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Abstract. Network pricing is an effective transportation demand management scheme to
reduce traffic and control air pollution, particularly in CBDs. In this study, congested area
cordon entry and Park-and-Ride (P/R) facility use are priced for automobiles. Increase in
these prices may reduce private auto demand by impelling some of the auto passengers to
use public transport from the origin of their trips, or encouraging them to park their cars
at the P/R facilities and use buses, or pay the entrance fee and drive inside the cordon.
A Markov decision process has been devised to find an optimal policy for pricing the P/R
facilities and cordon entry in a city within a variable demand context. This process is
sensitive to weather condition (more favorable atmospheric condition allows lower prices).
It leads to a balance between the costs of pollution hazards to the public at large on one
side and the cost imposed upon auto drivers to take the next best decisions and their
travel times and costs on the other side, thus giving a resilient character to the city. The
model has been applied to the network of a large urban area and the results are analyzed.
Suggestions for further research end the discussion.

(© 2016 Sharif University of Technology. All rights reserved.

1. Introduction

The race between supply and demand of private
transportation has caused many problems, particularly
in urban areas. These problems include congestion,
pollution, and excessive consumption of the limited re-
sources and energy, which have pushed large metropoli-
tan areas into a fierce environmental degradation. It
is now well-known that to close the gap between the
supply and demand, one solution method is to manage
the demand.

Several policies have been devised for demand
management. They include granting certain privileges
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to some sector(s) of demand, imposition of prohibitive
or regulatory ordinances, and increase in the cost of
using certain facilities like parking in congested areas,
tolls on the use of highways, and taxes on car ownership
and use.

Some social costs of automobiles may be eas-
ily levied upon their owners/users through various
taxes and tolls (e.g., cost of land or maintenance of
pavements). However, many other costs are hard to
transfer to their producers (e.g., air pollution, noise
pollution, loss of amenities, and delays in traffic).
Taxing general public, or auto drivers, uniformly for
these costs is unjustifiable and unproductive, as the
cost producers do not receive the proper signal to
correct themselves [1]. Thus, network pricing be-
comes a tool for the management of transportation
systems.

Network pricing aims for several objectives, for
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example reducing congestion (as in Singapore and
Hong Kong), pollution (as in Stuttgart and Stock-
holm), and collection of revenues to invest in the
network (as in Bergen and Oslo) [2]. There is ap-
preciable literature on pricing links (bridges, tunnels,
highways, etc.), zones, and transportation facilities
(parking, etc.), but little work has been reported in the
area of simultaneous cordon and park-and-ride pricing,
to reduce congestion and air pollution problems. This
paper presents the results of an effort in this area in a
new way.

The proposed procedure starts by identifying and
defining the congestion or pollution plagued area in or-
der to price all vehicles (except the authorized) crossing
its boundary based on some pricing method. The park-
and-ride lots, or facilities, are given in the study area,
the prices of which jointly with the cordon prices are
sought in a stochastic Markovian environment of air
quality in the city so as to maximize the net benefit
of the system under study. Pricing is an interventional
mechanism; however, such intervention is considered
warranted when externalities threaten the public at
large or the environment. Due to the stochastic nature
of demand and environment, this pricing becomes
stochastic.

The need for this study stems from the need to
manage congestion, pollution, and other unwanted out-
comes of private car transportation. This is magnified
by the need to have an apparatus for governance in
large cities to contain the negative effects of auto trips
where and when it is necessary. The proposed model
is a means to give large cities the resiliency properties
they need in extreme situations [3,4].

In Section 2, a review of the literature in this area
is presented, followed by a definition of the problem in
Sections 3. The problem is formulated as a Markov
Decision Process in Section 4, where the reward matrix
components, and the transition probability matrix and
the effect of the atmospheric conditions upon it are
defined. Section 5 is devoted to the application of the
model to the large City of Shiraz, Iran. Section 6 will
shed light on the performance of the model. Optimal
policies are discussed in Sections 7. Finally, Section
8 summarizes and concludes the paper and suggests
possible future research directions.

2. A review of the literature

In the review of the literature, we try to be selective of
papers that specifically deal with pricing automobiles
for air pollution control, and not pricing transporta-
tion networks in general that cover a wide range of
objectives. Amirgholy et al. [5], based on the review of
over 100 references, discuss the matter quite extensively
under wide ranges of topics. Tsekeris and Vog [6] also
present a rather recent review of road pricing studies

and research, covering over 400 references of which
few papers have focused on the air quality and car
emission aspects of the network pricing. Khazzoom [7],
Shefer [8], Otterstrém [9], Chin [10], Joumard et al.
[11], Proost and Van Dender [12], Beevers and Carslaw
[13], Mitchell [14], Mitchell et al. [15], and Schuitema
et al. [16] are among the authors who have dealt with
the air quality.

A recent work on congestion pricing to control
emission is presented by Dai et al. [17] who emphasize
the real threat of air pollution in Chinese cities. They
present a bi-level model to trade off network efficiency
against improved air quality. Their model considers
two modes (car and bus) and they apply it on a small
hypothetical network.

Vehicular emission is proportional to vehicle-
kilometers of travel (vkt). Lyons et al. [18] show a
strong relationship between (vkt) and urban land area.
They present a model for estimating urban vehicular
pollution by using this relationship and incorporating
simple meteorological forces such as average annual
wind speed and mixing height.

Leeves and Herbert [19] use a non-linear discrete
time model to analyze the damage to the environment
by the rate of change of the pollution stock. Their
model links the economic growth to the health of
environment and pollution flows affect the stock of
natural resources in it. They discuss pollution control
strategies and show that investing in the pollution
control strategies, which employ production technolo-
gies that reduce pollution, is more effective than the
strategies that deal with the effects of the pollution
flow into the environment.

A review of the methods of road pricing is done
by de Palma and Lindsey [20], including pricing lanes,
facilities, cordon, and zones based on distances time
(flat, time-of-day, responsive), and vehicle character-
istics (type, weight, number of axles). They note
that pricing technologies are also numerous: roadside
detection, dedicated short-range communications, and
in-vehicle technologies that rely on satellite or cellular
networks. They provide clues for the choice of appro-
priate methods and technologies.

One popular, practical, and effective way of
controlling car flow in certain areas is cordon pric-
ing. This method, which is the second best method
for controlling traffic congestion and the related ex-
ternalities, particularly in mono-centric cities, forms
a significant body of the literature. May et al.
[21], Sumalee [22,23], Zhang and Yang [24], Mun et
al. [25,26], and Ho et al. [27] analyze and discuss
aspects of this method.

