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Weibull distributions are not robust as claimed in the literature. ”
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1. Introduction

“In any manufacturing systems, planning of inspection is crucial part as it decides whether a
product is conforming or nonconforming. A product is said to be nonconforming if it consists
of one or more defects, otherwise the product is declared as a the conforming one. Therefore,
acceptance sampling plan is needed for determining the range in which the goods have to be
inspected before delivering to the customers. The acceptance sampling is an important field
of the statistical quality control (SQC) [1]. It is the sampling inspection procedure in which
consumer decide either to reject or accept the lot of goods, which are shipped by producer, on
the basis of random sample [2]. Dodge and Romig[3] gave a comprehensive account to develop
acceptance sampling plans.”

“Bayesian acceptance sampling technique is related to the use of prior knowledge of process
history to describe the random variations, which are involved in the acceptance sampling. Basi-
cally, the prior distribution is the expected distribution of the lot quality on which a sampling
plan is operated. The combination of both, i.e., the prior information which is represented by the
prior distribution and empirical information which is based on the sample, may lead to a better
decision for the lots. Thus, the main objective of the study is to construct a Bayesian acceptance
sampling plan for lot consisting of M units, where the number of defects in a unit can be defined
by Erlang or Weibull distribution to assess the effect of the shape parameter. Furthermore, we
compare the effect of different priors, loss functions, and single versus group acceptance sampling
plans. In the acceptance sampling, from the lot of size M a sample of size n is randomly selected.
If the number of defects in the sample is less than the acceptance number c, the lot is accepted
otherwise it is rejected. The expected total cost (ETC) for the acceptance sampling depends
whether a lot is rejected or accepted. In case a lot is accepted, the remaining of the lot is not
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2 BAYESIAN ERLANG

examined. For any defect in a lot, we assume the step-loss and the quadratic loss functions for
the calculation of ETC. We further assume that the cost components are independent of each
other [4].”

“In the literature, Tang et al.[5] developed Bayesian multi-attribute acceptance sampling
schemes for the determination of optimal sample size. An efficient repetitive algorithm was
developed to find the best near multiattribute sampling plans possessing a large number of at-
tributes. In Bayesian inspection models, the basic assumption is the prior information about the
number of defects. Usually this prior information can be illustrated as a probability distribution.
Chun and Sumichrast[6] proposed three conditions for the determination of prior distribution for
a defective product. Reviewing several probability distribution, they noticed that the negative
binomial distribution satisfies the desired conditions only. By using the negative binomial as
a prior distribution, they showed that the effect of undetected errors. Kwon[7] considered the
Bayesian life test sampling plans for the products assuming Weibull distribution with known
shape parameter.”

““Fallahnezhad and Aslam[8] proposed a acceptance sampling model on the basis of a cost
function. To update the probability distribution function of the proportion of defective, Bayesian
inference is used. Furthermore, backward induction along with the Bayesian inference is used
to estimate the expected total cost for the various decisions. The sensitivity analysis is carried
out for the parameters of the proposed methodology to analyse the optimal solution for various
decisions. Fallahnezhad and Babadi[9] developed acceptance sampling plan in the presence of
inspection error using the decision tree approach.”

“Following Moskowitz and Tang[4], Fallahnezhad and Saredorahi[10] proposed a Bayesian ac-
ceptance sampling plan on the basis of smallest proportion of a lot which should be inspected
in the presence of inspection error. Gonzalez and Palomo[11] derived Bayesian acceptance sam-
pling plans for the number of defect to minimize the expected total cost (ETC) of quality. For
the calculation of acceptance sampling cost, two loss functions are considered for the Poisson
distribution. In manufacturing industries, the decision either to reject or accept a product is
generally made on the basis of the measurement information. As this information is seldom
complete, in general, it is not possible to be completely sure about the measured values. Lira[12]
studied the probabilities of incorrectly rejecting or accepting the product using Bayesian statis-
tics. Adibfar et al.[13] proposed a sampling scheme assuming Bayesian methods. The Bayesian
risks for both consumer and producer provide a better understanding for decision making than
the traditional ones. The results of sensitivity analysis show that lot size, the cost of inspec-
tion, and the cost of one defective items are the key factors in the sampling design. The lot
tolerance proportion defective, the acceptable quality level and the Bayesian risks also influence
the sampling policy. On frequentist side, we refer to [2, 14, 15, 16, 17, 18] for sampling plans
assuming different truncated distribution. For group acceptance sampling plans, we refer to
[19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34], and references cited therein.”

