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Abstract 

In this paper, the inventory control and price discount problem for perishable products with price and 

age-dependent demand is investigated. The seller adjusts prices to influence demand and optimize 

profits through determining discount points, especially discount start time. A nonlinear mathematical 

model is proposed to find optimal order quantity, discount points, and prices before the product's 

expiration date to maximize profit. The developed model provides the number of discounts such that 

the shortage will not be allowed before the expiration date. It is observed that determining a proper 

discount start time provides an optimized sales plan with higher profit. Moreover, the particle swarm 

optimization (PSO) and the genetic algorithm (GA) are applied to solve the problem. The Taguchi 

approach is used to find optimum control parameters of PSO and GA. To guarantee the validity of 

PSO and GA, the nonlinear model is solved by the BARON solver in GAMS software. The 

performance of the algorithms is evaluated based on the real values of parameters for two perishable 

products (i.e. Cheese and Mayonnaise Sauce) and some random test problems. The computational 

results demonstrate that the proposed GA outperforms the PSO algorithm.  

Keywords: Inventory control, Price discount, Perishable products, Particle swarm optimization 

algorithm, Genetic algorithm 

mailto:s_emami@nit.ac.ir


2 
 

 

1. Introduction 

In recent years, the demand for fresh products such as fruits, vegetables, milk, meat, yogurt, seafood, 

and bread has dramatically increased. The freshness of the perishable products as the main factor of 

quality is one of the important items for customer satisfaction. According to A. C. Nielson Company 

report, 88% of consumers always or frequently checks expiry dates [1] because the products become 

useless after their expiration date. Thus, it is observed that billions of dollars worth of food are 

expired and wasted every month [2]. 

The demand for the perishable products is seriously decreased by increasing products' age and 

eventually these products become completely obsolete in their expiration date. Therefore, the quantity 

of the products and their age are two significant factors for the retailers. As the products start to 

deteriorate, the retailer must decide to change the price of products to control demand and to increase 

the revenue. As a result, the perishability and the time dependency of demand make the inventory 

control and pricing for these products much harder [3]. 

The deterioration rate that reduces the quality of a product, or comparing  the duration of consumption 

of the product by a consumer with the remaining time until expiration date can affect on attracting the 

customers. Thus, by analyzing these factors in an accurate way, one can find out how many changes 

in the price can convince the customers to buy the product. In other words, changing the price of a 

perishable product in the form of discounts can lead to consumer reactions and the tendency to buy 

the product. 

The inventory control problem of perishable products has been extensively researched since the 1970s 

[4]. This control is not effective with classic models, and high inventory costs are imposed on the 

system with the passing of time until the end of the period. In recent years, the use of joint inventory 

control and price discount models for perishable products has grown impressively [5]. Paying 

attention to the amount of consumption and reaching the appropriate product price to prevent 

additional costs for vendors and business owners has led to a pricing debate along with inventory 

control. Consequently, in recent years, most researchers have been trying to present an integrated 

model for inventory control and price discount decisions.  

Burwell et al. [6], Rajan et al. [7], Abad [8], Abad [9], Mukhopadhyay et al. [10], You [11], Sana 

[12], Avinadav et al. [13] and Kaya and Polat [3] are some of infulecing studies that considered 

coordinated pricing and inventory control for perishable products. Perishable items are referred to as 

rotting, damaged, evaporated, obsolete items, and sometimes dropping the value of goods during the 

time [14].  
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The inventory of perishable products was first studied by Wagner and Whitin [15], and they looked at 

perishable items at the end of the warehouse. Ghare and Schrader [16] concluded that the use of 

perishable items is relatively proportional to the exponential distribution function of time. They 

proposed the inventory level of perishable items is as follows: 

(1) 
 

   
dI t

I t f t
dt

    

where 𝜃 denotes the deterioration rate of perishable items, 𝐼(𝑡) is inventory level at time 𝑡, and 𝑓(𝑡) is 

the demand rate at time 𝑡. They provided an EOQ model for perishable products that had a constant 

deterioration rate. Ghare and Schrader [16] considered the deterioration rate in this model that is a 

constant or variable ratio of the in-hand inventory, which is shown as a function. They presented a 

simple economic order with a constant rate of decline. The deterioration rate has created different 

scenarios in recent researches. It is linear in time [17], two parameters Weibull distribution [18], three 

parameters Weibull distribution [19], and other functions of time [8].  

Eilon and Mallaya [20] considered demand in the inventory model that is dependent on  price. Wee 

[21] investigated the policy of replenishment and pricing in an environment with price-dependent 

demand, which declined exponentially over time. Moreover, it is assumed that demands during the 

stockout period is partially back-ordered. Federgruen and Heching [22] examined the combination of 

inventory and pricing modeling in a stochastic environment. Demands are independent in successive 

periods and the price is determined based on a function of the state of the system in any period. Chang 

et al. [23] introduced the inventory and pricing model by considering price-dependent demand and 

backorder shortage. They presented a model to determine selling price, replenishment number 

replenishment schedule with partial backlogging. Moreover, they provided a simple algorithm to 

solve the model. Chen and Sapra [24] developed an integrated inventory control and pricing model 

with a constant deterioration rate, and deterministic price-dependent demand for a perishable product 

a fixed lifetime of two periods. The optimal order quantity and demand management (applying price) 

decisions for the product is dependent on the freshness and old units. Taleizadeh et al. [25] studied 

integrated pricing and ordering strategies for a deteriorating item. They considered multiple price 

discounts during the time when demand decreases, and derived a closed-form solution to determine 

the optimal values of price and order quantity. Adenso-Díaz et al. [26] considered the mixed-priced 

inventory model with a demand function that was dependent on price and product age. Note that, a 

demand function is dependent on several factors that can be controlled by the retailer (e.g. Price, 

inventory level) and uncontrollable (e.g. Time, product’s age). Feng et al. [27] developed an inventory 

control model that the demand of a perishable product is a multivariate function of unit price, 

freshness condition, and stock level altogether. They illustrated that product freshness is vitally 

affected on consumers’ purchasing decisions and pricing strategy is appropriate competitive tool to 

increase sales and profits. Yao [28] studied an inventory model where a product’s price and ordering 
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decisions are simultaneously determined. The demand depends on the price and excess demand is 

backlogged. The objective is to find a pricing strategy and an ordering strategy to maximize the 

expected average profit. Dobson et al. [29] considered the EOQ model for perishable goods with an 

age-dependent demand rate. They assumed that the demand rate is a linearly decreasing function of 

the age of the products. They showed that a perishable product acts similarly to a non-perishable 

product with unit holding cost equal to the ratio of contribution margin to lifetime. Kaya and Polat [3] 

examined the inventory model based on the EOQ model with price and time-dependent demand. They 

calculated the optimal profit by considering different discounts at the same time intervals. The 

demand function that was used in the paper did not simultaneously consider the impact of price and 

age, which can lead to an incorrect prediction of demand. Chua et al. [30] studied a periodic review 

