Sensitivity analysis of electromagnetic stimulation of oil wells using simulation technique and Box-Behnken design

Saeed Karami a; Amir Hossein Saeedi Dehaghani a*

a Petroleum Engineering Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran

ABSTRACT

This research aims to investigate the parameters affecting the electromagnetic (EM) stimulation of an oil well. To hit the target, a simulator and Box-Behnken design were implemented to find the sensitivity of the EM stimulation regarding rock and fluid properties. Seven factors of the frequency, brine water salinity, water saturation, oil dielectric constant, rock dielectric constant, porosity, and initial temperature were analyzed by employing 62 simulation runs. The dielectric constants of brine water were obtained using the Stogryn model as a function of brine salinity, frequency, and initial temperature. Based on the distance far from the wellbore, the wellbore region was divided into four sections of 5-6, 6-10, 10-20, and 20-100 cm. The most affecting parameter in the domain of 5-20 cm is the brine salinity. The frequency and water saturation were obtained as the next affecting parameters, respectively. The most affecting parameter in the section of 20-100 cm is the frequency. In the section of the 20-10 cm, the second and third affecting parameters were found to be the brine water salinity and water saturation, respectively. The highest power loss density at the 5-6cm obtained 4300 watts/m³ while the highest density was almost 1 watt/m³ at the section of 20-100 cm.

Key Words: Electromagnetic wave; Brine water; Frequency; Salinity; Box-Behnken;
Dielectric constant

*Corresponding author: asaeedi@modares.ac.ir
Address: Tarbiat Modares University, Jalal Ale Ahmad Highway, Gisha Bridge, Tehran, Iran
Tel: +98 21 82883350
Fax: +98 21 82883350
1. INTRODUCTION

Increasing global demands for energy sources, such as fossil fuels, have made petroleum engineers seeking for new methodologies for facilitating oil production from heavy oil reservoirs [1]. One of the new methods, which is widely used in the production of viscous oil, is the wellbore electromagnetic (EM) stimulation. The EM waves are generated by the periodical oscillation of the electric and the magnetic field. The EM waves are familiar due to their applications in telecommunication and power generation affairs. They transfer the energy in the forms of supplied force in the electric and magnetic fields. Also, they are subjected to attenuation while propagating in the medium. Dissipation of the EM wave leads to the heat generation in the medium [2]. These waves have some characteristics, such as frequency, wavelength, and amplitude. The frequency only depends on the source frequency, and it does not change due to medium electrical properties. The wavelength of the EM wave is attributed as the shortest distance between two points with an identical phase. The velocity of the EM wave could be found by multiplying the frequency by the wavelength [2]. By propagation of the EM waves into the medium, the electric and magnetic energy, which is stored the EM wave, dissipates in the medium due to dielectric loss.

According to Equations 1-2, the dissipation of energy depends on frequency, radian frequency, dielectric constant, loss factor, and root mean square electric field intensity [3,4].

\[p_{av} = \omega \varepsilon_0 \varepsilon' E^2 V \]
\[p_{av} = \sigma E^2 \]

Where the parameters of \(\sigma \), \(\omega \), \(\varepsilon_0 \), \(\varepsilon' \), \(E \), \(P_{ave} \), and \(V \) stand for electric conductivity, radian frequency, dielectric constant (real part), dielectric constant (imaginary part), root mean square electric field, average dissipated power, and the volume of the media [3]. Hence, moisture content, temperature, organic materials, water saturation, and mineral-bound water affect the final result of the EM heating due to their potential to changing the dielectric properties of the medium [5].

According to Equations 1-2, it is obvious that the material properties of the medium affect the efficiency of EM heating, strongly. Hence, the EM heating of sands, clays, coals, heavy oil, light one, and brine water have different efficiencies, due to various dielectric behaviour. Despite the conventional heating, which homogeneously heats the material, the EM heating increases the material temperature based on their electrical properties, leading to creating hotspot zones [4,6,7]. The selective microwave heating of the oil crude led to the desorption of the polar compounds, such as asphaltene molecules from the aged rock surface [8,9].