Hsu[35] proposed an economic model for determining optimal sampling plan which minimizes
the producer’s total cost by satisfying both the producer’s and consumer’s risks. For variable
acceptance sampling plan, Schmidt et al.[36, 37] presented cost models. Tagaras[38] developed
an economic model for acceptance sampling plan for variables assuming normal distribution.
Taguchi loss function is used when the quality characteristics deviate from the target value.
“Aslam et al.[39] proposed economic reliability test plans by taking into account the lifespan of
the submitted products assuming the Pareto distribution of second kind. For different acceptance
number (c), sample size (n), producer’s risk and the minimum test termination time are obtained.
Fallahnezhad and Fakhrzad[40] proposed a new sampling plans for the defective proportion of
the batch. To measure the deviations between the proportion of defective and the acceptance
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quality level, a continuous loss function is used. A sensitivity analysis is performed for the desired
values of sample size, which allows practitioners to plan optimum inspection plan.”

The remainder of the study is organized as follows: Section 2 discusses the expected total cost
for the Erlang distribution. The Weibull acceptance sampling plan is discussed in Section 3.
Some concluding remarks are given in Section 4.

2. Expected Total Cost assuming Erlang Sampling

“Let X denotes the number of defects per unit of the product, where X follows the Erlang
distribution with parameter θ. For the Bayesian analysis, the prior for parameter θ is required
and here, we consider two different prior distributions. The first one is the gamma prior f(θ) =
1

Γ(a)b
aθa−1e−bθ, where a and b are the shape and rate parameters, respectively. The second prior

is the noninformative prior f(θ) = Kθ−1, where K > 0 is a positive constant. Let l(x) denotes
the loss due to the presence of defects per-unit X in the accepted lot. This study consider the
quadratic and step loss functions [11]. The quadratic loss function is defined as l(x) = hx2, where
h > 0 is a positive constant while the step-loss function is defined as

l(x) = {
0 if 0 ≤ x ≤ p

S if x > p
(1)

where S > 0 and p > 0 are positive constants. For a given value of θ, the per-unit conditional
expected loss is given by

L(θ) =
∞

∑

xi=0

l(xi)P (xi∣θ) (2)

where l(xi) denotes the loss incurred having x defects. For the parameter θ, P (xi∣θ) denotes the
probability of defects. For the quadratic loss function, the conditional expected loss is

L(θ) = h
θn

(n − 1)!

∞

∑

xi=0

xn+1e−xθ (3)

Similarly, for the step loss function, we have

L(θ) = S [1 −
θn

(n − 1)!

p

∑

xi=0

xn−1e−xθ] (4)

In fact, the expected total cost is composed of three independent components [4, 11, 36]. The
important one is the cost of acceptance, which is incurred due to defective items in the accepted
lots. Let X be the number of defects in a sample of n units, having Erlang distribution with
parameter θ. The probability of acceptance of a lot for a given value of θ is

P (acceptance∣θ) = P (X ≤ c∣θ) =
c

∑

r=0

1

(n − 1)!
θn−1rn−1e−rθ (5)

The marginal probability of acceptance can be found as

P (acceptance) = P (X ≤ c) =
c

∑

r=0
∫

∞

0

1

(n − 1)!
θnrn−1e−rθf(θ)d(θ) (6)

and hence, the expected cost of acceptance (ECA) is

ECA =M ∫
∞

0
L(θ)P (acceptance∣θ)f(θ)d(θ) (7)

The ECA for both cases, i.e., quadratic and step loss functions, can be obtained by substituting
Equation 6 in Equation 7. Four different quantities of interest can be considered, which depends
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on the prior distribution of θ and the loss functions. To this end, we calculate the expected cost
of rejection (ECR), that is the cost associated with the disposition of rejected lots obtained by

ECR =M ×R × P (rejection) (8)

where R represents the per-unit cost of rejection. The probability of rejection of a lot is

P (rejection) = 1 − P (acceptance) = 1 −
c

∑

r=0
∫

∞

0

1

(n − 1)!
θnrn−1e−rθf(θ)d(θ) (9)

Next, to compute the expected cost of inspection (ECI), let J represents the per-unit inspection
cost. Then, ECI = nJ . Finally, the expected total cost (ETC) becomes ETC = ECA +ECR +
ECI, thus by minimizing the ETC, the optimum sampling plan can be obtained.”