Amirgholy et al. [5] show the popularity and
effectiveness of cordon pricing in targeting specific
problems, including air pollution. Their conclusions
include the following: (a) Actual implementation of
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this pricing method verified that emission reduction
(leading to environmental and health improvements)
was a byproduct of the implemented scheme [28]; (b)
Public transportation alone could not reduce the net-
work congestion appreciably even in its ideal condition
[29]; (c) Paying for the roads based on the level of
use is technically successful, and tends to gain public
acceptance when introduced. Moreover, it contributes
positively to the environment [30]. They also discuss
long/short-term pricing effects, and pricing models’
methodology, limitations, and conclusions.

In our review of the literature, we have not seen
any research that considers modeling the interaction of
the operator-user-environment at a real-size network
level in order to govern network use to endure certain
environmental quality. The model of this paper aims
to help sustain urban air quality where this problem is
acute by employing a cordon pricing scheme, which en-
courages car drivers to use public transport from their
origins, or by switching to public transport en-route at
a park-and-ride facility. The operator determines the
optimal price to minimize the long-run total system
cost dynamically based on the current level of the
ambient air pollution and the stochastic variations of
the environment. This total system outcome includes
the transportation time and monetary cost, the cost to
the car drivers in choosing their next best modes, and
the benefit of reduction in the pollution cost. Such
interactive control should be an essential part of the
management of any resilient city.
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3. Problem definition

A city is potentially faced with air pollution problem,
basically caused by mobile sources. The operator of
the city network considers zoning the city for pricing
private car drivers entering these zones to encourage
them to use public transportation modes. There are
several park-and-ride facilities at the zone boundaries,
or at their proximity, which are also priced differently.
The prices are designed in increments which may be
chosen by the operator based on the level of pollution
in the city.

Pollution is detected by an index related to mobile
sources, which is chosen to be CO (Carbon Mono-
Oxide) level in this study. Depending on the weather
condition (wind speed, precipitation level, etc.), CO
level changes, so price levels of entering the cordon and
parking at the park-and-ride facilities for tomorrow are
determined based on a long-run trend of weather condi-
tion for future (using past trends) and the prevalent CO
level in the city, determined by a Lidar (light detection
and ranging) and related technologies. The public are
informed about these prices the day/night before to-
morrow through suitable means of communication (ra-
dio, television, variable signs at suitable places, etc.).

The objective of the operator of the system is,
by observing today’s CO level and by having long-
run weather forecast, to choose tomorrow’s price levels
such that the total cost of pollution and congestion
in the city is minimized in the long run. Figure 1
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Figure 1. A pictorial view of the decision process in the problem.
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shows a pictorial view of the decision and the air quality
process.

This study is concerned with short-range decisions
of the users (one to three years, which includes mode
changes). However, we will also talk about long-run
Markov process where time increments are measured
in days. Hence, it is important to note that these
two ranges for the two processes are congruent in the
sense that there are quite a high number of days in a
year. The readers may find long-term user decisions
and effects in other papers, for example Amirgholy et
al. [5].

4. The problem formulation

The problem is formulated as a Markov decision-
making system and solved for the decision variables.
The following sections set the stage for the problem
definition and formulation.

4.1. The Markov process with reward
Let X = {X,,n € N} be a Markov chain with state
space, E, and |E| = m. Suppose that transition from
state ¢ to state j, i- where 5 € FE- occurs with a
probability p(i, j), which is followed by a reward r(¢, 7)
(positive or negative). Thus, by virtue of the nature of
X, rewards R will possess a stochastic nature.

Let v™(7) be the expected value of the reward after
n transitions of the system; then:

o) =3 p(0,0) [, g) + 0" ()] (1)

Let q(i) = 327, p(i,j).r(i,j). Z-transform analysis of
Eq. (1) reveals that (see [31]) for large n’s:

v"(1) = ng(i) +v(i), 1€E, (2)

where v(i) is the asymptotic value of v™(7), when n —
oo, and:

m
g(i) = s(i.j)q(j), i€E, (3)
7j=1
and where the stochastic matrix S has elements s(7, j)
whose ith row is the limiting probability of the system
being in state j € E, starting from state ¢ € £. Then,
g(1) may be interpreted as the expected value of the
reward of the system, given that it started from state i
and has undergone many iterations, or the revenue of
the ith state, or the asymptote of v™ (7).
If the system is completely ergodic, all rows of .S
become the same, and all states would have the same
revenue, say ¢(i) = g for all i’s:

9= Wil @)

where II(5) is the limiting probability of the system to

be in state j and for large n, we may write Eq. (2) as:

v"(i) =ng+wv(t), i€E. (5)
Suppose, now, that alternatives £k = 1,2,..., K are
available for choice in each state ¢, ¢ € E. For each
k, the transition matrix, P*, and the corresponding
reward matrix, R*, are known. p*(i,j) and 7*(i,5)
are, respectively, the probability and reward of moving
from state i to state j when decision k is taken. The
operator of the system is interested in knowing the best
decision to take, in each stage (day) n and in each state
1, so as to maximize the total reward during the time
interval [0, n]. The set of all decisions for all i’s and all
n’s, {d :i € Eand n =0,1,2,...}, is called a policy.
d? indicates the alternative (number) to choose in stage
n when the system is found in state ¢. Therefore, the
problem is to find {d?} such that:

V(i) = mgxzp’“(i,j) [r*(i,5) + 0" (5)]

_ ki k n
= max | ¢"(i) + 30" (,0)0" () |
J=1
i€E, n=0,1,2, .. (6)

where ¢"(i) = Y70, p*(i,5),7" (4, §) is associated with
the respective P* and R* matrices.

Given policy {d?* = k} associated with known P*
and R*, for a limiting behavior of the system (n, large),
Eqgs. (1) and (5) yield:

m

g=q"(i) + Zpk(i,j) (i) —v(@)], i=1,2, ...,m(.7)

This is a system of m + 1 unknowns and m linear
equations, which may be solved for g and the relative
values of v()’s, assuming, e.g. v(m) = 0. Having found
the relative values of v(i)'s and g, one may now find the
optimal decision for state i and time (stage) n+1, using
Eq. (6) and v™ (i) = ng+wv(i) for large n, by maximizing
the right-hand side of the following equations over £:

g—i—v(i):m}?x{qk(i)+Zpk(i7j).v(j)}7 ieE.( |
j=1 8

Howard [31] proves that one may stop calculation if
the resulting policy is the same as the one which was
the input for Eq. (7), and hence this is the optimal
policy yielding maximum average daily reward in the
limit. Otherwise, the process is reiterated by inputting
the new policy into Eq. (7). The Howard [31] policy
iteration method may be stated as follows:
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Procedure HP:
- Step 0. Initialization. P and R are known for
various k’s. Choose an initial policy d;

- Step 1. Value determination: Find P and R
corresponding to the policy d, and compute ¢(i)’s
by:

q(i)=>_p(i,4).r(i,§), i€E. (9)
Jj=1
Then, find the relative values of v(i)’s and g by:
g+u(i) = q(i) + >_ (i, j).0(), (10)
j=1

using v(m) = 0.