The EM heating of oil wells, which has been accepted as a successful method of oil well stimulation for decades, have some effects on the rock and fluid properties. Changing the oil viscosity is one of the reasons that EM stimulation is implemented in the oil wells. By applying the EM stimulation, the oil viscosity reduces to a minimum value due to the vis-breaking of long-chain hydrocarbons [10]. Increasing the exposure time comes to increasing the viscosity due to the domination of gas expelling. The addition of Nanomaterials such as Fe, titanium
oxide, and super activated carbon reduce the optimum time for the viscosity reduction [10–12]. Moreover, the EM waves reduce the asphaltene content and asphaltene size of the heavy oil sample [6].

Many researchers suggested using the EM waves for recovery and stimulation of the oil shale. Hascakir and Akin suggested the hybrid of the microwave (a portion of the EM wave spectrum) and conventional heating [13]. They found microwave heating very fast influencing and conventional heating very stable, hence the combination of both was proposed. Pyrolysis of the Moroccan oil shales under microwave irradiation was investigated, by Harfi et al. 2000 [14]. They found that oil sample from pyrolysis seems more maltenic, less polar, contains less sulfur, and nitrogen than the oils produced by the conventional method. Ali et al. 2020 investigated the scattering parameters of sandstone saturated with brine and nanofluids. Zinc Oxide and Bismuth ferrite nanoparticles were used to find their potential to enhance oil recovery. Based on the EM properties reported by the vector network analyzer, maximum absorption, dielectric permittivity, and magnetic permeability were observed in bismuth ferrite nanoparticles [15]. Simultaneous implementation of nanoparticles and the EM wave is one of the novel hybrid methods used for enhanced oil recovery. In this hybrid method, magnetic nanoparticles, such as Al₂O₃, SiO₂, CeO₂, TiO₂, NiO, ZnO, Ni, Fe, Y₃Fe₅O₁₂, and ZrO₂, are activated by the magnetic field to propagate in the reservoir medium. The effects of the parameters, such as particle size, composition, and wave frequency have been studied comprehensively [15–20].

The mineral content of the porous media influences the efficiency of EM heating, strongly. Robinson et al. 2014 related the mineral content of tar sands to the efficiency of EM wave heating [21]. They concluded that the microwave treatment is feasible for low-grade tar sands. Besides, the hydrated clays improved microwave heating.

This research aims to determine the sensitivity of the EM heating regarding the dielectric constants of the materials, wave frequency, salinity, porosity, and the initial temperature. In the rest of the manuscript, the model structure and properties will be discussed.

2. MODEL DESCRIPTION

Computer Simulation Technology (CST) software was implemented to simulate the oil well subjected to the EM stimulation/heating. CST software is a tool to simulate the behavior of the EM waves. It simulates the structures and the EM waves by discretizing the structure and solving the Maxwell equations in each cell. Solving the Maxwell equations, which are shown as Equations 3-6, is fundamental of the CST software.

\[
\nabla \times E = j\omega \mu H \tag{3}
\]
\[
\nabla \times H = -j\omega \varepsilon \varepsilon' E \tag{4}
\]
\[
\nabla \times E = 0 \tag{5}
\]
\[
\nabla \times H = 0 \tag{6}
\]
In Equations 3-6, the parameters of E, j, ω, μ, H, ε_r, ε'', and P_v represent the electric field (V/m), current density (A/m2), angular frequency (rad/s), magnetic permeability (H/m), magnetic field (T), the relative dielectric constant, imaginary dielectric constant, and power loss density (watt), respectively. To find the electric and magnetic field, the structure was discretized into cells via CST software, and the Maxwell equations were solved through numerical iteration methods [22,23].

To model the near-wellbore structure, two coaxial cylinders were set to simulate the oil well and near the wellbore region. The inner cylinder with a radius of 5 cm and a height of 100 cm is considered as the oil well. The outer cylinder with a radius of 100 cm and height of 100 cm stands for the near-wellbore region. A metallic rectangular cube port with dimensions of 2 cm \times 2 cm \times 10 cm was placed at the center of the oil well to radiate the EM waves. The power loss of the EM waves was reported at the radius of 5-6 cm, 6-10 cm, 10-20 cm, and 20-100 cm. Discretized structure of the oil well and the near-wellbore region is shown in Figure 1. It should be mentioned that the boundary condition was open at the boundaries of the investigated regions ($r=100$ cm) to let the EM waves leave the investigated region.