2.1. Optimum Sampling Plans. To determine the sampling plan (n, c), we minimize the ETC
using different loss functions and prior distributions of θ. To this end, we present the sampling
plans for the quadratic and step loss functions assuming gamma and noninformative priors for
θ.

2.1.1. ETC Quadratic Loss Function and Gamma Prior. The “expected cost of acceptance ECA
for the quadratic loss function by using the gamma prior is discussed in this section. To this
end, the ECA is

ECA =Mh
ba

Γ(a)(n − 1)!(n − 1)!

∞

∑

xi=0

∞

∑

r=0

xn+1rn−1
Γ(2n + a)

(r + x + b)2n+a
(10)

Similarly, the ECR is obtained as

ECR =MR [1 −
c

∑

r=0

ba

Γ(a)(n − 1)!
rn−1

Γ(a + n)

(b + r)a+n
] (11)

The expected cost of inspection is ECI = nJ , which is the same for different sampling plans
discussed in this study. Consequently, the ETC takes the form

ETC =Mh
ba

Γ(a)(n − 1)!(n − 1)!

∞

∑

xi=0

∞

∑

r=0

xn+1rn−1
Γ(2n + a)

(r + x + b)2n+a
+

MR [1 −
c

∑

r=0

ba

Γ(a)(n − 1)!
rn−1

Γ(a + n)

(b + r)a+n
] + nJ (12)

For the determination of the optimum values (n,c) the ETC is minimized. As the derivative of
the function is very complicated, the optimum values are computed numerically.”

2.1.2. ETC using Quadratic Loss Function and Noninformative Prior. The expected cost of
acceptance ECA for the quadratic loss function by using noninformative prior is obtained as
follows

ECA =
hkM

(n − 1)!(n − 1)!

∞

∑

xi=0

c

∑

r=1

rn−1xn+1 Γ(2n)

(x + r)2n
(13)

Similarly, the ECR is obtained as

ECR =MR [1 − k
c

∑

r=1

1

r
] (14)

Therefore, the final form of the ETC is given as

ETC =
hkM

(n − 1)!(n − 1)!

∞

∑

xi=0

c

∑

r=1

rn−1xn+1 Γ(2n)

(x + r)2n
+MR [1 − k

c

∑

r=1

1

r
] + nJ (15)
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which needs to be solved numerically for optimizing n and c.

2.1.3. ETC using Step Loss Function and Gamma Prior. The ECA for the step loss function by
using the gamma prior is

ECA =MS
ba

(n − 1)!Γ(a)

c

∑

r=0

rn−1 [
Γ(a + n)

(b + r)a+n
−

Γ(2n + a)

(n − 1)!

p

∑

xi=0

xn−1

(b + r + x)2n+a
] (16)

and ECR is obtained as

ECR =MR [1 −
ba

Γ(a)(n − 1)!

c

∑

r=0

rn−1
Γ(a + n)

(b + r)a+n
] (17)

Therefore, the final form of the ETC is

ETC =MS
ba

(n − 1)!Γ(a)

c

∑

r=0

rn−1 [
Γ(a + n)

(b + r)a+n
−

Γ(2n + a)

Γ(n)

p

∑

xi=0

xn−1

(b + r + x)2n+a
]

+MR [1 −
ba

Γ(a)(n − 1)!

c

∑

r=0

rn−1
Γ(a + n)

(b + r)a+n
] + nJ (18)

The optimal parameters are calculated numerically.

