = 1 m = 2 m = 3

Retailer

L� 1.22 1.22 1.22 1.22 1.22 1.22
Q� 109 109 109 216 125 92
K� 2.66 2.66 2.66 2.66 2.66 2.66
TP �R 3255 3255 3255 2597 3230 3215

Manufacturer TP �M 151 1508 1046 2470 1598 1197
Supply Chain TP �SP 3406 4763 4301 5067 4829 4413
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3.3. Sensitivity analysis
Di�erent parameters such as the service level con-
straint, quality of the product, and learning-forgetting
play signi�cant roles in collaboration with di�erent
members in the supply chain. It is relevant to discuss
how the changes in these input data a�ect the total
pro�t of the supply chain.

3.3.1. The e�ect of learning-forgetting on the setup
cost

Figures 3 and 4 show the e�ect of learning-forgetting
in the setup cost on the order quantity and pro�t
of the supply chain. For the �xed value of m, the
ordering quantity decreases and the pro�t of the supply
chain increases due to the combined e�ect of learning-
forgetting, implying that the manufacturer exhibits
greater exibility to change while producing smaller
lots through setup cost reduction programs.

According to Figure 5, to achieve a higher level
of quality of the product, additional cost is required;
hence, the pro�t of the supply chain would decrease.
Given that it is up to the decision-maker to determine
how to use this information to make a tradeo� between

Figure 3. The e�ect of learning-forgetting on order
quantity.

Figure 4. E�ect of learning-forgetting on pro�t of supply
chain.

Figure 5. Quality level vs pro�t of supply chain.

Figure 6. Service level vs pro�t of supply chain.

Figure 7. Service level vs pro�t of retailer.

the quality level and pro�t of the system according to
the market requirement.

3.3.2. E�ect of service level constraint on pro�t of
supply chain

The e�ect of the service level constraint on the pro�t of
the supply chain is illustrated in Figure 6. As observed
in this �gure, under the centralized decision model, the
pro�t of the supply chain decreases with an increase in
the service level constraint. In other words, the higher
the service level, the lower the supply chain pro�t. In
addition, upon increasing the service level from 0.96 to
0.97 and from 0.98 to 0.99, the pro�ts of the system
would decrease by 1.4% and 2.5%, respectively. This
observation gives the needed direction to the decision-
makers to come to the conclusion that the higher
service level is bene�cial to any organization or they
must work out other policies.

3.3.3. E�ect of service level constraint on pro�t of
retailer

The e�ect of the service level constraint on the retailer's
pro�t in the centralized model is shown in Figure 7
where the retailer's pro�t in the centralized decision
model decreases upon increasing the service level con-
straint. In other words, the higher the service level, the
lower the retailer's pro�t.

4. Conclusion

At the present time, organizations have recognized
the importance of the centralized decision. In this
direction, the organizations use the lead time and the
service level as competitive advantages to di�erentiate
themselves from others in the market. The lead time
and the service level are essential elements in any
inventory management system. In practical situations,
the lead time is controllable by adding a crashing cost.

This paper developed a supply chain model for
the retailer and the manufacturer to the optimal lot
size, the lead time, the safety stock, and the number
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of shipments under the e�ect of learning-forgetting
phenomenon on the setup cost. The fabrication pro-
cess of manufacturer was not perfect and the certain
level of the product quality could be attained with
the additional cost. The proposed inventory model
demonstrated that the centralized decision was better
than decentralized one. To ensure a better coordination
for the supply chain, di�erent players must adopt an
incentive-based mechanism in order that they maintain
the interest in coordinating with each other. It was
also observed that if all players decided to increase the
service level, then they must make a compromise about
their pro�t. A similar behavior was observed in the
case of product quality. Due to the e�ect of learning-
forgetting, the order quantity decreased and the pro�t
of the centralized system increased.

There are many potential avenues for further
research. In this study, a single-retailer, single-
manufacturer, and single-product supply chain was
considered, but in the future version of the present
study, this inventory model can be extended to the
case of multiple manufacturers, multiple retailers and
multiple products. From the literature, it was observed
that uncertainties were associated with demand and
di�erent cost parameters. Thus, considering these
parameters as imprecise parameters might be an in-
teresting research problem.
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