Figure 1

The average EM properties of the oil, brine water, and rock were attributed to the electric property of the near-wellbore region. The parameters of water saturation, water salinity, frequency, oil dielectric constant, rock dielectric constant, temperature, and porosity were considered as affecting factors of the EM stimulation/heating. The Box-Behnken design was used to investigate the sensitivity analysis of the EM stimulation on seven factors in two levels. According to the Box-Behnken design of seven factors at two levels, 62 runs were performed to find the sensitivity analysis. The list of parameters, upper level, and the lower level is shown in Table 1.

Table 1

The oil dielectric constant depends on the dielectric constant of the comprising organic compounds. For example, the dielectric constants of normal pentane, toluene, and stearic acid are 1.76, 2.38, and 1.7. Besides, the existence of more polar compounds, such as asphaltene and resin molecules, leads to a higher dielectric constant, based on the chemistry and concentration of the polar compound. To cover the wide range of the oil dielectric constant, 1-3 was selected for simulations [24,25]. Goual studied the impedance spectroscopy of the oil in two conditions of containing asphaltene and without asphaltene particles [25]. It was reported that the dielectric constants of the oil remain constant at frequencies higher than 1 kHz, hence considering the electric constants of oil unchanged at frequencies higher than the 1000 Hz seems reasonable. The dielectric constants of MgCO$_3$, CaCO$_3$, and SiO$_2$, which are predominant minerals in the reservoir rock texture, are 7.12, 9.2, and 3.88, respectively [4,26]. In other research papers, the dielectric constant of a dry clean sandstone was found to be almost 2.6 [27], and the dielectric constant of limestone locates in the range of 5-7 in the wave frequency used in this study [28]. To cover the sandstone and limestone formations, the
dielectric constant range is set to be 3-7. Based on the wellbore production or injection condition, the water saturation and salinity locate in a wide range. The authors tried to cover all possible conditions for an oil well, which is subjected to low salinity water injection, producing formation water, or any other process that affects the wellbore water salinity or saturation. For this purpose, the saturation is considered to be in the range of 0-1.

The dielectric constant of brine water is a strong function of the frequency, salinity, and temperature, and it is not as simple as the rock and the oil one. Stogryn model [29], which is shown in Equation 5-15, was used to evaluate the dielectric constants of the brine water.

\[
\varepsilon = \varepsilon_\infty + \frac{\varepsilon_0 - \varepsilon_\infty}{1-i2\pi f\tau} + \frac{i\sigma}{2\pi\varepsilon_0^*f}
\]

(7)

\[
\varepsilon_0 = \varepsilon_0(T,0)a(N,T)
\]

(8)

\[
2\pi\tau(T,N) = 2\pi\tau(T,0)b(N,T)
\]

(9)

\[
a(N) = 1.000 - 0.2551N + 5.15110^{-2}N^2 - 6.88910^{-3}N^3
\]

(10)

\[
b(N, T) = 0.146310^{-3}NT + 1.000 - 0.04896N - 0.02967N^2 + 5.64410^{-3}N^3
\]

(11)

\[
\varepsilon_0(T, 0) = 87.74 - 0.40008T + 9.39810^{-4}T^2 + 1.41010^{-6}T^3
\]

(12)

\[
2\pi\tau(T, 0) = 1.110910^{-14} - 3.82410^{-12}T + 6.93810^{-14}T^2 - 5.09610^{-16}T^3
\]

(13)

\[
N = S (1.70710^{-10} + 1.20510^{-5}S + 4.05810^{-9}S^2)
\]

(14)

\[
\sigma(25, N) = N \times \begin{pmatrix} 10.394 - 2.3776 \times N + 0.68258 \times N^2 \\ -0.13538 \times N^3 + 1.0086 \times 10^{-2} \times N^4 \end{pmatrix}
\]

(15)

\[
D = 25 - T
\]

(16)

\[
\sigma(T, N) = \sigma(25, N) \times \begin{pmatrix} 1 - 1.962 \times 10^{-2} \times D + 8.08 \times 10^{-5} \times D^2 \\ - (3.02 \times 10^{-5} + 3.92 \times 10^{-5} \times D) \\ + N \times (1.721 \times 10^{-5} - 6.584 \times 10^{-6} \times D) \end{pmatrix}
\]