2.1.4. ETC using Step Loss Function and Noninformative Prior. The “ECA for the step loss
function by using the noninformative prior is obtained as

ECA =
MSk

(n − 1)!

c

∑

r=1

rn−1 [
(n − 1)!

rn
−

Γ(2n)

(n − 1)!

p

∑

xi=0

xn−1

(r + x)2n
] (19)

whereas the ECR is obtained as

ECR =MR [1 − k
c

∑

r=1

1

r
] (20)

Therefore, the final form of the ETC is

ETC =
MSk

(n − 1)!

c

∑

r=1

rn−1 [
(n − 1)!

rn
−

Γ(2n)

(n − 1)!

p

∑

xi=0

xn−1

(r + x)2n
] +MR [1 − k

c

∑

r=1

1

r
] + nJ (21)

For the determination of the optimum values (n,c) the ETC is again minimized numerically and
the results are discussed in the next section.”

2.2. Prior Robustness. Suppose that the incoming lot of size “M = 10000 to be inspected. To
test a unit, it cost J = 4.5, and h = 5. Furthermore, the cost associated with the rejected lot per
unit is R = 2.5. In the case of step loss function, the values of parameters are assumed S = 50
and p = 1. Furthermore, it is supposed that the number of defects per unit follows the gamma
distribution with parameters a = 1.25 and b = 0.25 which are used by Gonzalez and Palomo[11].

Table 1 Here

Table 1 lists the results for the quadratic and step loss functions. The ETC for the aforementioned
specifications is 473252, and the optimum rule draws 21 units and the lot is accepted when number
of defects is less than 6 otherwise rejected. For the quadratic loss function, the expected total
cost ETC associated with the best decision without inspection is

min (R,E [L(θ)])

which becomes

min(R,
hbaΓ(a + n)

Γ(a)Γ(n)

∞

∑

xi=0

xn+1

(b + x)a+n
) .
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Similarly, it can be shown that for the step loss function, the expected total cost ETC associated
with the best decision without inspection is

min (R,E[L(θ)])

which becomes

min(R,
hbaΓ(a + n)

Γ(a)Γ(n)

p

∑

xi=0

xn−1

(b + x)a+n
) .

When the step-loss function is used the ETC is 266504, and the optimum rule draws 25 units and
the lot is accepted when number of defects are less than 7 otherwise the lot is rejected. When
the quadratic loss function is used and the prior distribution is gamma, the sampling plan obtain
from noninformative will result 18% increase in ETC. Similarly, when the step loss function is
used with gamma prior, the sampling plan will result 40% increase in ETC.

Table 2 Here

Table 2 presents the percentage increment in ETC when the prior standard deviation remains
unchanged and prior mean differs from the true mean. For example, when the quadratic loss
function is used and the prior distribution is gamma, the sampling plan computed by the gamma
prior with 20% greater mean than the true one will result 20.88% increase in the ETC. Similarly,
the percentage increase in the ETC when the prior standard deviation changes and prior mean
remains unchanged is presented in Table 2. From the table it is noticed that the percentages
of ETC are smaller with the misspecification of mean as compared to the standard deviation,
which shows that sampling plans are robust with respect to the prior mean than the standard
deviation.

Figure 1 Here

In Figure 1, the ETC computed by using the gamma prior for quadratic and step loss functions
is plotted against sample size. It is evident from the graph that as the sample size increases, the
ETC gradually decrease.”

3. Economic Design of the Group Acceptance Sampling assuming Weibull
Distribution

“The probability of accepting a poor quality lot is called the consumer risk and the probability
of rejecting a good quality lot is called the producer risk. It is of the great interest of producers
to use a sampling plan that make sure protection from the risk of rejecting a good quality lot
and thus a producer always wants to use a sampling plan that allows the inspection of the lot at
the optimal cost, as inspection of the product need for a laboratory equipped with testers, time,
labors, etc. A single acceptance sampling plan established upon on the inspection of product by
putting a single item in a single tester. In this situation, the number of items selected in the
sample is equal to the number of testers. When more than one item can be put in a single tester,
the group sampling plans are used to reduce the inspection cost.”