inventory and price discount problem for a perishable product with limited shelf life. They presented 

four models with different customer features. They found that the optimal discount policy is a 

threshold policy while the optimal order quantity decreases in the inventory of old products with a 

significant decrease at the threshold. Kaya and Rahimi Ghahroodi [31] modeled a coordinated 

inventory control and pricing problem for perishable products by considering a general stochastic 

demand function that is dependent on both the price and remaining shelf life of the products. They 

proposed a dynamic programming model to determine the optimal ordering decision policy, optimal 

order quantity and price that should be charged to the products. Agi and Soni [32] proposed a 

deterministic model for pricing and inventory control decisions of a perishable product subject to 

physical deterioration and freshness condition degradation. The demand for the product depends on its 

price, the current inventory level, and the freshness condition. Khan et al. [33] studied the inventory 

and price discount problem for a perishable product that is not useable after a certain period. They 

presented two mathematical models by heeding the demand of the product to be dependent on selling 

price. Moreover, shortages that depend on the customer waiting time are considered and two solution 

methods are introduced to solve the problem. Wei et al. [34] suggested a mathematical model for the 

inventory of deteriorating products with quality and quantity loss. The freshness of products is 

described based on a time-varying freshness function. The demand is affected by the price and 

freshness of products in different periods. Dye [35] investigated a pricing, advertising, and inventory 

control problem for perishable products in a multi-period setting. It is assumed that the demand rate 

varies simultaneously with the selling price, freshness index of the product, and stock of advertising.  

Soni [36] considered the inventory control problem for perishable products that the selling price is 

dependent on the freshness index. A mathematical model is presented for the problem, and it 

determines the percentage discount on the price based on the freshness to maximize profit. Moreover, 

a simple algorithm is applied to find an optimal solution. Kaya and Bayer [37] analyzed the inventory 

control and pricing for perishable products. They developed a mathematical model to determine the 
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time and the quantity of the order, as well as the price of the products considering their freshness over 

time. 

In this paper, in order to fill the gaps in previous studies, the price and the age of the perishable 

products are simultaneously considered in the demand function. Therefore, a nonlinear mathematical 

model is proposed for inventory control and price discount problem to find optimal order quantity, 

discount points, and prices until the expiration date to maximize profit.  

According to previous research and the developed models, the discounts were usually announced 

from the beginning of the period, and it can lead to lower profit. In this paper, in order to fill the gaps 

in previous studies, the determination of discount start time is considered. To estimate this time, the 

difference between the expiration date of a product and the mean consumption time for the product is 

called the discount start time. Moreover, the developed model provides the number of discounts such 

that the shortage will not be incurred before the expiration date. It is observed that by determining the 

proper discount start time can be obtained to a sale plan with more profit.  

In addition, the proposed nonlinear mathematical model is computationally intractable, and the 

particle swarm optimization (PSO) algorithm and the genetic algorithm (GA) are developed to solve 

it. Based on the nature of the problem, the size of the chromosome is dependent on the number of 

discounts. Therefore, at each population and iteration of the algorithms, the chromosomes have 

different dimensions. The Taguchi approach is applied to find optimum control parameters of PSO 

and GA. Furthermore, to guarantee the validity of the PSO and GA, the nonlinear model is solved by 

the BARON solver that is a GAMS solver for the global solution of nonlinear (NLP) and mixed-

integer nonlinear programs (MINLP) [38]. The performance of the algorithms is evaluated based on 

the real values of parameters for two perishable products (i.e. Cheese and Mayonnaise Sauce) and 

some random test problems. The computational results demonstrate that the proposed GA outperforms 

the PSO algorithm. Specifically, the followings are the significant contributions of this paper: 

 The price and the age of the perishable products are simultaneously considered in the demand 

function. 

 A nonlinear mathematical model is proposed for inventory control and price discount 

problem to find optimal order quantity, discount points, and prices until the expiration date to 

maximize profit.   

 Determination of discount start time is considered, and the proposed model provides the 

number of discounts such that the shortage will not be incurred before the expiration date.  

 The model determines order quantity, discount points, and prices until the expiration date.  

 The particle swarm optimization (PSO) algorithm and the genetic algorithm (GA) are 

developed to solve the model. Since the size of the chromosome is dependent on the number 

of discounts, thus, each population is composed of chromosomes with different dimensions. 
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The structure of the paper is as follows: The problem definition and the proposed mathematical model 

are presented in Section 2. The PSO and GA algorithms that are used to solve the model are discussed 

in Section 3. Section 4 gives experimental results and efficiency analysis of PSO and GA algorithms.  

Finally, in Section 5, a discussion and some suggestions for future works are offered.  

2. Problem description and formulation 

In this paper, the inventory control and price discount decisions of perishable products (e.g. Cheese, 

sauce, fruits, and vegetables) are considered. The products are useless after the expiration date. 

Moreover, the demand for the products is dependent on the remained time until the expiration date. In 

other words, the demand decreases over time until the expiration date. Therefore, we can motivate 

customers to purchase products by changing the price.   

The purpose of the problem is to find optimal order quantity, the number of discounts that are needed 

between the discount start time and the expiration date, so that the inventory level at the end of the 

product’s life cycle is equal to zero. This will be done by reducing selling prices through discounts 

and motivating customers to purchase products. The basis of the proposed model is inspired by the 

EOQ model, in which the profit is equal to revenue minus total cost, i.e. inventory holding cost, 

ordering cost, and purchasing cost. 

2.1 Assumptions 

The proposed mathematical model in this paper is based on the following assumptions: 

 Demand is deterministic and dependent on the price and age of the product. 

 The deterioration rate is constant. 

 The model is a single-period model, and the expiration date of the product is the end of the 

period.  

 The discount rate is constant. 

 Backorders are not allowed. 

 The inventory level reaches zero at the end of the period. 

2.2 Notation 

The following notations are used to formulate the proposed model. 

 Index 

i  The index of discount interval  

Parameters 
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  Price elasticity of demand 

  The influence of ageing on demand 

L  Expiration date 

DC    Discount rate 

h    Holding cost per unit time 

0P  Initial selling price 

  11i iP DC P     The selling price at the 𝑖th discount interval  

0D  Initial demand  

  Deterioration rate 

A  Ordering cost 

C  The purchase price of a product 

Decision variables 

N  Number of discounts 

Q  Optimal order quantity 

it  The start time of 𝑖th discount interval  

X  Discount start time  

 

2.3 The mathematical model 

In this subsection, an MINLP model is presented for the problem. An economic order quantity 

(EOQ)-based approach is applied. Since the customers for perishable products will not be willing to 

wait to get these products, therefore, backorders are not allowed. 