(17)

Where

\[
\varepsilon_0 = \text{the static constant of the brine water}
\]

\[
\varepsilon_\infty = \text{optical dielectric constant of the brine}
\]

\[
\tau = \text{relaxation time (s)}
\]

\[
\varepsilon_0^* = \text{permittivity of the electric field at free space that is } 8.85 \times 10^{-12} \text{ F/m},
\]

\[
\sigma = \text{ionic conductivity of brine water, mho/m}
\]
\[f = \text{frequency of EM waves, Hz} \]
\[S = \text{salinity in parts per thousand (g/L)} \]
\[\varepsilon_0 \text{ at temperature } T \text{ and normality } N \text{ must be calculated through Equation 8:} \]
\[\varepsilon_0(T, S = 0) = a_1 + a_2 T \]
\[\varepsilon_{\infty}(T, S) = \varepsilon_{\infty}(T, S = 0)(1 + S(a_3 + a_4 T)) \]

As could be seen from Equation 7, the conductivity and optical dielectric constant of the brine water should be calculated. The optical dielectric constant of materials was obtained by tending the operating frequency to infinite. The optical dielectric constant of brine water in different salinities and temperatures could be calculated by the Meissner model, which is shown in Equations 18-19 [30]:

Where \(a_1, a_2, a_3, \) and \(a_4 \) are 3.6143, 2.8841\(\times 10^{-2} \), -2.04265\(\times 10^{-3} \), and 1.57883\(\times 10^{-4} \), respectively.

Sensitivity analysis of seven factors of water saturation, brine water salinity, frequency, temperature, oil dielectric constant, rock dielectric constant, and porosity was investigated using the Box-Behnken method at two levels. The power loss of the EM waves was set as the target of analysis. In the rest of the manuscript, the power loss equations of the EM waves at four investigation radii of 5-6cm, 6-10cm, 10-20cm, and 20-100cm will be discussed.

3. RESULT AND DISCUSSION

To find the power loss density, the ratio of EM wave dissipation power per volume of the section was used to explain the EM heating.

3.1 Power loss at 5-6cm.

The consistency of actual simulation data with the proposed correlation suggested by the Box-Behnken design could be seen in Figure 2. The adjusted \(R^2 \) value of the correlation is 0.92, hence the model seems valid to explain the dependency of the power loss regarding seven parameters at the section of 5-6 cm far from the oil well.

Figure 2

Equation 20 shows the regression correlation proposed by Box-Behnken. As is clear from the terms in this equation, the most affecting parameter on the efficiency of EM heating is the brine water salinity. In terms of significance, other effective parameters are frequency and saturation. The Porosity and initial temperature of the near-wellbore region are in the next order of affecting. Besides, the least important parameters are the rock and oil dielectric constants. In another word, all of the seven factors improve the EM heating but in the different orders. According to Equation 20, the porosity and initial temperature of the wellbore seem to be more effective than the rock and oil type (dielectric constants of the oil and rock).
\[
\text{PowerLossDensity}(5-6) = 420.778 + 517.628 \times S_u + 753.027 \times S + 541.517 \times F \\
+ 0.353695 \times E_o + 20.6821 \times E_r + 121.81 \times T_i + 345.889 \times \phi + 712.012 \times S \times S \\
+ 431.895 \times S \times F - 0.0050304 \times S \times E_o + 3.75032 \times S \times E_r + 96.4139 \times S \times T_i \\
+ 284.992 \times S \times \phi + 751.062 \times SF - 0.0050304 \times SE_o + 57.2165 \times SE_r + 162.97 \times ST_i \\
+ 448.9 \times S \times \phi + 1.00562 \times FE_o + 3.7504 \times FE_r + 163.038 \times FT_i + 303.738 \times F \times \phi \\
- 0.00261653 \times E_o \times E_r + 0.0746707 \times E_r \times F + 1.10088 \times E_r \times \phi + 0.615199 \times E_r \times T_i \\
- 54.2376 \times E_o \times \phi + 65.349 \times T_i \times \phi - 25.0898 \times S^2 + 328.501 \times S^2 + 10.7587 \times F^2 \\
- 12.1275 \times E_o^2 + 25.4563 \times E_r^2 - 8.07331 \times T_i^2 + 21.3049 \times \phi
\]