- Step 2. Policy improvement: Using v(i)’s, i € E,
of the previous policy, d, find the decision &* which
maximizes:

¢" (i) + > ") 00), (11)

Jj=1
d* is the new policy.
- Step 3. Conwvergence criterion: If d* = d, STOP;

d* is the optimal policy. Otherwise, set d = d* and
go to Step 1.00

It can be shown that the value of ¢ in any iteration
becomes greater than that of the previous one and
when the procedure stops, d* has the maximum g
and average daily reward. Since the total policies are
limited in number, the procedure stops in a limited,
and in fact very low, number of iterations.

4.2. The reward matrix
Consider the case where the O/D demands are fixed
and short-run (one to several years) results are of im-
portance. Assume, further, that the short-run decision
is only mode change. Then, the reward accrued by
any air-pollution control decision k is the sum of two
outcomes: (a) the benefit of the positive air quality
change of state from i to j, 4,7 € E (determined by the
ambient air CO level), and (b) the net benefit resulting
from a lower transportation cost (travel time). The
decision is related to the change of tolls in private
automobiles entering a zone. This would affect the
drivers’ decisions on the mode choice. When the
cost to the environment is increasing because of the
stagnant air in the city, increasing the tolls will push
those drivers toward using a public mode completely or
partially (by parking at a park-and-ride transit station
to use public transportation to final destinations).
The following discussions describe the problem
environment and its sensitivity to the operator’s de-
cisions on the prices more extensively. The model
presented below is one workable model for illustrative

purposes, constructed to operate with an existing
extensive and comprehensive transportation model for
the case under study. Thus, some of its components
may be altered according to modeling needs and ap-
proaches.

4.2.1. Mode choice models
The mode choice model of this study is of a multinomial
logit type, as shown below:

U
Prﬁm:%, Vme M, and V(k s)e€P,
s TS Uk
neM (12)
where PrP™ is the probability of choosing mode m for

a trip with purpose p from origin k to destination s,
which possesses a utility U{”". M is the set of (major)
available modes (which may be O/D-specific), and P
is the set of O/D (origin-destination) pairs. The utility
function UF™ is a function of the independent vari-
ables/characteristics of the modes (e.g., travel time),
passengers (e.g., car-ownership), and trip purpose (e.g.,
work).

Tolls on private cars in crossing a restricted zone
boundary would negatively affect the utility of this
mode. Without loss of generality, we assume that
we only price auto trips originating from an origin
(O) outside the restricted zone(s) and destinations (D)
inside these zones. Extensive experiments have shown
that auto drivers with O and D outside the cordon and
their shortest paths crossing cordon boundaries prefer
to either use car and change path so as not to cross the
cordon or use public transportation from the beginning.
Thus, by computing the new shortest path travel times
outside the priced zone for the cars and the cost of using
other modes, new mode shares are computed for these
drivers. Then, the estimated reduced auto passengers
are diverted to public transit modes, or park-and-ride
system.

The portion of the total auto passengers from
origin k to destination s for trip purpose p, wy . who are
willing to pay certain toll is assumed to be an inverse-s
function of the toll, as follows:

T
Dk‘s

wh, = exp [—a( )b} , a,b>0, (13)
where 7 is the toll to enter the restricted zone, Dy, is
the shortest network distance from k£ to s, and @ and b
are two parameters of the function.

Assume, now, that y7_ is portion of the auto
demand planning to change mode and choose public
transit or park-and-ride and (1 — y;,) choose taxi
(which, in our case, is allowed to enter the restricted
zone free of charge) according to the following s-shaped
diversion curve:

T
-chs

yh, =exp [—c( )d] , ¢>0, d<0, (14)
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where ¢ and d are two parameters of the function.
(These are two suitable functional forms observed to
behave well and fit best the data obtained in a real
case, as reported in ITSR [32].)

Thus, increasing 7 per unit distance (Dg,) de-
creases wy _, increases (1 —w?} ), increases y; , as well as
yb (1—wy,), and most likely increases (1—y; ) (1—w? ),
the latter two being the share of transit and park-
and-ride, and the share of taxi from the diverted
auto demand, respectively (see Figure 5(a) and (b) for
pictorial views of these functions.)

The portion of the diverted auto demand for a
purpose p, which is absorbed by public transit or park-
and-ride system, decides to use either mode based on
the minimum of the transit time from k to s, t5_, or
equivalent park-and-ride time, t[ (=t} p p+t% 5  +
Bepr). Other diversions are feasible, but a 0/1 choice
is used here for simplicity in building a demonstration
model. In the above expression, P/R represents the
nearest park-and-ride facility on the way from k to
S, te p/R is the shortest auto travel time from origin

k to the nearest park-and-ride facility, t}, , . is the
shortest transit time from the park-and-ride facility to
destination s, and cp,g is the parking and transit fare
cost which is translated into equivalent travel time by
the conversion factor, § (inverse of the value of unit

travel time).

4.2.2. Auto operating cost

Auto operating cost is comprised of costs of auto
investment, operation, maintenance, and repair, as well
as accident/insurance cost. Let ¢ represent an average
of such cost in money units per car-kilometer. Thus,
auto operation cost per hour under decision k, Cfpa,
may be calculated as follows:

Copo = (X1 = XH), (15)
where X ¥ is the auto-kilometer traveled in the network
per hour (of, e.g. morning peak) under decision k, and
k =1 is the do-nothing alternative.

4.2.3. Equivalent travel time monetary cost

Let ¢; be the value of one person-hour travel time and
Ct’” be the equivalent monetary cost of total non-transit
travel time under decision k. Then:

Cf = (V' =Y, (16)
where Y* is the passenger-hour of all vehicles, except
bus, under decision k and k£ = 1 is the do-nothing
alternative:

Y= > amymk (17)

meM
mFEbus

where a™ is the average occupancy rate (passenger per

t = d(p)

™

Auto demans, ¢
+
-

%

q* \\&‘*‘k
0 >
Pk phtl P
Toll cost, p

Figure 2. Theoretical and experimental estimates of the
imputed cost upon the car drivers by toll imposition.

vehicle) of mode m and Y™ is the travel time of mode
m under decision k.