Figure 1: Illustrations of the inventory process 

Figure 1 represents the inventory level in a period. In this Figure, 1 2 3, , ,..., Nt t t t  are the discount start 

times and        1 2 3, , ,..., NI t I t I t I t  are the inventory levels at the times, respectively. By 

considering the deterioration rate and age and price-dependent demand rate   ,D p t ,  that  the 
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demand rate is as a function of both price (denoted p ) and age (denoted t ), with  t L , the 

inventory level is described at time   t I t  by the derivative equation. 

 
     ,  θ

I t
D p t I t

t


 


 (2) 

Let    iI t denotes the inventory level for any time  1,  i it t t  in 𝑖th discount interval, also let 

 iI t denotes the inventory level at the end of the period  1,  i it t t . The expression (2) is a first-

order differential equation with variable coefficients. By multiplying the factor 
te

in equation (2), 

equation (3) will be obtained.  

 
   ,

it t t

i i

I t
e e I t e D p t

t

  


  


 (3) 

  
 ,

t

i t

i

e I t
e D p t

t






 


 (4) 

By integrating from both sides of equation (4), the following equation is obtained: 

   ,
itt s

i i
t

e I t e D p s ds c    (5) 

where 𝑐 is an arbitrary constant.  The general solution of equation (5) is as follows: 

   ,
itt s t

i i
t

I t e e D p s ds ce      (6) 

Then, for any time  1,  i it t t , by  applying the differential equation (6), the following 

instantaneous inventory equation for    iI t  is obtained: 

         
,

i
i

t s t t t

i i
t

I t D p s e ds I t e
  

   (7) 

In this paper, the proposed nonlinear demand function by Adenso-Díaz et al. [26] is applied, which 

describes a demand function based on the price and age of the product. The demand function is as 

bellows:  

  1

1

, 1i
i i

i

p t
D p t D

p L

 





    
          

 (8) 

By using this demand function, the inventory equation is obtained as follows: 
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    
   

   

1 1 1

1

Γ 1. Γ 1,1 1
1i

i

t t

t t ii
i i

i

t t

i

t e t ep
I t D e

p L

I t e

  


  



   

  

  



  





      
        
           

 

(9) 

Given that at the end of the period, the inventory reaches zero,   0NI t  , and the inventory level at 

the beginning of the period is equal to Q ,  0I t Q  then the value  iI t for the ith discount 

interval will be calculated as follows. 

       1 11

( 1) 11 1

1

1, 1,01 1
(0) ( ( ) )[ ) [ ]] ( ) ,1

t ti
i

i

tp
I D e I t e

p L



 





  

  



  



   
   





 (10) 

and  

 
        

 
1

1

1

1

1
1

1 1

Γ 1, Γ 1,1 1
1

j ii

j i j i

j

j

jN

i
t ttj i

t t t tj j

p
D

p

I t

t e t e
e e

L




 

  

   

  











  
 

 

   
         


               
    


 

(11) 

 

The sales amount of the product until the beginning of the discount  1S , as well as the sales amount 

in the ith discount interval  iS , are calculated as follows: 

1
1

1 1 1
1 0 0 1

0
0 0

1
1   ,

1

t p p tt
S D dt D t

p L p L

  

 

 
       

                    
  (12) 

and  

 
1

1 1

1
1 1 1

1 1

1
1

1 1

i

i

t
i i i i

i i i i i
t

i i

p p t tt
S D D t t

p L p L

   

  

 
 


  

 

          
                             

  (13) 

 

The total holding cost, H , is calculated by taking the area under the inventory curve in Figure 1 and 

then multiply it with the unit holding cost ( )h .  Therefore, by using equation (9), we can write as: 
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 

  

 
 

    

1

1 1

1

1

1

1

1

2

1

1 1

1 1

1

1
Γ 1,1 1

Γ 1,

i

i

i i i

i i

i i
i

i

N t

H i
t

i

t t t

i i

N
t tii

i t t
ti i i t

t

h I t dt

e t t e e

I tp
h D e

p t e e
t e

L

 





 


  



 



 
 

   



 
















 
  

 

  

    
  

   
                        






 

(14

) 

Eventually, the profit per unit time function is acquired by considering the difference between total 

revenue and total costs in an inventory cycle and dividing that value by the duration of an inventory 

cycle. As a result, the mathematical model for the considered problem is as below: 

max  
1

Z
L

 
  
 

1

1 1
0 0 1

0

1
 

1

p t
p D t

p L




 


                

         

 

                              
1 1

1
1 11

1

1

1 1

N
i i i

i i i ii
i

p t t
p D t t

p L


 

  


 


 



      
            
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The proposed model is an MINLP model, which includes the objective function that derives from the 

difference in revenue and total costs. On the other hand, constraint set (16) ensures the discount times 

are increasing order, which is not allowed to issue double discounts at a time. Constraint set (17) 

provides the inventory level of the ith discount interval is less than the previous interval. Constraint 

set (18) guarantees that the inventory level of the ith discount interval does not exceed the optimal 

order quantity.  Constraints (19) and (20) show the start time of the period and the inventory level in 

the start time, respectively.  Constraints (21) and (22) define the value range of variables N and Q .  

3.  Solution Methodology 

The proposed mathematical model is computationally intractable. There are the gamma function and 

integral expression in the model. Therefore, in this paper, GA and PSO  algorithms are used to obtain 

a good solution. Moreover, to guarantee the validity of the PSO and GA, the relaxed MINLP model is 

solved by the BARON solver in GAMS software by considering a constant value for N . The PSO 

and GA are described as follows: 

 3.1. PSO algorithm 

PSO algorithm is one of the optimization algorithms based on random population generation. This 

algorithm is based on modeling and simulation of birds’ flying behavior or collective movement of 

fish. This algorithm was first defined for continuous variables but was also developed for issues with 

discrete variables. PSO algorithm in discrete mode is introduced with binary particle swarm 

optimization (BPSO). In the most common implementations of PSO, particles move through the 

search space. The particles use a combination of an attraction to the best solution that they 

individually have found, and an attraction to the best solution that any particle in their neighborhood 

has found [39].  

Each group member is defined by a velocity vector and a position vector in the search space. In each 

iteration, a new particle position is updated according to the current velocity vector. The best position 

is found by the particle and by the best particle in the group. This updating and searching process in 

the solution space is performed as below.  

Consider a D-dimensional search space, an individual particle l is composed of three vectors: the 

position vector  1 2, , ,l l l lDY y y y  , the best position of the 𝑙th  particle that it has found

 1 2, , ,l l l lDP p p x  , and its velocity vector  1 2 3, , , ,l l l l lDV v v v v  . These particles move 

throughout the search space by a set of update equations. The equations (23) and (24) are used to 

update the velocity and the position of particle l , respectively. 

   1 1 2 2ld ld ld ld gd ldv w v c r p y c r p y     (23) 
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ld ld ldy y v   (24) 

where, the symbols are as follows: 

w  
The inertial weighting factor, which shows the effect of the velocity vector of the 

previous iteration on the velocity vector in the current iteration. 

1 2,c c  Learning coefficients. 