If the quality level of the product is higher than the specified level, the product is said to be of
a good quality. Generally, these levels are determined by using the percentile ratios tq/tq0 , where
tq represents the qth percentile life of the product and tq0 represents the specified percentile life.
Therefore, the most important goal of the acceptance sampling is to accept a lot of goods when
tq ≥ tq0 , otherwise reject the lot. Aslam et al.[24] showed that it performs better than the existing
group sampling plan in terms of average sample numbers. The algorithm of the group sampling
plan is

● Take a random sample of size n from the lot of size M and assign r items to g groups,
i.e., n = rg, for the time duration t0.
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● The lot is accepted if the total number of failures from the g groups is smaller than or
equal to c, otherwise the lot is rejected before the experiment time t0.

Suppose that the observations lifespan follows a Weibull distribution with the following prob-
ability density function.

f(t;σ,λ) = {
λ
σ(

t
σ)

λ−1e−(t/σ)
λ

; t ≥ 0
0 ; t < 0

(22)

where “σ” denotes the scale parameter and “λ” denotes the shape parameter of the Weibull
distribution. Contrary to previous studies, this study assumes known scale parameter and un-
known shape parameter. The cumulative distribution function (CDF) of the Weibull distribution
is given as follows

F (t) = 1 − exp (−(t/σ)λ) t ≥ 0 (23)

and the qth percentile life of the product is given by

tq = θ [ln(
1

1 − q
)]

1
λ

(24)

Under the group sampling plan, the probability of the acceptance of a lot [2] is given as follows

L(p) =
c

∑

i=0

(

rg

i
)pi(1 − p)rg−i (25)

where p denotes the probability of failure before the termination time t0, which can be calcu-
lated from the CDF of the Weibull distribution. The experimentation time is a multiple of the
percentile life t0 = mtq0 , where m is a fixed constant which is called the termination time. The
probability of failure p can be written as

p = 1 − exp [−mλ
(tq/tq0)

λ ln(
1

1 − q
)] (26)

3.1. Minimization of Total Cost Model. Let the “per-unit inspection cost is denoted by Ci,
the internal failure cost (i.e., reparation, rework, and restoration of the failed products) by Cf ,
the outgoing defective cost by C0, and the setup cost per group by Cg. Then, the total cost for
the group acceptance sampling plan is considered as follows

TC = Ci(ATI) +Cf(Dd) +Co(Dn) + g(Cg) (27)

where ATI denotes the average total inspection, Dd is the number of defective products detected
and Dn represents the number of defective products not detected. Thus

ATI = rg + (1 −L(p))(M − rg) (28)

Dd = rgp + (1 −L(p))(M − rg)p (29)

Dn = L(p)(M − rg)p (30)

where r denotes the group size, g is the number of groups and M denotes the lot size. The
average outgoing quality (AOQ) is a measure of rectifying inspected items, i.e., the quality of
the lot that result from the application of rectifying inspection. The AOQ can be obtained over
a long sequence of lots by a process defective fraction (p). It can be obtained as

AOQ =
pL(p)(M − rg)

M
(31)

”
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3.2. Bayesian Group Design. As p is unknown “and to obtain the plan parameters, Hsu[35]
prefixed the values of p. Contrary to Hsu[35], we use the Bayesian approach to estimate the
unknown values of p which is function of λ. To this end, the prior distribution of λ is assumed
to follow a gamma distribution with the shape parameter γ > 0 and the scale parameter δ > 0
using the PDF f(λ) = δγ

Γ(γ)λ
γ−1e−λδ. Hence, the ATI and AOQ can be written as

ATI = ∫
∞

0
[rg + (1 −L(p))(M − rg)]

δγ

Γ(γ)
λγ−1e−λδdλ (32)

Dd = ∫
∞

0
[rgp + (1 −L(p))(M − rg)p]

δγ

Γ(γ)
λγ−1e−λδdλ (33)

Dn = ∫
∞

0
[L(p)(M − rg)p]

δγ

Γ(γ)
λγ−1e−λδdλ (34)

AOQ = ∫
∞

0

L(p)(M − rg)p

M

δγ

Γ(γ)
λγ−1e−λδdλ (35)

Due to complexity of integration, the results can be calculated by numerical integration. For the
hyperparameters, we assume γ = 1.25, δ = 0.25 and obtain the following equations.