Let Y* be defined as the public transit (bus) total
travel time (in passenger-hours) under decision k; then,
the equivalent monetary cost of the public transit travel
time spent in the network, Ct’”"b, may be written as:

Cf = (Y =TH). (18)
It is expected that, in general, Yi>Y* and V' <Y,

4.2.4. Cost of reduction in car passengers’ utilities
Let @ be the maximum number of private cars for an
O/D pair whose demand function is shown in Figure 2.
Then, an estimate of the cost of the car passengers to
change car to an inferior mode, when (p, ¢) changes to a
new equilibrium (p*, ¢*), is the reduction in Consumers’
Surplus (CS) as follows:

p" p*
AC.s :/ q.dp 2/ d(p)dp. (19)
0 0

This is because at price p, ¢ passengers were willing
to drive their cars. When price is increased to p +
dp, demand of automobiles decreases to ¢ — dg and
dq of demand is diverted to their second best modes.
Thus, dq passengers who were willing to pay price p to
use their cars are now diverted to get off their cars by
the price increase from p to p + dp. An approximate
measure of AC.s may be experimentally found by our
transportation model (described below) according to
the following relation, as shown in Figure 2:

»
ACE =3 "(1/2)(¢" + ¢*THF - P,
k=1
p’ =0, (20)

where ¢* is the demand for private car (in this study,
from an origin to a destination inside the cordon) when
the price to enter the cordon is p* under decision k.
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4.3. The transition probability matrix

There are three factors affecting the Markov transition
probabilities, each having a stochastic effect. They
are: (a) ambient air pollution (CO) level as a result of
(basically private) vehicle emissions; (b) atmospheric
turbulences (winds, precipitations, etc.); and (c¢) the
operator’s decision (pricing automobiles entering the
restricted zones).

At a regional level, there is a recursive equation
postulated between the pollution concentration, P,
pollutant emissions, F, and atmospheric phenomena,
A, as follows [33]:

P(n) = f(P(n—1),E(n), A(n)), (21)

where n represents day n. That is, the concentration of
the pollution level in day, n, is only dependent on that
of the previous day (a Markov property) as well as the
pollution emitted by automobiles (presumably, under
the influence of the operator’s decision) in this day,
along with the decision of the nature (the atmosphere)
on the wind speed and precipitations (as well as
temperature, humidity, etc.).

If there is no weather influence upon the ambient
air, any state (of air pollution) will either remain as
it is or turn into another worse condition by the car
emissions. The transition probabilities of moving the
state of the system from ¢ to 7, j > 4, under decision
k, p*(i,7), may be estimated by knowing the lifetime
(duration) distribution of any state of the system. One
suitable distribution for lifetime of state, T;, is negative
exponential, as follows:

fT,- (t) = eieieitv

Let E = {(1 = healthy),(2 = tolerable),(3 =
Harmful)} be the state space of the ambient air quality.
We are interested in the probability of the change of
state within a given time period, e.g. a 24 hr day (end
of day to end of day).

In a meso-scale, total automobile emission of
pollutants is a function of total vehicle-kilometers
per hour [18]. For simplicity, vehicles are divided
into two public and private categories and for their
overwhelming roles in the travel market, buses and
automobiles are taken as the representatives of these
two categories, respectively. Thus, we concentrate on
bus-km and car-km (or their equivalents). For X(n) as
the (equivalent-) car-km and X’(n) as the (equivalent-)
bus-km traveled in day n, one may write the parameters
of the transition probability distributions as a function
of these two influencing variables as follows:

t>0, 6,>0, i€ekFE. (22)

0i(n —1,n) =G, [X(TL),X’(TL)], (23)

where 6;(n —1,n) is the parameter of lifetime probabil-
ity function of state (air quality level) i of the system,

influencing its change from (end of) day n — 1 to (end
of) day n, which is a function of the vehicle-kilometers
traveled in day n, X(n), and X'(n).

Suppose that the change in bus-kilometers trav-
eled is nearly constant and is of little importance in
the measurement of the quality of ambient air. After
all, the decision-makers are to shift the demand from
cars to buses (or, in general, public transport), which
is presumably friendlier to the environment than cars.
So, Eq. (23) is simplified as follows:

fi(n —1,n) = G;[X(n)], (24)
or, in easier notations, as:
0; = Gi(X). (25)

As a first-degree approximation, it is assumed that for

the three-state case under consideration:
0;=a;X+0b, 1=1,2, (26)

where a; and b; are the parameters of the model for
state i € E, i = 1 and 2. Then, from Egs. (22) and
(26), we have:

fr,(t) = (a; X + b;)e” (@XF0)t ¢ >, (27)

It is expected to have a; > 0 and 8; = a;x + b; > 0 for
x > 0. Thus, for this case (of traffic influence alone),
one may write (see Appendix A):

p(1,1) = e~ (motbe),

CLlX + bl
1,2) =
p< ’ ) (az—al)X—f—(bg—bl)
[e_(a1X+b1) _ e—(azx-l'bz)]

?

p(173) =1 _p(17 1) _p(172)7
p(2,2) = e (2 X0,

p(2,3) =1 - (@XF0),

p(3,3) =1. (28)

Note that p(i, j)’s are functions of X, which is itself a
function of the operator’s decision £k = 1 to K. Given
k, X (k) would be known, and so would be p*(i,7)’s.
Atmospheric phenomena (winds, rain, snow, etc.)
are very effective factors in ambient air quality. The
complex cause-and-effect relationships among basically
unknown variables and parameters governing the hap-
penstance of these phenomena leave these incidents as
stochastic processes. Let w; be the probability that
an atmospheric event would improve the ambient air
quality by j—1 states regardless of the traffic condition.
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Then, for a three-state problem, wi,ws, and ws may
be envisaged as light, medium, and heavy atmospheric
changes, and:

> wi=1. (29)
Jj=1

Suppose, now, that p(i,7) is the transition probability
of going from state i to state j under the influence of
the atmospheric incidents. Assuming independence of
atmospheric changes and air quality, and prompt effect
(in matters of few hours), as well as approximating this
effect to happen at the beginning of each day, one may
write:

P(1,1) =p(1, 1)(wy + wy + ws) + p(1, 2)(wy + ws)
+p(1,3)(ws),

P(1,2) = p(1,2)(w1) + p(1, 3)ws,

P(1,3) = p(1,3)wr,

P(2,1) = p(2,2)(w2 + ws) + p(2,3)(ws),

P(2,2) = p(2,2)(w1) + p(2,3)(w2),

P(2,3) = p(2,3)(w1),

P(3,1) = p(3,3)(ws),

P(3,2) = p(3,3)(w2),

P(3,3) = p(3,3)(w1), (30)

where p(i,j)’s are as given in Eq. (28).