1 2,r r  Uniformly random numbers between 0 and 1. 

gP  The best position funded by any neighbor of the particle [39] 

 

3.2. PSO for the proposed model 

As stated above, N is the number of discounts. So, a feasible solution of the PSO algorithm(Y ) is an 

N-dimensional vector. The first dimension indicates the beginning of the discount, the last dimension 

introduces the expiration date of the product, and the ( 2)N   mid-dimension denote ( 2)N 

discount intervals between first and last discount intervals. The start time of the discount intervals is 

randomly generated and sorted in ascending order.  Figure 2 shows a feasible solution with six 

discount intervals as that 2 5X t t L   . According to Figure 2, the minimum number of 

discounts is equal to 2, which is composed of the first and last (expiration date) discount intervals. 

Moreover, the maximum number of discounts is obtained from the difference of the expiration date 

from the beginning of the discount plus one ( 1)L X  .  

After calculating the upper and lower bounds of N , the PSO algorithm is implemented based on the 

possible values for N in the range 2 to 1L X  . The position of each solution is calculated based 

on random it  and N . The ne4w position that is created by equations (23) and (24) should be in 

ascending order, and the repetitive values of it  are not allowed. The value of the objective function in 

each iteration is calculated based on the values of  it  and N .  

Figure 2: Solution representation in PSO algorithm with 6N    

The original PSO algorithm is presented to solve the problems in the continuous solution space. In 

this paper, equation (25) is applied to convert the continuous solution to a discrete one.  

    . 1 1 ,  1it min r L X X L         (25) 

where, r is a random number between 0 and 1.  
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3.3. Genetic Algorithm 

GA is an effective optimization process and a strong search that is commonly used in complex search 

spaces. GA imitates the biological principles for solving optimization problems. It contains a set of 

individual solutions or chromosomes that is called a population. In this algorithm, some natural-

inspired operators create a new population from the previous population. According to evolutionary 

theory, only the superior individuals in the population can generate a better generation; therefore, the 

superior genetic information is transferred to the new generation [40].  

3.4. GA for the proposed model 

In this section, GA is developed to solve the considered problem.  

3.4.1. Solution representation 

By considering Figure 2, the upper and lower bounds of the number of discounts ( N ) are calculated 

similarly to the PSO algorithm. Solution representation in GA is similar to the PSO algorithm, and 

each chromosome is an N-dimensional vector. Since the size of the chromosome is dependent on 𝑁, 

thus, each population is composed of chromosomes with different dimensions. Figure 3 depicts two 

chromosomes with different dimensions. 

Figure 3: Two chromosomes with dimensions 7 and 10 

3.4.2. Crossover 

The single point operator is used to perform the crossover operator to generate two offspring from two 

parents. Since the elements of the chromosomes are time points, thus, the ascending order is 

necessary. Therefore, the ascending order must be observed in the crossover operator.  

Consider two chromosomes in Figure 3; there are four modes to perform the crossover operator on the 

two parents. But, only the cross-action 1 can lead to a feasible solution (see Figure 4). 

Figure 4: All modes to perform the crossover operator 

By using a single-point crossover and choosing the cross-action 1, the obtained two offspring are 

shown in Figure 5.  

Figure 5: The obtained two offspring from crossover operator 

3.4.3. Mutation 

The mutation operator is applied to rearrange the structure of a chromosome. It helps to increase the 

searching power in the solution space. In this paper, random changes of N are considered for 

mutation operator. For example, if the upper bound of the number of times the discount is equal to 20, 

the appropriate value for N should be in the interval [2, 20]. The mutation attempts to obtain the 

number of random discounts in each iteration by randomly selecting a number from this interval. 

Figure 6 shows the mutation operator for a chromosome.  
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Figure 6: The mutation operator A) before mutation, B) after mutation 

3.4.4. Create successive generations 

The roulette wheel is used to generate a new population. The fitness of a chromosome determines the 

size of its segment on the roulette wheel. The roulette wheel is then ‘spun’ repeatedly to produce a 

new population of the same size as the previous population. 

 

4. Computational results 

In this section, the obtained results from solving the model by GA and PSO algorithms are analyzed.  

In Section 4.1, first, the discount start time ( X ) for the two perishable products is estimated. In 

Section 4.2, the performance of the proposed algorithms to solve the considered model is investigated.  

4.1. Estimation of the discount start time  

The discount start time ( X ) is estimated according to the customer's consumption pattern for 

different products. To estimate this time, the difference between the expiration date and the average 

consumption period can be called the discount start time. To calculate the average, the consumption 

period of each product is obtained from the buyers in the form of an oral questionnaire. In this paper, 

the consumption period of two perishable products (Cheese and Mayonnaise Sauce) is gathered from 

50 buyers. Then EasyFit software was used to fit a probability distribution on the data. Figure 7 shows 

the output of the software by performing the goodness-of-fit test. 

Figure 7: Goodness-of-fit test for the consumption period A) Cheese, B) Mayonnaise Sauce 

As can be seen, the Erlang distribution with parameters 21m  and 0.646  and Normal distribution 

with parameters 44.5  and 8.22   are correctly fitted on gathered data about the consumption 

period of Cheese and Mayonnaise Sauce, respectively. Therefore, the average consumption period of 

the Cheese and Mayonnaise Sauce is estimated equal to be 14 (=21*0.646) and 44 days, respectively. 

The value of X will be obtained from the value of L minus the average consumption period of the 

perishable product, which is 56 for Mayonnaise Sauce and 45 for Cheese. 

4.2. Results analysis 

In this section, we analyze the model and evaluate the performance of the proposed GA and PSO 

algorithms. In subsection 4.2.1, the performance of the algorithms is evaluated based on the real 

values of parameters for two perishable products (i.e. Cheese and Mayonnaise Sauce). In subsection 

4.2.2, the proposed algorithms are compared together based on the random test problems. The 

sensitivity analysis is performed on the value of X in subsection 4.2.3. Moreover, in this subsection, 

we compare two strategies for discount start time, a) from the beginning of the period, b) from point 

𝑋.  Finally, in subsection 4.2.4, to guarantee the validity of the proposed algorithms, the results of the 
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algorithms are compared to the results of the relaxed model that is solved by BARON solver in 

GAMS software.  

4.2.1. The results of solving the model for two considered products 

The real values of the parameters for the two perishable products (Cheese and Mayonnaise Sauce) are 

shown in Table 1.  

Table 1: The input parameters of the model for Cheese and Mayonnaise Sauce 

To tune the parameters of GA and PSO algorithms, the Taguchi experimental design approach is 

performed in the MINITAB software. The parameter values of GA and PSO algorithms are shown in 

Table 2. Moreover, Figure 8 depicts the results of the Taguchi experimental design approach. 

Table 2: The parameter values of GA and PSO algorithms 

Figure 8: The results of Taguchi experimental design A) GA algorithm and B) PSO algorithm 

The final values of the parameters of GA and PSO algorithms based on the Taguchi experimental 

design approach are presented in Table 3.  