(20)

Figure 3 represents the 3 Dimensional surface of the power loss density versus salinity and saturation of the brine water at different frequencies. The other four factors remained constant in the middle of their range. According to Figure 3, the frequency strongly affects the efficiency of power. The highest power loss among the frequencies of 1kHz, 10kHz, 100kHz, and 10MHz is almost 1000 watt/m\(^3\), and there is no notable improvement in the power loss of the EM heating. The highest power loss density increases to almost 1300 watt/m\(^3\) and 4300 watt/m\(^3\) at the frequencies of 10MHz and 100 MHz, respectively. Moreover, there is a weak enhancement in power loss density as the saturation tends to 0. It may be due to the reduction of the effect of brine water dielectric conformation at lower water saturation. Decreasing the brine water saturation leads to increasing oil saturation, and it enhances the EM heating at lower frequencies.

3.2 Power loss at 6-10cm.

The consistency of actual simulation data of EM heating at the radius of 6-10 cm far from the oil well with the proposed correlation suggested by the Box-Behnken design could be seen in Figure 4. The adjusted R\(^2\) value of the correlation is 0.95. Therefore, the model seems consistent with the actual data.

Figure 4

Equation 21 is the regression correlation, which fits with the power loss density of the EM waves at the radius of 6-10cm far from the oil well. Similar to Equation 21, the most affecting parameter on the EM heating is the salinity of the brine water. In terms of significance, other effective parameters are frequency and saturation. All of the investigated parameters improve the EM heating method but in different significance. Similar to the 5-6cm section, porosity and initial temperature improve the EM heating more than oil and rock dielectric constants.
Figure 5 shows the power loss density of the EM waves at the radius of 6-10 cm far from the oil well. The 3 Dimensional graphs of the power loss density are sketched versus brine water saturation and salinity. The maximum power loss density was obtained almost 1350 watt/m³ at the frequency of 100MHz, and the highest power loss density at the frequency of 1 kHz found almost 250 watt/m³. Hence, the ratio of the highest power loss at the highest to the one at the lowest frequency is 5.4. The 3 Dimensional graph anomalies of power loss density at the 6-10cm section are similar to the 5-6cm section. The most important note about Figure 5 is its lower EM power loss density respect to the power loss density at the section of 5-6cm.

Figure 5

3.3 Power loss at 10-20cm.

Figure 6 shows the consistency of correlation suggested by Box-Behnken method with simulation data of the EM stimulation at 10-20cm far from the wellbore. The adjusted R^2 value that is 0.96 confirms the consistency of the correlation with the simulation data.

Figure 6

Equation 22 represents the relevance between the sensitivity of the EM wave power loss and seven affecting parameters. Similar to Equations 20-21, the most affecting parameter is the salinity of brine water. The frequency and the brine water saturation are the next affecting factors. All of the factors improve the power loss density of EM stimulation.

$$PowerLossDensity(10-20) = 22.6463 + 20.5467 \times S_w + 23.2719 \times S + 23.175 \times F + 0.963918 \times E_o + 1.40951 \times E_r + 2.65549 \times T_i + 13.3261 \times \phi + 19.8503 \times SS_w$$

$$+ 23.1872 \times FS_w - 0.000136412 \times S_w E_o + 1.1393 \times S_w E_r + 2.53642 \times S_w T_i + 11.4381 \times \phi S_w + 23.0898 \times SF - 0.000136412 \times SE_o + 2.46676 \times SE_r$$

$$+ 0.891994 \times ST_i + 10.5972 \times S \phi + 2.85849 \times E_o F + 1.13931 \times FE + 0.897966 \times FT_i$$

$$+ 17.9403 \times F \phi + 0.000116534 \times E_o E_r + 2.85849 \times E_o F + 1.13931 \times E_r F$$

$$+ 0.897966 \times FT_i + 17.9403 \times F \phi + 0.000116534 \times E_o E_r + 0.00623108 \times E_o T_i - 2.36292 \times E_o T_r - 2.10078 \times E \phi + 1.00237 \times T \phi$$