Thus, the Transition Probabilities (TP) may be
computed depending on the tolls levied upon the
automobile users in entering the congested zone(s),
which changes the composition of private/public traffic
in the network. This process is administered as follows:

Procedure TP:
a. Choose prices for entering the congested zone(s) and
parking at a park-and-ride facility (k);

b. Assign the O/D demand under price k to the
network according to procedure AS;

c¢. Compute the policy & outcomes, including total car-
km z*, based on procedure OC;

d. Compute the parameters of the lifetime distribution
function under price k, 6% = a;2* +b;,i = 1,2,.... 3;

e. Compute the transition probabilities of state 1
to state j in the study zone(s) under price k:
PH(i,j) = f(07,65,w;).0

iV

Procedure AS:

The traffic assignment routine is an integrated model
built for the case under study in EMME/2 environ-
ment by the Institute for Transportation Studies and
Research of Sharif University of Technology [34].

This model constitutes two parts: demand esti-
mation and traffic assignment. The first part receives
the independent variables at zonal level and performs
the following tasks by trip purpose: trip production
and attraction, trip distribution, and mode choice.
To adapt this model for the problem at hand, the
diversion models of Eq. (13) are employed to compute
the remaining trips of each trip purpose to be made
by automobiles. The diversion models of Eq. (14)
compute the portion of the diverted auto demand that
will be attracted by the transit mode, either directly
from the origin of the trip or through the nearest
P/R facilities, whichever is less costly, as described
in Section 4.2.1. The rest of the diverted auto trips
are absorbed by taxis. This process prepares the O/D
demand by various available modes of travel in two
forms of equivalent passenger car demands for the road
network and passenger demand for the transit network.

Traffic assignment routines start by the transit
assignment using Optimal Strategy algorithm [35].
This prepares the stage for the assignment of passenger
cars according to multi-class user equilibrium [36,37].
The travel times are updated for the transit assignment
and this procedure is re-iterated to convergence. The
results (link volumes, travel time components, kilo-
meters travelled, fuel consumed, emissions of CO and
other pollutants, etc.) are summarized and reported in
detail in 15 specifically designed tables.

Procedure OC:
The outcomes of Procedure AS that are of particular
importance in this study are non-transit passenger-
hour (Y'*), transit passenger-hour (Y*), passenger car-
kilometer (X'*), and liters of fuel consumed (L*),
where k represents the decision on price level. The
first two quantities would give the equivalent monetary
cost of travel times spent in the network (Egs. (16)
and (18)). The third quantity would be used in the
computations of auto operating cost (Eq. (15)), and
the fourth may be transformed into its monetary value.
Moreover, increasing the travel cost for car drivers
would make them worse off by reduction in consumers’
surplus (Eq. (20)). Hence, this cost should also be
added to the previous ones to account for the worse
conditions of the car drivers as a result of our actions.
The benefit accrued by our decisions would be the
reduction of the emitted pollutants (here, CO) that
is expected to outweigh the aforementioned costs.
Appendix B presents an overall view of the model
in three parts. It shows how different modules interact.
Figure B.1 in part (a) of Appendix B shows the
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flowchart for the Markovian decision-making proce-
dure. It uses two important inputs: the Reward Matrix
(the output of Figure B.2 process in part (b) of the
same appendix) and the Transition Probabilities for
the specified toll level. Figure B.2 contains Procedure
AS, which computes the flows of different modes of
transportation for any given toll level, and Procedure
OC, which acts on this information to compute the
reward matrix. The transition probabilities are com-
puted in Figure B.3 of part (c) of this appendix through
Procedure TP. The input to the flowchart in part (c)
comes also from part (b) in the form of the (equivalent)
car-kilometer travelled.

5. Case study

The case under study is the City of Shiraz with a
population of 1.3 million in 2004. The study area
has 189 zones, of which 156 zones are internal and 33
zones external, related to the surrounding areas and
outside world. These zones are grouped based on socio-
economic characteristics and administrative boundaries
into 15 internal regions and region 16 constitutes the
external zones. Figure 3 shows the 156 internal zones
and the respective 15 regions.

The O/D demand belongs to the design (morning
peak) hour of a typical working day in 2006. The
transportation system of the study area is comprised
of two networks of roads and public transit. The road
network has 1078 nodes and 1611 two-way and some
one-way links. Figure 4 shows this network. The public
transit network is basically that of bus transport with

Legend:

Region boundary
Zone boundary
12  Region no.

Figure 3. The study area regions (bold lines) and zones
(light lines). Region 1 boundary forms the cordon.

Legend:
—— Roads and streets
— CBD

|| ® Park-and-ride facilities

Figure 4. The study network, cordon area, and
park-and-ride facility locations (dark dots).

74 bus lines and 382 conventional buses. The street and
road network has 17 types of links, with FHWA type
of travel time functions (of the form ¢t = a + bz?; a and
b are two link-dependent constants). The signalized
intersections have the respective delay function of
Webster type and the un-signalized intersections have
a delay function of their own. The traffic assignment
routines are implemented in EMME/2 environment, as
discussed before.

5.1. The priced area

The boundary of the area to be priced for the use
of private automobiles is assumed to be known. An
analysis of the zonal trip attractions, with a parallel
analysis of morning peak hour link congestion measure
(travel time to free-flow travel time ratio), as well
as expert opinion defined the city CBD (zones 1 to
25, constituting region 1) for this purpose, which
has historical characteristics. This area is shown in
Figures 3 and 4.

An independent study [38] defined the 10 park-
and-ride bus terminals shown in Figure 4 to facilitate
the trips of those passengers who preferred to park at
these terminals and use the bus transit systems to reach
the central city.

5.2. Diversion mechanisms

A key instrument in any pricing systems is a mechanism
that is able to foresee the effect of the price level on the
decisions of the users. Anindependent study [32] on the
willingness-to-pay of a sample of the users of a central
city network resulted in the parameters of the model
in Eq. (13), for the different trip purposes, as given
in Table 1. wy_ is the percent of total demand that
are willing to pay the unit price of 7/Dys, and use the
road network by private automobiles. Total demand is
measured at zero price level, and the unit price is in
terms of units of money per unit O/D distance (Dys).
Superscript p represents the trip purpose, (k,s) the
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Table 1. The estimated parameters of models wf_ in Eq. (13) and 3%, in Eq. (14).