Table 3: The final values of the parameters of the algorithms 

The algorithms are implemented in MATLAB software and tested on a computer with a 3.1 GHz CPU 

and 8 GB of RAM. The results of the implementation of the algorithms are shown in Table 4. The 

obtained results for Cheese with a 60-day expiration date and the discounts start time from the 46th 

day show that both algorithms are presented similar profit and the number of discounts. But, GA 

outperforms PSO by considering the run time and number function evaluation (NFE). For 

Mayonnaise Sauce, by considering expiration date and discount start time equal to 100-day and 57th 

day, respectively, GA outperforms PSO.  

Table 4: The results of the implementation of GA and PSO algorithms 

4.2.2. Comparison of the algorithms for random test problems 

In this subsection, the performance of GA and PSO algorithms is investigated based on some random 

test problems. The parameter values of the model were uniformly generated in the ranges that are 

given in Table 5.   

Table 5: The range of parameter values 

200 random test problems are generated to assess GA and PSO algorithms. Each of them is executed 

five times on a computer with a 3.1 GHz CPU and 8 GB of RAM. The best solution of each algorithm 

for any test problem is reported in Table 6.  

Table 6: The best solution of GA and PSO algorithms for 200 random test problems 
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Table 6 depicts the profit, the number of discounts and the run time of each problem. Moreover, the 

relative percentage deviation (RPD) is used to compare the algorithms on the problems. The value of 

RPD is calculated as follows: 

       
  *100

 

Method Sol Best Sol
RPD

Best Sol


  

 

(24) 

Based on the values of RPD, GA and PSO algorithms presented similar profit in the 178 random test 

problems. Moreover, GA presented a better solution than PSO in the 22 random test problems. The 

average computational results of GA and PSO algorithms for all 200 random test problems can be 

seen in Table 7.  

Table 7: The average computational results 

The obtained results in Table 6 and Table 7 show that GA outperforms PSO in profit, run time and 

RPD. Figure 9 and  

Figure 10 depict the profit and the number of discounts, that the algorithms are presented for each test 

problem, respectively. 

Figure 9: The profit for each problem 

 

Figure 10: The number of discounts for each problem 

 

By examining Figure 9 and  

Figure 10, it can be concluded that GA presents a solution with better or similar profit and fewer 

discounts whit respect to PSO.  

4.2.3. The sensitivity analysis 

The sensitivity analysis on the X value is shown in Table 8. It is observed that by increasing the value 

of X , profit increased, but the number of discounts decreased. Moreover, by decreasing the time 

distance between X and L , the time intervals of discounts will be reduced. 

Table 8: Sensitivity analysis on X value 

Figure 11 depicts the profit values of the considered problems in Table 8 that are obtained by GA and 

PSO algorithms. As can see, GA presented a better solution with respect to the PSO algorithm.  

Figure 11: The profit values of the considered problems in Table 8   

Moreover, in this subsection, we compare two strategies for discount start time, a) from the beginning 

of the period, b) from X -point. The value of parameters in Table 1 that are related to Cheese is 

considered as a base case. Profit and the number of discounts ( N ) are calculated based on different 
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values of parameters that are low and more than the base case. Since the GA outperformed PSO, 

therefore, we applied it to investigate the strategies. The numerical results of the comparison are 

illustrated in Table 9. 

Table 9: Comparison of two strategies for discount start time, a) from the beginning of the period, b) from point 

X  

As seen as in Table 9, considering discount start time from the beginning of the period will always 

follow less profit than when the discounts are started from 𝑋-point. This is due to the greater number 

of discounts and faster selling price reduction in strategy (a). 

Comparison of the base case and other cases show that with increasing  , profit increases and the 

number of discounts decreases. As  decreases, profit increases and the number of discounts 

decreases. This is logical with respect to the considered demand function. Moreover, with growth 

DC , demand and profit increase and the number of discounts decreases. As L  increases, we observe 

that the number of discounts decreases and profit increases. If the deterioration rate of a product ( ) 

is high, the number of discounts will be increased. Moreover, with growth C , profit and the number 

of discounts will be changed very low. 

4.2.4. Verification and validation of GA and PSO algorithms 

To guarantee the validity of the PSO and GA, the relaxed MINLP model is solved by the BARON 

solver in GAMS software. The model is MINLP with complicated variables; therefore, the relaxed 

model is obtained by considering a constant value for N (the value it  is calculated by the value N ). 

10 random test problems are generated based on the range of parameter values in Table 5. The test 

problems are solved by GA, PSO and BARON solver by considering 8N  , 100L  , and 85X   

and the results are shown in Table 10. The BARON solver is presented a better solution for the 

relaxed model in all the random test problems. The RPD for each test problem that is solved by GA 

and PSO algorithms is calculated based on the solution of BARON. The average RPD for GA and 

PSO is equal to 4.86% and 6.19%. As can see, the obtained solution from the algorithms is very close 

to the best solution for some test problems.  

Table 10: Comparison GA and PSO with BARON 

 

5. Conclusion  

In this paper, the inventory control and price discount problem of perishable products with price and 

age-dependent demand is investigated. It is assumed that the starting point of discounts will be 

determined by the seller or the owner of the business, and the end of the period is the same as the 

expiration date of the product. A nonlinear mathematical model is proposed to maximize profit by 

determining discount points until the expiration date of the product and achieve to zero level of 
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inventory on the date. The proposed model is computationally intractable. Therefore, GA and PSO 

algorithms are developed to solve the model. Assessments of the proposed algorithms using randomly 

generated data demonstrated that GA outperforms PSO algorithm. The obtained results are shown that 

the number of discounts and the discount start time have a high effect on profit. Suggestions for future 

studies include solving the model with other metaheuristic algorithms, considering other demand 

functions and stochastic demand. Extension of the proposed model under allowed shortage and 

considering multi-level supply chain are other avenues for further research.   
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Figure 1: Illustrations of the inventory process 

 

 

Figure 2: Solution representation in PSO algorithm with 6N    

 

 

Figure 3: Two chromosomes with dimensions 7 and 10 

 

 

Figure 4: All modes to perform the crossover operator 
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Figure 5: The obtained two offspring from crossover operator 

 

 

Figure 6: The mutation operator A) before mutation, B) after mutation 

 

 

Figure 7: Goodness-of-fit test for the consumption period A) Cheese, B) Mayonnaise Sauce 
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A. Taguchi experimental design results for genetic algorithm 

  
 

B. Taguchi experimental design results for PSO algorithm 

Figure 8: The results of Taguchi experimental design A) GA algorithm and B) PSO algorithm 
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Figure 9: The profit for each problem 

 

Figure 10: The number of discounts for each problem 
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Figure 11: The profit values of the considered problems in Table 8   

 

 

 

 

 

 

 

 