(22)
Figure 7 shows a 3 Dimensional view of the power loss density versus salinity and saturation in different frequencies at 10-20 cm far from the wellbore. The behavior of power loss in the section of 10-20cm is similar to 5-6cm and 6-10cm. The highest power loss density occurs at the highest brine water saturation and salinity. The power loss increases at the frequency of 100 MHz, drastically. The highest power loss density at the frequency of 100MHz is almost 10 folds of the highest power loss density at the frequency of 1 kHz. The ratio of highest power loss density at the maximum and minimum frequencies at sections 5-6cm and 6-10cm obtained 4.3 and 5.4, respectively. Therefore, the dependency of the power loss density to the operating frequency increases by increasing the investigation radius.

3.4 Power loss at 20-100cm.

Figure 8 shows the comparison of actual and predicted data of the EM stimulation at the section of 20-100 cm far from the oil well. The adjusted R^2 of the prediction correlation was obtained 0.69. Hence, correlation corresponded to the section of 20-100cm shows less consistency concerning the previous sections.

Equation 23 shows the correlation of the power loss density of the EM waves concerning affecting parameters. The most affecting factor which has a higher coefficient is the frequency. It means a contrast between the affecting levels in the sections of 5-20 cm and 20-100cm far from the wellbore. It could be explained by skin law, which is shown as Equation 24 [31].

Skin law explains that the penetration depth of the EM waves highly depends on the frequency of the EM waves [31]. Penetration of the EM wave into the materials decreases by increasing the frequency. This fact becomes more important when the EM wave behaviour is investigated at further depths in the reservoir. In terms of significance, the next affecting factors are brine water saturation and salinity, respectively. In contrast to all of the previous sections, the initial temperature had a negative coefficient.
\[\delta_s = (\omega \mu \sigma)^{-0.5} \]

Figure 9 represents the power loss density at the section of 20-100cm far from the wellbore, which is the lowest one in the entire investigation region. The most power loss density at the frequency of 1 kHz is almost 0.135 watt/m³, and it occurs at the saturation and salinity of 0.35 and 0.46 g/L. In contrast to the other sections closer to the wellbore, at the lower frequency, the highest power loss density obtains at the middle of the 3 Dimensional graphs, not at the edges close to the highest salinity and saturation. It could be explained by Equation 23, which recognizes the frequency as the most effective factor in the power loss density distribution. The most power loss density happens at the frequency of 100MHz where the saturation and salinity are almost 1 and 100g/L, respectively.

Figure 9

4. CONCLUSION

A sensitivity analysis was implemented by using Box-Behnken design, the Stogryn model, and CST software to investigate the affecting parameters of the EM stimulation of the oil wells. Seven factors of the frequency, the salinity of brine water, saturation, oil dielectric constant (oil type), rock dielectric constant (rock type), and initial temperature of wellbore region. According to the 62 runs performed by the CST software, the following consequences could be concluded.

1. From 5-20cm far from the wellbore, the most effective parameter in the EM heating of oil wells is the salinity of brine water. The frequency of the EM wave and brine water saturation are the second and third affecting parameters, respectively. By increasing the distance from the wellbore, the effect of the EM wave frequency increases. From 20-100cm far from the wellbore, the most affecting factor is the frequency. The reason is the dependency of the EM wave penetration depth to the frequency. Hence, by increasing the distance of the target zone from the wellbore, the frequency becomes the most important issue.

2. At each frequency, the most power loss density happens when the salinity and water saturation tend to the maximum value. As could be seen in the 3-Dimensional figures, the increment of power loss density increases as the frequency increases to 100MHz, drastically. A weak peak could be seen when the salinity of the brine water decreases. According to the Stogryn model, increasing the salinity of the water increases the water dielectric, and increasing the dielectric constant comes to more dissipation of the EM energy. By decreasing the salinity, factors concerning non-water-related parameters appear more efficient in increasing the power loss density.

3. By increasing the distance from the wellbore, power loss density decreases. The maximum power loss density at 5-6cm section is 4300 watt/m³, while the maximum one is almost 1 watt/m³.