Trip purpose (p) Wiy = eXp [a(DLks)b] Yks = XD [c(/kas )d]
a(x10™%) b c d
Work -1.629 2.057 -58.994 -1.086
School -0.090 2.708 -144.975 -1.334
Shop -5.604 1.758 -96.777 -1.248
Recreation -1.687 2.297 -162.060 -1.400
Personal business (and others) -11.262 1.602 -243.049 -1.465
Non-home-based -11.803 1.406 -59.931 -1.128

— Work

--------- School

-------- Shop

77777 Recreation

~~~~~ Personal business
---- Non-home-based

Portion of auto demand remained

200 250 300 350 400
Toll price (Tomans/km)

(a) Willingness-to-pay of the auto demand to
remain in auto for various trip purposes.

1.0,
£ 0.9

15

2 0.8

]

—g = 0.74

< w0

g § 0.6 4

T+ 0.5

25 7 — Work

% Q: 041 A - School
w203y 4 | Shop

e i Recreati

a* 02/ ¥ | ecreation

= Personal business
5 014 ¢ ---- Non-home-based
A 0.0

0 50 100 150 200 250 300 350 400
Toll price (Tomans/km)

(b) Portion of auto demand diverted to public
transit and park-and-ride as a function of toll
price for various trip purposes.

Figure 5. Demand diversion models.

O/D pair, and a and b are the parameters of the model,
calibrated by the observed data. Figure 5(a) shows the
pictorial views of the models in Table 1.

Table 1 also shows another set of models shown
in Eq. (14), y1,, which is mathematically in the same
form of model (13) except that in this case, ¢ > 0 and
d < 0. For each trip purpose p and O/D pair (k,s),
this quantity is the portion of the unwilling drivers to
pay certain toll levels who are attracted to the public
transportation systems. These calibrated models are
shown pictorially in Figure 5(b).

To represent the effect of tolls 7 upon the travel
costs of the car drivers willing to pay 7 to enter
the priced zone, the travel times of all links heading

inside the priced zone are increased by the travel time
equivalent to the toll:

tij =t +7, (31)

where t;; is the average travel time of link (i, j) pointing
into the priced zone boundary.

The cost of parking at a P/R bus terminal (¢) is
assumed (for simplicity) to be constant and equal to a
fraction (a) of the priced zone entrance fee (7):

o=ar, 0<a<l. (32)

The fraction a may depend on the P/R sites based on
one or several reasons: value of land of the terminal,
proximity to central city, capacity of the parking
facilities, etc. This relation of parking fee with the
entrance toll helps to more easily understand the effects
of these costs upon the auto drivers’ decisions. Clearly,
one should make sure that h¢ < 7 appreciably for some
reasonable hours of parking, h.

5.3. Analysis of variations in parking and
entrance fees

The following experimental results are for short-range
demand variation (only mode choice changes). The
transportation costs in this study include: (a) private
car operating costs; (b) passenger travel time cost of
private and public means of transportation; (c) cost of
fuel (gasoline and diesel); (d) the cost of the next best
choices for the private car passengers; and (e) the cost
imposed upon the environment. The cost of decision k
regarding the operation costs of the private cars is given
in Eq. (15), where ¢ is estimated to be 166.7 Tomans
of 2006. The monetary value of the travel time for
the automobile passengers (C,f‘) and public transport
passengers (Cf ) in Egs. (16) and (18), respectively, is
about ¢; = v~ ! = 800 Tomans/hr.

The cost of fuel may be estimated by the unit
cost of the fuel multiplied by the quantity of the fuel
consumed in the design hour. The latter quantity
is computed for each vehicle type and each link of
the network by a function which is dependent on
the average speed of the traffic in the link and the
fuel consumption rates of particular vehicle types (in
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Table 2. The cost components for various cordon prices, and « = 0.05 for morning peak hour (1 Toman = 10 Rials).

Cost components (million Rials)

Toll Toll P/R . Auto Transit Consumers’ Total
level cost fee Gasoline Diesel Vehlc}e travel travel surplus cost
(Rls.) (Rls./hr) operation time time reduction
1 0 0 0 0 0 0 0 0 0
2 5000 250 -1 0 -51 -6 1 250 193
3 10000 500 -1 4 -126 -7 24 453 347
4 20000 1000 -12 5 -202 -15 7 776 629
5 30000 1500 -40 6 -248 -35 103 1033 819
6 40000 2000 -70 7 -294 -85 125 1237 920
7 50000 2500 -102 7 -343 -133 144 1390 963
8 60000 3000 -137 12 -395 -182 152 1499 949
9 70000 3500 -163 13 -443 -215 163 1575 930
10 80000 4000 -173 13 -454 -232 176 1631 961

liter/km). The prices for gasoline and diesel at the
time of this study were 300 and 150 Tomans/liter,
respectively.

A sensitivity analysis of the fraction of « in
Eq. (32) is performed to investigate the effect of
this parameter on the above-mentioned transportation
costs. For the alternative policies ¥ = 1 to 10
corresponding to entrance tolls of 0 (do nothing),
0.5,1,2,...,8 thousand Tomans and parking fee frac-
tions of @ = 0.00,0.025,0.050,0.100,0.200, and 1.000
(equivalent to “1.000”), the traffic assignment routine
has been run and the transportation system operation
characteristics are noted. Figure 6 shows important
information in this regard: the demand for P/R
facilities shows a better behavior for a = 0.05. For
a = 0, increase in the entrance toll will increase this
demand and for o = 1.0 (or greater), no one parks at
these sites. For interim values of «, increase in toll level
creates a bell shaped demand level for P/R sites. The
value of @ = 0.05 provides P/R demand peak in the
middle of reasonable cordon price range, creates a good
level of competition between the alternative decisions,
and offers acceptable price for the P/R facilities per
hour of parking.

)
e
(=2
[=]
s

Demand for P/R (persons

il b

1 2 3 4 5 6
Toll levels

-7 4
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Figure 6. Demand for park-and-ride facilities as a
function of a.

6. Traffic assignment results under different
toll levels for the short-range case

The output of the traffic assignment model (Procedures
AS and OC) for the case under study for different
toll levels would provide the reward matrix for the
Markovian decision process and pave the way toward
the application of the dynamic cordon pricing (policy
iteration) method mentioned at the end of Section 4.1.

Table 2 shows the results of computation of the
cost components for a = 0.05. Figure 7 shows
the relative values of the cost components for the
transportation system. These values are computed
as follows. Let Z' be the cost component Z (for
example, gasoline cost) for the toll price ¢ (=1 to 10),
where toll level 1 is equal to zero (the do-nothing
alternative). Let DZ' = Z' — Z'. Normalize the values
of DZ' by dividing them by the respective maximum
(minimum) values over i, DZl/EactDZ] where Ea:t =

Max;(Min;) depending on whether Z is a cost Wthh

—o— Gasoline (x-1.73)

—s¢— Diesel (x0.13)

—o— Auto travel time (x-2.32)

—o— Public transport passangers’
travel time (x1.76)

100 -

—a— Auto operation (x-4.54)