ATI =rg + (M − rg)∫
∞

0

n

∑

i=c+1

(

rg

i
)(1 − exp [−mλ

(tq/tq0)
λ ln(

1

1 − q
)])

i

×

(exp [−mλ
(tq/tq0)

λ ln(
1

1 − q
)])

rg−i δγ

Γ(γ)
λγ−1e−λδdλ (36)

Dd =rg∫
∞

0
(1 − exp [−mλ

(tq/tq0)
λ ln(

1

1 − q
)])

δγ

Γ(γ)
λγ−1 exp(−λδ)dλ

+ (M − rg)∫
∞

0

n

∑

i=c+1

(

rg

i
)(1 − exp [−mλ

(tq/tq0)
λ ln(

1

1 − q
)])

i+1

×

(exp [−mλ
(tq/tq0)

λ ln(
1

1 − q
)])

rg−i δγ

Γ(γ)
λγ−1 exp(−λδ)dλ (37)

Dn =(M − rg)∫
∞

0

c

∑

i=0

(

rg

i
)(1 − exp [−mλ

(tq/tq0)
λ ln(

1

1 − q
)])

i+1

×

(exp [−mλ
(tq/tq0)

λ ln(
1

1 − q
)])

rg−i δγ

Γ(γ)
λγ−1 exp(−λδ)dλ (38)

AOQ =
(M − rg)

M ∫

∞

0

c

∑

i=0

(

rg

i
)(1 − exp [−mλ

(tq/tq0)
λ ln(

1

1 − q
)])

i+1

×

(exp [−mλ
(tq/tq0)

λ ln(
1

1 − q
)])

rg−i δγ

Γ(γ)
λγ−1 exp(−λδ)dλ (39)

Since acceptance sampling plans are associated with producer and consumer risks denoted by α,
and β respectively, (1-α) denotes the producer and (1-β) consumer confidence levels, respectively.
The producer wishes the acceptance chance of the items batch to be greater than the confidence
level (1-α), and the consumer desires that it should be less than the β risk. Let p1 and p2 denote
the probability of failure of a product before the termination time t0 at α and β, respectively.
Then, we have to minimize the following cost model[26]

Minimize TC = Ci(ATI) +Cf(Dd) +Co(Dn) + g(Cg) (40)
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subject to the constraints

L(p2) ≤ β (41)

L(p1) ≥ 1 − α (42)

For the calculation of the optimal parameters and to minimize the total cost, we use the following
values: Ci = 1.0, Cg = 3, Cf = 2.0, and C0 = 1.0 [26, 35]. In addition, we considered r = 5 and
10 as group sizes, a = 0.5, 1.0 as the experiment time ratio, q = 0.5, M = 1000 as the lot size,
α = 0.05, and tq/tq0 = 2,4,6,8 as the percentile ratio. The results are listed in Tables 3-6. ”

Tables 3-6 Here

For r = 5, it is observed that the optimal TC increases by increasing the percentile ratio or
experiment time ratio m. Similarly, for r = 10, we observe a similar trend as noticed for r = 5.

Figures 2-3 Here

From Figures 2 and 3, it is clear that as the percentile ratio (tq/tq0) increases, the total cost
also increases. Thus, increase in the quality may also increase the total cost of inspection when
the shape parameter is unknown. Similarly, the average total inspection remains constant for
ratio from 2 to 4 and as the percentile ratio (tq/tq0) increased, the average total inspection cost
decreased. Hence, the shape parameter has a significant impact on the Bayesian design and
cannot be treated fixed as considered by Aslam et al.[26].

3.3. Comparison of Group Sampling Plan and Single Sampling Plan. Here, we present
a comparison of single acceptance sampling plan to the group acceptance sampling plan. The
group sampling plan reduces to single sampling plan when r = 1, i.e., the single sampling plan is
the special case of group sampling plan, however the setup cost for the group sampling plan is
larger than the single sampling plan. For example, Aslam et al.[26] pointed out that the setup
cost for the group sampling plan is Cg = 3 while Cg = 1.5 for the single sampling plan.

Table 7 lists the total cost for both single sampling plan and group sampling plan. From the
table, one can conclude that the group sampling plan will perform better than the single sampling
plan in terms of total cost, i.e., the total cost associated with group sampling plan is smaller
than the single sampling plan assuming unknown shape parameter of the Weibull distribution.