4. All of the input factors had a positive coefficient in proposed correlations by Box-Behnken, hence all of them enhance the power loss density of the EM wave around the wellbore. Based on the obtained results in the regions of 5-6cm, 6-10cm, 10-20cm, and
20-100 cm, the increasing wave frequency leads to more power loss. As a result, it is more efficient to implement the highest frequency possible and, there is no minimum or optimum wave frequency.

5. To the best of our knowledge, it is the first time that CST software is used to simulate the EM waves in the oil and gas industry. The obtained results are not limited to a specific reservoir condition, and as a result, it could be used as a guideline for the planning of EM stimulation projects. We do accept there are still many issues that must be investigated in this area. So, we encourage other researchers to experimentally study the affecting parameters concerning the EM stimulation.

Declaration of interest

ACKNOWLEDGMENT

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

References:

1. Taheri-Shakib, J., Shekarifard, A., and Naderi, H., “Experimental investigation of
comparing electromagnetic and conventional heating effects on the unconventional oil
(heavy oil) properties: Based on heating time and upgrading”, Fuel, 228 (2018).

2. Nasri, Z. and Mozafari, M., “Multivariable statistical analysis and optimization of
Iranian heavy crude oil upgrading using microwave technology by response surface

4. Hascakir, B. and Akin, S., “Recovery of turkish oil shales by electromagnetic heating
and determination of the dielectric properties of oil shales by an analytical method”,
Energy and Fuels (2010).

sandstone saturated with brine and nanofluids for application in enhanced oil

electrorheological characteristics of dielectric nanofluids”, J. Dispers. Sci. Technol.,

efficiency of heavy oil recovery by radio frequency electromagnetic heating”, J. Pet.

yttrium iron Garnet (YIG) Nanoparticles activated by electromagnetic wave in

12. Robinson, J., Binner, E., Saeid, A., et al, “Microwave processing of Oil Sands and

and Fuels, 23(4) (2009).

1 N(p) (2020).

2 27. Mätzler, C. and Murk, A., “Complex dielectric constant of dry sand in the 0.1 to 2

8 30. Meissner, T. and Wentz, F. J., “The complex dielectric constant of pure and sea water

11 Saeed Karami has graduated from petroleum departments of Petroleum University of
12 Technology and Tarbiat Modares University. He is now a research assistant at Enhanced Oil
13 Recovery lab, and conducts research in various research topics of chemical and petroleum
14 engineering, such as oil upgrading and waste management. A part of his research projects is
15 now published in peer reviewed journals.

16 Amir hossein Saeedi Dehaghani has received his Ph.D. from Tarbiat Modares University.
17 He is now a professor assistant at chemical engineering department of Tarbiat Modares
18 University. His research interests are Enhanced Oil Recovery and Organic scale in petroleum
19 industry. He has published more than 80 research papers in peer reviewed journals.

20 Nomenclature

21

<table>
<thead>
<tr>
<th>(P_{ave})</th>
<th>Average Dissipated Power (J/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(E)</td>
<td>Root mean square electric field (V/m)</td>
</tr>
<tr>
<td>(\varepsilon')</td>
<td>Dielectric constant (Imaginary Part)</td>
</tr>
<tr>
<td>(\varepsilon_0)</td>
<td>Dielectric constant (Real Part)</td>
</tr>
<tr>
<td>(\sigma)</td>
<td>Electric conductivity (S/m)</td>
</tr>
<tr>
<td>(\omega)</td>
<td>Radian frequency (rad/s)</td>
</tr>
<tr>
<td>(V)</td>
<td>Medium Volume (m(^3))</td>
</tr>
<tr>
<td>(S_w)</td>
<td>Water saturation (Dimensionless)</td>
</tr>
<tr>
<td>(S)</td>
<td>Water salinity (g/L)</td>
</tr>
<tr>
<td>F</td>
<td>Frequency (Hz)</td>
</tr>
<tr>
<td>------</td>
<td>----------------</td>
</tr>
<tr>
<td>E_o</td>
<td>Oil dielectric constant (Dimensionless)</td>
</tr>
<tr>
<td>E_r</td>
<td>Rock dielectric constant (Dimensionless)</td>
</tr>
<tr>
<td>T_i</td>
<td>Initial temperature ($^\circ$C)</td>
</tr>
<tr>
<td>Φ</td>
<td>Porosity (Dimensionless)</td>
</tr>
<tr>
<td>ε_{∞}</td>
<td>Optical dielectric constant of the brine (Dimensionless)</td>
</tr>
<tr>
<td>τ</td>
<td>Relaxation time (s)</td>
</tr>
<tr>
<td>ε_0^*</td>
<td>Electric field permittivity at free space that is $8.85 \times 10^{-12} , F/m$</td>
</tr>
<tr>
<td>j</td>
<td>Current density (A/m2)</td>
</tr>
<tr>
<td>μ</td>
<td>Magnetic permeability (H/m)</td>
</tr>
<tr>
<td>H</td>
<td>Magnetic field (Tesla)</td>
</tr>
</tbody>
</table>