—+— Reduction of consumers’
surplus (x16.31)

= D [e.
==} =} [=)
L ! 1

(DZ'.X 100)/ max; DZ7
)
S

(=}
E

5 6 7 8 9 10
Toll levels

—-
N
w
i

Figure 7. Variation of the cost components of the total
cost of the network.
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Figure 8. Variation of modal trips by toll increase.

increases (decreases) with the increase of the toll (for
example, diesel (gasoline) cost with DZ* > (<)0). The
general trends of variation of the cost components of
the system are shown in Figure 7, which are s-shaped
with respect to the increase in toll level. The same
trends exist for other operating characteristics of the
system as well, as shown in Figure 8, for the auto and
bus passenger trips. These types of variation are in
agreement with our general feeling that there are limits
to any changes.

7. Optimal strategies for cordon pricing for
the short-range case

We are, now, in a position to run the proposed dynamic
pricing model to find the optimal strategies for the
ambient air pollution control for the city under study.
We do this, first, by unifying the decision outcomes
under a given weighting scheme for the different bodies
involved to get the reward matrix. Then, we show how
the decision would change if these weighting schemes
and the surrounding forces (seasons) change.

Any toll level k will change the state of the
system from i to j and such changes continue over time
particularly with the influence of externalities such as
atmospheric conditions. Change of state ¢ to state
j in the system, in a period of time (say, a day),
due to decision k, results in a reward of R¥(i, ). In
what follows we define an example for demonstration
purposes.

We assume the outcome of the decision & in the
reward function to be attributed to two major interest
groups. Each outcome has an importance, or weight,
that we show by w:

(a) The operator outcomes (including changes in the

Table 3. Values of w;’s in Eqgs

consumption of the limited resources of gasoline
and diesel fuels, G* and D*, respectively) with
weight w,., and

(b) The public outcomes with weight w, =1 — wre.
The public outcomes may, in turn, be classi-
fied into two subgroups:

(b.1) The general public outcomes (including the
changes in the public health effects) in state
j, H? with weight w,,, and

(b.2) The users of the network outcomes with
weight w,,.

The latter may be divided into two new categories:

(b.2.1) The yearly operation cost, which in-
cludes the distance traversed by the
automobiles in the network (propor-
tional to the monetary cost of travel),
Vk*: the travel time spent by the
public vehicle passengers, 7p*; and
the travel time spent by the non-
public vehicle passengers, Tmnp*; all
with weight w,,, and

The reduction in the welfare of the
automobile occupants, CS*, which
may be interpreted as users’ capital
cost, considered with weight w,..

(b.2.2.)

R*(i,7) =wre.(G*+DF)+w,p, .(HY)
—l—wuo.(ka +Tp"+Tnp")

+ Wye (CSF). (33)

All policy /state-related variables are scaled in the
range of [0, 1] for clear reasons.

To run the model, we need some input data.
Table 3 shows the values for w;, a;, and b; in Egs. (27)
and (30) for 3 seasons of the year. (There was no
observation for summer.)

The policy iteration method of Howard [31] has
been run for various values of w,. (or wp). In each
case, the value of w,, is increased gradually from
0.00 to some appropriate value to see some notable
differences in the results. These results are summarized
in Table 4 for various values of w,.. This table, also,
shows the optimal policies for the three seasons, for
various values of w,. and wp, (and therefore, w, ) levels,
to show how the optimal decisions change. Figure 9

. (30), and a;’s and b;’s in Eqgs. (28).

Spring

Autumn

Winter

j 1 2 3 1
w; 063 032 005 055

2 3 1 2 3
0.39 0.06 0.74 0.33 0.03

a1 = 1.86L — 06, ax = 7.74F — 05, by = 0.9, b, = —0.005 for all seasons.
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Table 4. Toll price level for different cost component weights, air quality states, and seasons™.

Weight Season
wre  wpn Wae Winter Autumn Spring
Wuo  Wes 1=1 =2 =3 1=1 =2 =3 1=1 =2 =3

0.50 0.00 0.13 0.38 2 2 2 2 2 2 2 2 2
0.41 0.18 0.10 0.31 2 7 2 2 2 2 2 7 2
0.41 0.19 0.10 0.30 2 7 2 2 7 2 2 7 2
0.39 0.22 0.10 0.29 2 9 2 2 7 2 2 7 2
0.39 0.23 0.10 0.29 2 9 2 2 7 2 2 9 2
0.38 0.24 0.10 0.29 2 9 2 2 7 7 2 9 2
0.38 0.25 0.09 0.28 7 9 7 2 9 7 2 9 7
0.37 0.27 0.09 0.27 7 9 7 2 9 7 7 9 7
0.34 0.32 0.09 0.26 7 9 7 7 9 7 7 9 7
0.30 0.40 0.08 0.23 9 9 7 7 9 7 7 9 7
0.29 0.43 0.07 0.21 9 10 7 7 9 7 7 9 7
0.28 0.44 0.07 0.21 9 10 7 7 9 7 9 9 7
0.27 0.47 0.07 0.20 9 10 10 7 9 7 9 10 7
0.25 0.50 0.06 0.19 9 10 10 7 9 7 9 10 10
0.25 0.51 0.06 0.18 9 10 10 9 9 7 9 10 10
0.24 0.52 0.06 0.18 9 10 10 9 9 10 9 10 10
0.23 0.55 0.06 0.17 9 10 10 9 10 10 9 10 10
0.16 0.68 0.04 0.12 10 10 10 9 10 10 9 10 10
0.14 0.72 0.04 0.11 10 10 10 9 10 10 10 10 10
0.11  0.79 0.03 0.08 10 10 10 10 10 10 10 10 10

*2=1,2, and 3 = healthy, tolerable, and harmful ambient air quality states.

w; = weight/importance of outcome j = re (resources used), ph (public health), u (user-related),

uo (user operation costs), and uc (user surplus reduction).

shows these results pictorially for a range of values for
wre(= 0.00,0.25,0.50,0.75,1.00) and the three states
(1 =1,2, and 3). For each combination of the values of
these two parameters, the optimal policy, or toll level
(k* = 1,2,...,10) has been found for each of the three
seasons (spring, autumn, and winter) for the range of
wph, (0.00 to 1.00). The following conclusions may be
drawn from the 15 figure cells (i,w,.) of Figure 9:

a. Increase in wp, (weight of public health effects)
results in higher tolls;

b. If the environmental quality is high (i = 1), the
optimal policy suggests lower tolls to minimize the
cost levied on the car passengers, unless wyy, is high;

c¢. When environmental quality reaches a lower level
(i = 2), the optimal policy suggests higher tolls in
much lower values of wp;, to prevent the incident of
lower quality environment (i = 3);

d. For unhealthy environmental quality (i = 3), lower
toll levels are optimal to prevent higher cost of con-
sumer surplus together with higher environmental
cost, unless wpy, is high to suggest higher tolls;

e. These policies are different for different seasons
(with different probabilities and intensities of wind
and precipitations). In winter, with higher inversion
cases, higher tolls are suggested for lower wp’s.
This happens in spring in higher w,,. In autumn,
when the probability and intensity of wind increase,
to take more strict actions (higher tolls), one
requires higher wpy.

8. Summary and conclusions

Consider a city that faces potential air pollution prob-
lem from mobile sources. The congested zones of the
city network are encircled by cordons which are priced
for private car use entering these zones, to encourage