Table 1: The input parameters of the model for Cheese and Mayonnaise Sauce 

Parameter Cheese 
Mayonnaise 

Sacuce 

𝛼 0.8 0.6 

𝛽 2 2 

𝐷𝐶 0.1 0.1 

𝐿 60 100 

ℎ 50 50 

𝑋 46 56 

𝑝0 3000 6000 

𝐷0 100 100 

𝜃 0.05 0.007 

𝐴 50000 50000 

𝐶 2900 3500 

 

Table 2: The parameter values of GA and PSO algorithms 

 PSO  GA 

 Level  Level 

Parameters 1 2 3 Parameters 1 2 3 
𝑀𝑎𝑥𝐼𝑡 200 300 700 𝑀𝑎𝑥𝐼𝑡 200 300 700 
𝑁𝑝𝑜𝑝 20 40 60 𝑁𝑝𝑜𝑝 20 40 60 

𝑤 1 2 3 𝑃𝑐 0.6 0.7 0.8 
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𝑐1 2 4 6 𝑃𝑚 0.4 0.3 0.2 
𝑐2 3 5 7 𝑇𝑜𝑢𝑟 𝑆𝑖𝑧𝑒 3 4 5 

 𝑆𝑃 6 7 8 

𝑀𝑎𝑥𝐼𝑡: Maximum number of  iterations, 𝑁𝑝𝑜𝑝: Population size, 𝑤: Coefficient of  inertia, 𝑐1 

and 𝑐2:  Learning factors, 𝑃𝑐: Crossover probability, 𝑃𝑚: Mutation probability, 𝑇𝑜𝑢𝑟 𝑆𝑖𝑧𝑒: 

Tournament Size, 𝑆𝑃: Selection pressure 

 

Table 3: The final values of the parameters of the algorithms 

GA 

𝑆𝑃 𝑇𝑜𝑢𝑟 𝑆𝑖𝑧𝑒 𝑃𝑚 𝑃𝑐 𝑁𝑝𝑜𝑝 𝑀𝑎𝑥𝐼𝑡 

7 5 0.3 0.7 40 300 

 

PSO 

𝐶2 𝐶1 𝑤 𝑁𝑝𝑜𝑝 𝑀𝑎𝑥𝐼𝑡  

5 2 3 60 700  

 

 

 

 

 

 

Table 4: The results of the implementation of GA and PSO algorithms 

 Cheese Mayonnaise Sauce 

 
Profit N 

Run 

Time(s) 
NFE Profit N 

Run 

Time(s) 
NFE 

GA 340176 7 5.35 12040 35141 14 11.97 12040 
PSO 340176 7 17.91 42060 23122 16 43.57 42060 

 

 

Table 5: The range of parameter values 

Parameters Range Parameters Range 
𝛼 [0.5 , 0.9] 𝑃0 [100 , 3000] 
𝛽 [0.01 , 2] 𝐷0 [10 , 200] 

𝐷𝐶𝑅 [0.01, 0.5] 𝜃 [0.005 , 0.9] 
ℎ [50 , 200] 𝐴 [100 , 50000] 
𝐿 [50 , 200] 𝐶 [90 , 2900] 
𝑋 [10 , 290]   

 

 

Table 6: The best solution of GA and PSO algorithms for 200 random test problems (continued) 

 GA PSO  

Problem Profit N Run Time(s) Profit N Run Time(s) RPD (%) 

1 47592.45 7 7.65 47592.45 7 28.26 0 
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Table 6: The best solution of GA and PSO algorithms for 200 random test problems (continued) 

 GA PSO  

Problem Profit N Run Time(s) Profit N Run Time(s) RPD (%) 

2 11459.36 6 5.79 11459.59 7 25.77 0 

3 194639.81 7 5.59 194639.81 8 20.44 0 

4 105652.69 8 7.14 105652.69 8 26.6 0 

5 220388.2 4 4.01 196704.32 5 17.96 10.74 

6 102742.59 7 4.89 82882.99 8 23.34 19.32 

7 14466.48 6 6.41 14466.48 7 25.39 0 

8 247524.54 5 4.97 247524.54 5 20.58 0 

9 46815.59 7 5.56 46815.59 7 25.56 0 

10 73315.35 9 6.57 73315.35 9 29.36 0 

11 297499.02 6 5.9 297499.02 6 5.9 0 

12 307140.4 11 13.58 296213.18 9 12.53 3.5 

13 78702.26 9 11.78 78702.26 8 15.31 0 

14 295276.14 9 17.75 295276.14 9 20.65 0 

15 277176.86 14 27.57 277176.86 12 29.1 0 

16 192100.16 9 19.64 192100.16 9 20.46 0 

17 392181.62 8 10.18 295053.54 8 14.33 24.7 

18 258003.35 7 18.13 258003.35 7 21.06 0 

19 225523.45 10 18.08 225523.45 9 19.47 0 

20 33318.72 6 13.35 33318.72 6 15.9 0 

21 305979.29 6 10.68 305979.29 6 12.21 0 

22 123713.73 8 20.93 123713.73 8 23.25 0 

23 201701.7 10 13.07 201701.7 10 16.22 0 

24 149563.53 8 13.95 149563.53 7 14.66 0 

25 362772.52 10 13.85 362772.52 7 12.03 0 

26 669532.36 9 11.23 669532.36 9 13.23 0 

27 256116.69 11 13.02 256116.69 11 14.02 0 

28 503694.25 12 14.45 503694.25 12 16.45 0 

29 112695.32 6 11.05 112695.32 6 13.05 0 

30 695362.02 12 15.01 695362.02 12 17.01 0 

31 25362.55 6 6.35 20569.31 7 8.35 18.9 

32 125630.12 10 13.01 125630.12 10 14.65 0 

33 1256890.22 10 18.02 1256890.22 10 20.55 0 

34 256388.08 11 14.02 256388.08 11 17.02 0 

35 698603.65 12 15.02 698603.65 12 17.02 0 

36 203695.02 11 13.10 203695.02 11 15.10 0 

37 630125.95 6 7.01 630125.95 6 9.01 0 

38 23623.78 9 10.25 23623.78 9 12.25 0 

39 122236.02 9 11.03 122236.02 9 14.03 0 

40 632502.36 10 12.95 632502.36 11 15.95 0 

41 563152.12 8 13.05 563152.02 8 14.05 0 

42 129369.05 7 9.25 129369.05 7 10.39 0 

43 253620.05 7 8.08 253620.05 7 10.95 0 

44 123605.08 11 13.85 123605.08 11 15.78 0 

45 25364.06 11 15.05 25364.06 11 16.59 0 

46 236156.09 7 9.85 226667.61 8 10.65 4.01 

47 12552.03 8 10.25 10762.74 9 10.65 14.2 

48 632953.15 9 12.36 632953.15 9 12.35 0 

49 12963.06 10 10.65 12963.06 10 11.03 0 

50 55369.09 10 11.25 55369.09 10 12.66 0 

51 446392.06 14 13.95 446392.06 14 14.06 0 

52 673216.98 10 11.36 673216.98 10 12.14 0 

53 553216.02 19 19.65 553216.02 19 20.65 0 

54 126593.78 18 16.28 126593.78 18 16.20 0 

55 369563.41 14 13.25 369563.41 14 14.69 0 



28 
 

Table 6: The best solution of GA and PSO algorithms for 200 random test problems (continued) 