Table 7 Here

4. Conclusion

In this article, Bayesian acceptance sampling plans are derived under Erlang and Weibull
distributions to assess the robustness of the shape parameters which is mainly ignored in the
previous studies. For the Erlang distribution, we used two loss functions while Bayesian accep-
tance group and single sampling plans are discussed for the Weibull distribution. The robustness
analysis of the Erlang sampling plan with respect to the prior distribution and misspecification
of the variance and mean of the process average is analyzed. For the group acceptance sampling
plan a cost model is used. We compared a single sampling plan with the group sampling plan
and showed that the group sampling plan will perform better than the single sampling plan in
terms of the total cost. The Weibull distribution is assumed because of its importance in qual-
ity control. In future, the techniques presented here can also be extended to design two-stage
group sampling plan. Furthermore, other distributions, priors, and loss functions can also be
considered. A recent literature on neutrosophic statistics can be used to extend the present work
[41, 42, 43].
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Table 1. Bayesian sampling plans assuming different loss functions and priors

Prior distribution n c ETC percentage increment percentage saving

Quadratic loss function
Γ(a, b) 21 6 473252 18 34.9
Kθ−1 28 9 2.58052 × 106 –

Step loss function
Γ(a, b) 25 7 266504 40 34.9
Kθ−1 32 10 660656 –

Table 2. Misspecification of gamma prior mean and standard deviation for the
quadratic and step loss functions

Misspecification −30% −20% −10% 10% 20% 30%

Quadratic loss function
Mean 12.76 14.83 16.72 19.61 20.47 20.88
SD 24.20 21.97 20.05 16.85 15.54 14.41

Step loss function
Mean 26.46 31 35.7 44.82 49 52.88
SD 50.30 47.53 43.58 37.29 34.43 31.86
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Table 3. The optimal parameters of the Bayesian plan for the Weibull
distribution for r=5 and m=0.5

β tq/tq0 ATI Dd Dn AOQ g,c TC

0.25 2 1000 500 0.00143765 1.43765 × 10−6 8,4 2024
4 1000 926.56 0.000579062 5.79062 × 10−7 4,1 2865.12
6 999.99 954.44 0.0221231 0.0000221 2,0 2914.89
8 999.99 964.95 0.0166504 0.0000166504 2,0 2935.91

0.10 2 1000 530 1.53962 × 10−7 1.53962 × 10−10 12,5 2096
4 999.97 925.05 0.000017051 1.7054 × 10−8 5,1 2865.07
6 1000 954.45 9.67503 × 10−6 9.67503 × 10−9 5,1 2923.89
8 1000 964.96 0.00033018 3.3018 × 10−7 3,0 2938.91

0.05 2 1000 500 3.34929 × 10−10 3.34929 × 10−13 15,6 2045
4 1000 925.06 5.07223 × 10−7 5.07223 × 10−10 6,1 2868.13
6 1000 954.446 2.87355 × 10−7 2.87355 × 10−10 6,1 2926.89
8 1000 964.96 2.15432 × 10−7 2.15432 × 10−10 6,1 2947.91

0.01 2 1000 500 1.64815 × 10−15 1.64815 × 10−18 21,8 2063
4 1000 925.06 1.77339 × 10−11 1.77339 × 10−14 10,2 2880.13
6 1000 954.45 2.58459 × 10−10 2.58459 × 10−13 8,1 2932.89
8 1000 964.96 1.93645 × 10−10 1.93645 × 10−13 8,1 2953.91

Table 4. The optimal parameters of the Bayesian plan for the Weibull
distribution for r=5 and m=0.1

β tq/tq0 ATI Dd Dn AOQ g,c TC

0.25 2 – – – – – –
4 999.973 964.943 0.113803 0.000113803 3,2 2938.97
6 999.918 973.886 0.223859 0.000223859 2,1 2953.91
8 999.932 978.063 0.186395 0.000186395 2,1 2962.24

0.10 2 – – – – – –
4 999.973 964.943 0.113803 0.000113803 3,2 2938.97
6 999.918 976.886 0.223859 0.000223859 2,1 2953.91
8 999.932 978.063 0.186395 0.000186395 2,1 2962.24