1

Captions of Tables shown in the manuscript:

Table 1 Seven affecting factors with minimum and maximum values.

4

Captions of Figures shown in the manuscript:

Figure 1 A view of discretized port and near oil-well region with four sections of 5-6cm, 6-10cm, 10-20cm, and 20-100cm far from the center of the wellbore.

Figure 2 Predicted versus actual data of the power loss density 5-6cm far from the wellbore.

Figure 3 3-Dimensional view of the power loss density in 5-6cm versus salinity and water saturation at different frequencies.

Figure 4 Predicted versus actual data of the power loss density 6-10cm far from the wellbore.

Figure 5 3-Dimensional view of the power loss density in 6-10cm versus salinity and water saturation at different frequencies.

Figure 6 Predicted versus actual data of the power loss density 10-20cm far from the wellbore.

Figure 7 3-Dimensional view of the power loss density in 10-20cm versus salinity and water saturation at different frequencies.

Figure 8 Predicted versus actual data of the power loss density 20-100cm far from the wellbore.
Figure 9. 3-Dimensional view of the power loss density in 20-100cm versus salinity and water saturation at different frequencies.

List of figures:

Figure 1. A view of discretized port and near oil-well region with four sections of 5-6cm, 6-10cm, 10-20cm, and 20-100cm far from the center of the wellbore.

Figure 2. Predicted versus actual data of the power loss density 5-6cm far from the wellbore.
Figure 3.3 - Dimensional view of the power loss density in 5-6cm versus salinity and water saturation at different frequencies.
Figure 4. Predicted versus actual data of the power loss density 6-10cm far from the wellbore.
Figure 5.3: Dimensional view of the power loss density in 6-10 cm versus salinity and water saturation at different frequencies.
Figure 6. Predicted versus actual data of the power loss density 10-20cm far from the wellbore.
Figure 7.3 - Dimensional view of the power loss density in 10-20 cm versus salinity and water saturation at different frequencies.
Figure 8 Predicted versus actual data of the power loss density 20-100cm far from the wellbore.
Figure 9.3: Dimensional view of the power loss density in 20-100 cm versus salinity and water saturation at different frequencies.

List of tables:
Table 1. Seven affecting factors with minimum and maximum values.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Factor</th>
<th>Unit</th>
<th>Type</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water saturation</td>
<td>S_w</td>
<td>Dimensionless</td>
<td>Numeric</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Water salinity</td>
<td>S</td>
<td>g/L</td>
<td>Numeric</td>
<td>0.1</td>
<td>100</td>
</tr>
<tr>
<td>Frequency</td>
<td>F</td>
<td>Hz</td>
<td>Numeric</td>
<td>10^3</td>
<td>10^8</td>
</tr>
<tr>
<td>Oil dielectric constant</td>
<td>E_o</td>
<td>Dimensionless</td>
<td>Numeric</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Rock dielectric constant</td>
<td>E_r</td>
<td>Dimensionless</td>
<td>Numeric</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>Initial temperature</td>
<td>T_i</td>
<td>°C</td>
<td>Numeric</td>
<td>50</td>
<td>90</td>
</tr>
<tr>
<td>Porosity</td>
<td>ϕ_i</td>
<td>Dimensionless</td>
<td>Numeric</td>
<td>0.05</td>
<td>0.3</td>
</tr>
</tbody>
</table>