 GA PSO  

Problem Profit N Run Time(s) Profit N Run Time(s) RPD (%) 

56 785962.02 9 8.05 785962.02 9 10.25 0 

57 123956.63 10 12.09 123956.63 10 13.10 0 

58 659623.45 11 13.36 659623.45 11 13.05 0 

59 99632.77 8 8.95 99632.77 8 9.05 0 

60 845632.65 12 10.09 845632.65 12 11.26 0 

61 965369.35 18 17.09 965369.35 18 17.25 0 

62 2963516.44 16 62 2744536.09 15 15.09 7.4 

63 69326.15 11 11.25 69326.15 11 12.33 0 

64 698453.49 6 8.09 698453.49 6 10.10 0 

65 653946.99 7 7.96 653946.99 7 7.56 0 

66 4256325.63 9 10.86 4256325.63 9 11.08 0 

67 163259.45 10 12.11 163259.45 10 11.33 0 

68 4596326.11 11 13.06 4596326.11 11 14.37 0 

69 656362.55 12 10.95 656362.55 12 10.25 0 

70 69123.37 12 13.65 69123.37 12 14.78 0 

71 669432.89 9 11.39 669432.89 9 12.96 0 

72 651395.91 6 9.32 651395.91 6 10.06 0 

73 15632.04 6 10.25 15632.04 6 11.02 0 

74 653956.14 12 13.69 603971.55 13 15.52 7.6 

75 4416596.35 18 16.84 4416596.35 18 17.55 0 

76 126630.83 5 6.45 126630.83 5 7.69 0 

77 3659302.14 9 9.56 3100617.96 10 9.88 15.27 

78 695123.77 10 11.63 695123.77 10 12.59 0 

79 659360.39 11 12.95 659360.39 11 12.03 0 

80 5596120.09 13 12.09 5596120.09 13 13.66 0 

81 199623.79 8 9.65 199623.79 8 10.02 0 

82 65643.22 8 8.99 65643.22 8 8.06 0 

83 694361.26 7 8.05 694361.26 7 9.67 0 

84 462251.13 7 7.36 462251.13 7 8.65 0 

85 4936252.33 9 10.98 4936252.33 9 11.81 0 

86 255503.61 10 12.23 255503.61 10 13.62 0 

87 452362.12 11 13.05 452362.12 11 13.25 0 

88 12653.63 10 12.11 12653.63 10 12.84 0 

89 796608.01 9 9.95 796608.01 9 9.65 0 

90 443630.81 7 8.65 443630.81 7 8.99 0 

91 642359.14 8 7.05 642359.14 8 7.06 0 

92 614953.22 8 9.26 614953.22 8 10.99 0 

93 335129.26 9 10.25 335129.26 9 11.28 0 

94 416239.81 11 13.05 416239.81 11 14.66 0 

95 664923.12 10 11.36 664923.12 10 12.03 0 

96 1496235.11 12 12.96 1496235.11 12 13.51 0 

97 87563.08 12 11.85 87563.08 12 12.31 0 

98 669423.14 6 10.62 669423.14 6 11.88 0 

99 16352.11 8 11.95 16352.11 8 12.67 0 

100 1496325.99 14 16.06 1496325.99 14 17.68 0 

101 569312.66 9 10.55 569312.66 9 11.02 0 

102 1236593.22 12 18.81 1236593.22 12 20.28 0 

103 259411.01 10 11.36 259411.01 10 11.31 0 

104 786123.88 9 12.12 786123.88 9 13.44 0 

105 12653.63 6 9.36 12653.63 6 10.65 0 

106 36805.23 10 10.22 30221.12 10 12.05 17.9 

107 222684.33 16 21.25 222684.33 16 21.36 0 

108 1670330.02 18 19.62 1670330.02 18 20.11 0 

109 1806860.68 14 20.11 1806860.68 14 21.88 0 
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Table 6: The best solution of GA and PSO algorithms for 200 random test problems (continued) 

 GA PSO  

Problem Profit N Run Time(s) Profit N Run Time(s) RPD (%) 