0.05 2 – – – – – –
4 999.973 964.943 0.113803 0.000113803 3,2 2938.97
6 999.918 973.886 0.223859 0.000223859 2,1 2953.91
8 999.932 978.063 0.186395 0.000186395 2,1 2962.244

0.01 2 – – – – – –
4 999.973 964.943 0.113803 0.000113803 3,2 2938.97
6 999.918 973.886 0.223859 0.000223859 2,1 2953.91
8 999.998 978.1 0.00518982 5.18982 × 10−6 3,1 2965.20
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Table 5. The optimal parameters of the Bayesian plan for the Weibull
distribution for r=10 and m=0.5

β tq/tqo ATI Dd Dn AOQ g,c TC

0.25 2 1000 500 1.53962 × 10−7 1.53962 × 10−7 6,5 2018
4 1000 925.063 0.000579062 5.79062 × 10−7 2,1 2856.13
6 999.99 954.44 0.0219018 0.0000219018 1,0 2911.89
8 999.99 964.953 0.0166504 0.0000166504 1,0 2932.91

0.10 2 1000 500 1.53962 × 10−7 1.53962 × 10−10 6,5 2018
4 1000 925.063 5.07223 × 10−7 5.07223 × 10−10 3,1 2859.13
6 1000 954.446 2.87355 × 10−7 2.87355 × 10−10 3,1 2917.89
8 1000 964.953 2.15432 × 10−7 2.15432 × 10−10 3,1 2938.91

0.05 2 1000 500 3.27347 × 10−10 3.27347 × 10−13 8,7 2024
4 1000 925.063 5.07223 × 10−7 5.07223 × 10−10 3,1 2859
6 1000 954.446 2.87355 × 10−7 2.87355 × 10−10 3,1 2917.89
8 1000 964.953 2.15432 × 10−7 2.15432 × 10−10 3,1 2938.91

0.01 2 1000 500 7.51059 × 10−17 7.51059 × 10−20 11,8 2033
4 1000 925.063 1.77339 × 10−11 1.77339 × 10−14 5,2 2865.13
6 1000 954.446 2.58459 × 10−10 2.58459 × 10−13 4,1 2920.89
8 1000 964.957 1.93645 × 10−10 1.93645 × 10−13 4,1 2941.91

Table 6. The optimal parameters of the Bayesian plan for the Weibull
distribution for r=10 and m=0.1

β tq/tqo ATI Dd Dn AOQ g,c TC

0.25 2 – – – – – –
4 1000 964.957 1.83807 × 10−10 1.83807 × 10−13 6,5 2947.94
6 1000 973.932 4.03624 × 10−6 4.03624 × 10−9 3,2 2956.86
8 1000 978.101 0.000149585 1.49585 × 10−7 2,1 2962.20

0.10 2 – – – – – –
4 1000 964.957 1.83807 × 10−10 1.83807 × 10−13 6,5 2947.91
6 1000 973.932 4.03624 × 10−6 4.03624 × 10−9 3,2 2956.86
8 1000 978.101 0.000149585 1.49585 × 10−7 2,1 2962.20

0.05 2 – – – – – –
4 1000 964.957 1.83807 × 10−10 1.83807 × 10−13 6,5 2947.91
6 1000 973.932 4.03624 × 10−6 4.03624 × 10−9 3,2 2956.86
8 1000 978.101 0.000149585 1.49585 × 10−7 2,1 2962.20

0.01 2 – – – – – –
4 1000 964.957 1.83807 × 10−10 1.83807 × 10−13 6,5 2947.91
6 1000 973.932 4.03624 × 10−6 4.03624 × 10−9 3,2 2956.86
8 1000 978.101 0.000149585 1.49585 × 10−7 2,1 2962.20
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Table 7. Comparison of group and single sampling plans for the Weibull
distribution

β tq/tqo Single plan Group plan when r=10

0.25 2 7956.25 2018
4 2862.9972 2856.13

0.10 2 10153.34 2018
4 2861.79 2859.13
6 2918.77 2917.89
8 2939.57 2938.91

0.05 2 15020.27 2018
4 2861.43 2859
6 2919.21 2917.89
8 2940.26 2938.91

0.01 2 35085.74 2033
4 2868.13 2865.13
6 2921.25 2920.89
8 2942.19 2941.91
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