these car drivers to use public modes of transportation.
There are several park-and-ride facilities around the
zonal boundaries, which are also priced differently. The
prices are in increments, which may be chosen based on
the level of pollution in the city. This paper presents
a model to help the city government to dynamically
decide on the price of using the network facilities
in the congested zones, to curb the pollution level
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Figure 9. Pictorial representations of optimal toll levels for different public health weights (wpn) and different pairs of

resource weight (w,.) and air quality level (i) for the three seasons under consideration.

The problem is formulated as a Markovian
decision-making problem in which the state space is the

optimized.
Ambient air pollution is detected by (for example) quality of the ambient air in the city. The transition
matrix depends on the network flow which affects it

Lidar. Weather condition (wind speed, etc.) is known
by past data for each season. Depending on the weather negatively and the weather condition (wind) of next
condition, pollution level changes. Hence, price levels day which may affect it positively. The background
of entering a cordon and parking at the park-and- probabilities of state space transition depend on the
ride facilities for tomorrow are determined based on season. The reward matrix takes into account user
these factors. The public are informed about these travel time costs, private vehicle operating costs, fuel
prices the day/night before by variable signs at suitable costs, and the cost imposed upon the private car
places, internet, automatic communication system, passengers to choose their next best options, as well as
the cost imposed on the environment by air pollution.

such that the long-run net benefit of the decisions is

etc.
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The purpose of the model is to help contain the latter
part of the total cost (that is, the air pollution cost
to environment) by appropriate cordon and park-and-
ride pricing. These cost items are computed by an
integrated transportation demand and multi-class flow
model. Optimal long-run pricing decisions are found
by policy iteration method of Howard [31], which
determines tomorrow’s optimal prices of cordon and
parking facilities for the operator of the system when
the operator determines today’s (end of day) ambient
air quality level.

The model has been applied to a real network and
the results have been discussed and summarized at the
end of the previous section of this paper.

Fruitful future research directions may include the
following: (a) Real-day decision making by real-time
weather forecast (instead of seasonal weather forecast
for a steady-state condition); (b) inclusion of time-of-
day flexibility and elasticity of demand in the problem;
and (c) inclusion of longer-run user decisions, such as
trip production, in the process.
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Appendix A

The transition probability matriz
Suppose there is no weather influence upon the ambient
air and assume life time of state i, T}, is distributed as
negative exponential, as in Eq. (22), with mean and
variance:

E|T) =6, Var[T}] =62

K3 2

(A1)

Then, after any time unit (stage), any state (of air
quality) will either remain the same or turn into
another worse condition. The transition probability of
the state of the system turning from ¢ to 7, 7 > ¢, under
decision k, p*(i,j), may be computed as shown below:

p(1,1) = Pr{Ty > 1} = e 0,
p(1,2) = Pr{Tl +Ty > 1Ty < 1}

= 1 (6_91

0y — 6,

p(l,S) =1- p(lv ]-) - p(172)7

_ 6—92)

b

p(2,2) = Pr{ly, > 1} = e %2,
p(273) =1- p(27 2)7

p(3,3) =1. (A.2)
Note that p(i,7) =0, for i > 5, 4,7 =1,2,3.

Replace #ls in Eqgs. (A.2) by the corresponding
expressions in Eq. (26) to get what are given in Egs.
(28).

Appendix B

The flowcharts of the proposed model

(a) The flowchart for the Markovian decision-making
model (Procedure HP) (Figure B.1).

(b) The flowchart for the reward computation pro-
cedure (Procedure AS and Procedure OC) (Fig-
ure B.2).

TF™(r) is total trips from origin &k to
destination s by mode m for trip purpose p
when toll price is 7 for the cordon; O is set
of zones outside cordon (including P/R zones);
I is set of zones inside cordon; m € M is
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several other modes}; p is trip purpose; and ~

{auto (a), bus (), taxi (¢), and others (o) including

| Choose d = (ki) = (k1 kay orns k) | (zx) next to different relations represent the equa-
1 tion numbers in the text (to build relations with
Gompute (1) = S, p (5 7) 7 (), i the discussions in the manuscript);
v (¢) The flowchart for the transition probability com-
Solve for v(i) and g, knowing P and R, and v(m) = 0: putation (Procedure TP) (Figure B3)

g+ v(i) = ¢" () + XLy p" (4, 5)-v(5)

v

Find k; (for all 7) knowing v(1): zF

maxj, {qk(i) + 2_7,'":1 Pk(i7j)~v(j)} ‘

LN 0 @ ===k > 0 =aict +bi, i=1,23

Yes

Figure B.3. The flowchart for the transition probability
computation (Procedure TP).

Figure B.1. The flowchart for the Markovian decision-
making model (Procedure HP).

Zonal (1) trip production (T P) Trip distribution models by
Zonal independent variables || and attraction (T'A) models by |4 trip purpose (Fratar method
trip purpose (p) : TPip and TA? using TPF, TA?): T{;
Mode choice
For all (k,s) € P, Vk €0, Vs € I, and m = a, compute Toll is T < model:
wy () ~ (13) and y (7) ~ (14), then do simultanously: PrP™ ~ (12)
s s \T) ™~ ks
Reduce auto trips to wa .wim(ﬂ')
Increase taxi trips to 77 (1 — w? (7)) (1 — ¥ (7)) v
If 2 < t¢ + 1t + BC then: N , N
ks = 'k.P|R P|R.s P|R» pn _ pm
Increase bus trips by TP e .(1 — w} (7))vh (1) < T (o) = Ty, Py,
Else:
Increase (k, P|R) auto trips by TFe. (1 — w! (7)) v ()
Increase (k, P|R) bus trips by TF<. (1 — w? (7)) v (7) »| TPM(7), Y(k,s), Yp, Ym, VT

v

Assign public transit trips based on optimal Compute the rates of O/D trips for
strategy algorithm, with fleet size adjustment, the non-transit modes of travel
based on current link travel times.

v

Find equivalent bus pce, and compute the »
average travel times of the links of bus lines
Estimate new link volumes and travel times Assign the non-transit mode demands (on
and redo assignments until some travel time |q] the top of the fixed route transit demands)
convergence using a multiclass UE procedure.

Procedure AS

1 __________________________________________________________________________ ]
Procedure OC ¢ l l

Y* is non-transit L* is Fuel e - hok
L Y% is buss pass-hr pass-hr consumption oIS veli-km
v v v v
ok~ (18) ck ~(16) C% is Fuel cost C(I—fpa, ~ (15)

CO(3,7) ACS* ~ (20)

Figure B.2. The flowchart for the reward computation procedure (Procedure AS and Procedure OC).
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