110 1236008.74 8 10.02 1236008.74 8 10.36 0 

111 1704294.11 12 13.55 1704294.11 12 13.96 0 

112 380214.01 17 18.89 380214.01 17 19.02 0 

113 4310270.1 13 17.96 431027.01 13 18.61 0 

114 1711101.39 14 12.32 1711101.39 14 13.88 0 

115 367238.13 16 17.14 367238.13 16 17.55 0 

116 32356.91 14 19.58 32356.91 14 19.27 0 

117 699445.54 7 12.09 699445.54 7 14.13 0 

118 136592.11 11 12.88 122301.01 11 14.02 10.4 

119 1141564.19 17 19.99 1141564.19 17 21.05 0 

120 563924.42 9 9.05 563924.42 9 10.39 0 

121 226889.23 7 8.66 226889.23 7 8.97 0 

122 1151918.08 14 22.25 1151918.08 14 26.14 0 

123 25332.99 9 10.33 19002.01 10 12.02 25 

124 256001.25 13 20.11 256001.25 13 24.77 0 

125 1653259.08 6 8.05 1021289.81 8 9.88 38.22 

126 802850.61 11 11.35 802850.61 11 12.11 0 

127 416312.00 15 16.18 416312.00 15 18.68 0 

128 1069890.22 7 9.8 1069890.22 7 10.96 0 

129 1444601.11 14 17.09 1444601.11 14 17.01 0 

130 90599.35 18 19.72 90599.35 18 20.62 0 

131 305978.62 11 10.91 305978.62 11 13.89 0 

132 981993.41 12 10.44 981993.41 12 11.22 0 

133 468081.69 18 18.29 468081.69 18 18.38 0 

134 1608620.42 7 8.18 1608620.42 7 9.11 0 

135 1218899.93 14 16.16 1218899.93 14 16.49 0 

136 726668.15 9 10.95 726668.15 9 11.66 0 

137 160950.31 11 12.64 160950.31 11 12.39 0 

138 815707.18 14 16.89 815707.18 14 18.71 0 

139 507764.90 13 12.02 507764.90 13 13.29 0 

140 1229613.16 15 18.80 1229613.16 15 18.92 0 

141 1794466.32 10 11.17 1794466.32 10 11.18 0 

142 171373.09 17 19.89 171373.09 17 19.29 0 

143 1023417.05 9 10.72 986025.12 11 11.65 3.6 

144 1468689.87 13 13.35 1468689.87 13 13.22 0 

145 1379728.26 15 16.80 1379728.26 15 17.77 0 

146 174167.71 12 18.09 174167.71 12 18.68 0 

147 731165.47 8 10.42 731165.47 8 10.71 0 

148 81731.57 16 22.14 81731.57 16 22.92 0 

149 728184.59 14 11.36 728184.59 14 11.22 0 

150 124250.11 11 11.28 101962.08 11 11.99 17.9 

151 367109.99 6 9.91 367109.99 6 10.02 0 

152 1539982.82 8 10.47 1539982.82 8 12.44 0 

153 1616479.35 13 14.97 1616479.35 13 14.55 0 

154 605224.90 13 16.64 605224.90 13 16.96 0 

155 237106.55 11 12.26 237106.55 11 15.30 0 

156 865325.01 10 11.88 851253.02 10 12.86 1.6 

157 256314.77 9 11.02 230143.97 10 11.66 1.02 

158 326745.79 15 20.90 326745.79 15 22.90 0 

159 65160.82 8 9.75 65160.82 8 10.75 0 

160 152896.96 9 10.05 152896.96 9 12.05 0 

161 32659.10 10 11.02 30115.55 10 11.96 7.7 

162 1537587.27 15 18.60 1537587.27 15 19.02 0 

163 1710124.37 6 10.07 1710124.37 6 12.22 0 
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Table 6: The best solution of GA and PSO algorithms for 200 random test problems (continued) 

 GA PSO  

Problem Profit N Run Time(s) Profit N Run Time(s) RPD (%) 

164 1457066.18 8 11.01 1457066.18 8 13.44 0 

165 1427833.62 9 13.50 1427833.62 9 14.03 0 

166 308897.49 19 22.99 308897.49 19 23.46 0 

167 1839053.85 13 16.20 1839053.85 13 16.63 0 

168 446149.07 11 12.79 446149.07 11 14.25 0 

169 1538733.90 13 14.66 1538733.90 13 14.96 0 

170 1315571.45 13 15.23 1315571.45 13 15.05 0 

171 247885.07 13 14.51 247885.07 13 15.06 0 

172 1728430.91 14 15.36 1502563.11 16 18.60 13.06 

173 1683228.34 17 22.36 1683228.34 17 23.67 0 

174 5563251.02 14 21.08 5325993.12 16 23.86 4.26 

175 509415.80 9 10.59 509415.80 9 12.09 0 

176 99104.17 9 11.66 99104.17 9 12.22 0 

177 936742.68 16 23.63 936742.68 16 24.35 0 

178 244092.79 7 9.00 244092.79 7 11.23 0 

179 86325.01 6 8.85 84196.15 7 9.79 2.4 

180 126953.12 10 10.33 101563.58 10 12.08 20 

181 336928.01 18 22.97 336928.01 18 23.09 0 

182 1166452.34 11 13.45 1166452.34 11 15.33 0 

183 1838892.92 13 15.50 1838892.92 13 16.56 0 

184 1654676.54 11 14.92 1654676.54 11 14.09 0 

185 1755249.13 10 10.99 1755249.13 10 12.93 0 

186 1734489.21 17 20.69 1734489.21 17 22.77 0 

187 1030611.72 12 16.92 1030611.72 12 18.62 0 

188 495947.99 16 18.16 495947.99 16 18.42 0 

189 536870.80 19 20.31 536870.80 19 21.29 0 

190 503085.08 16 19.37 503085.08 16 19.12 0 

191 156850.22 13 12.87 156850.22 13 13.23 0 

192 1557898.43 12 11.09 1557898.43 12 12.86 0 

193 1321429.31 13 14.35 1321429.31 13 15.33 0 

194 1766272.28 8 10.79 1766272.28 8 13.08 0 

195 922738.55 19 20.03 922738.55 19 22.12 0 

196 608951.39 16 16.30 608951.39 16 16.19 0 

197 377142.61 13 11.89 377142.61 13 11.33 0 

198 486321.05 7 9.45 452663.19 9 10.99 6.9 

199 256985.02 9 11.05 256985.02 9 12.98 0 

200 1356998.35 11 12.33 1356998.35 11 13.09 0 

 

 

Table 7: The average computational results 

GA PSO 

Avg. Profit Avg. N Avg. Run Time (s) Avg. Profit Avg. N Avg. Run Time (s) 

774798.4 10.76 13.2773 743995.9 10.825 15.0019 

 

Table 8: Sensitivity analysis on X value 

   GA PSO 

Problem L X Profit N Profit N 
1 100 70 83575.99 18 76988.6 16 
2 100 75 132490.54 15 128074.96 15 
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3 100 80 198033.86 12 189271.05 10 
4 100 85 267503.95 10 263690.64 10 
5 100 90 324303.89 9 324303.89 9 

 

Table 9: Comparison of two strategies for discount start time, a) from the beginning of the period, b) from point 

X 

Parameters From the beginning of the period From 𝑋-point (𝑋 > 0) 

 Profit 𝑁 Profit 𝑁 
Base case 98102 13 340176 7 

𝛼 = 0.6 90891 14 300122 9 

𝛼 = 0.9 124785 10 541550 4 

𝛽 = 1 95148 13 338179 7 

𝛽 = 3 90254 14 360778 6 
𝐷𝐶 = 0.05 60451 16 290447 9 
𝐷𝐶 = 0.2 112581 11 380014 6 

L = 30 70500 16 240154 10 
L = 90 130147 10 450014 6 

𝜃 = 0.01 110487 11 441511 6 

𝜃 = 0.1 55177 16 112145 11 
C = 2500 100128 13 350998 7 
C = 3200 112478 12 367741 7 

 

 

Table 10: Comparison GA and PSO with BARON 

 
 

GA 
 

PSO 
 

BARON 

Problem 
 

Profit  
Run 

Time(s) 

RPD 

(%) 

 Profit  

 

Run 

Time(s) 

RPD 

(%) 

 
Profit 

Run 

Time(s) 

RPD 

(%) 

1  1105569.59 14.77 1.81  1105569.59 16.01 1.81  1125988.14 6.44 0.00 

2  1353491.58 10.36 9.89  1353491.58 19.67 9.89  1501825.88 2.36 0.00 

3  1057974.77 14.02 9.54  996025.88 18.26 14.83  1169514.45 2.88 0.00 

4  941158.36 14.88 3.53  941158.36 16.79 3.53  975639.07 5.01 0.00 

5  971182.71 15.05 1.45  956110.68 18.04 2.98  985562.74 4.41 0.00 

6  987714.83 15.44 8.85  951496.83 16.01 12.19  1083638.41 4.58 0.00 

7  990984.25 16.78 6.14  990984.25 19.21 6.14  1055861.22 6.47 0.00 

8  1069919.03 17.21 0.00  1069919.03 18.99 0.00  1069919.03 5.66 0.00 

9  916839.53 14.55 2.23  916839.53 16.99 2.23  937710.88 6.03 0.00 

10  1194089.49 14.88 5.15  1154893.11 16.15 8.27  1259056.33 7.99 0.00 

Average  1058892.41 14.79 4.86  1043648.88 17.61 6.19  1116471.62 5.18 0.00 
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