Investigation of non-Newtonian nano-fluid flow based on the first and second laws of thermodynamics by micro-annulus

Document Type : Article

Authors

1 Islamic Azad University, Jolfa, International branch, Jolfa, P.O. Box 54417-33574, Iran

2 Department of Mechanical Engineering, University of Tabriz, Tabriz, Iran

3 Faculty of Fisheries and Marine Science, State University of Gorontalo, Jalan Jenderal Sudirman, No. 6 Gorontalo, Indonesia

Abstract

In this study first and second law analyses of non-Newtonian nano-fluid flow through an annular cylinder filled with non-Newtonian water- CMC/TiO2 nano-fluid by considering temperature jump and slip velocity were investigated numerically. The single-phase was developed for heat transfer and nano-fluid flow. The impact of Reynolds number, nano-particles volume fraction, temperature jump, and slip velocity on Nusselt numbers and entropy generation were evaluated and the findings were discussed considering non-Newtonian performance of working fluid. The findings indicate that note the higher shear rate in the presence of the interior wall the Nusselt number for the interior wall was higher than outside walls. According to shear-thinning fluid behavior, when the flow has a higher shear rate, apparent viscosity would be small. So, it can be concluded that the apparent viscosity of flow close to the inner wall was low which decreased the impact of viscosity force and improved heat transfer due to convection-advection phenomena. In addition, the findings showed that the entropy generation ratio is very high at the entrance and it decreased along the annular tube. Furthermore, the apparent viscosity of fluid increases by nano-particle volume fraction.

Keywords


  • REFERENCES

    • Bejan , "Second-law analysis in heat transfer and thermal design", in Advances in heat transfer, 8, 1-58, (1982).
    • Chupradit, S., Jalil, A. T., Enina, Y., Neganov, D. A., Alhassan, M. S., Aravindhan, S., & Davarpanah, A. (2021). Use of Organic and Copper-Based Nanoparticles on the Turbulator Installment in a Shell Tube Heat Exchanger: A CFD-Based Simulation Approach by Using Nanofluids. Journal of Nanomaterials.
    • Hashemi, M. M., Nikfarjam, A., & Raji, H. "Novel fabrication of extremely high aspect ratio and straight nanogap and array nanogap electrodes". Microsystem Technologies, 25(2), 541-549, (2019).
    • Nabavi M., Nazarpour V., Alibak A. H., Bagherzadeh A., Alizadeh S. M., "Smart tracking of the influence of alumina nanoparticles on the thermal coefficient of nanosuspensions: application of LS-SVM methodology". Applied Nanoscience. pp. 1-16 (2021).
    • Hoseini M., Haghtalab A., Navid Family M. "Elongational behavior of silica nanoparticle-filled low-density polyethylene/polylactic acid blends and their morphology", Rheologica Acta 59:621–630, (2020). https://doi.org/10.1007/s00397-020-01225-5.
    • Tjahjono, T., Elveny, M., Chupradit, S., Bokov, D., Hoi, H. T., & Pandey, M. "Role of cryogenic cycling rejuvenation on flow behavior of ZrCuAlNiAg metallic glass at relaxation temperature". Transactions of the Indian Institute of Metals, 74, 3241-3247, (2021), https://doi.org/10.1007/s12666-021-02395-3.
    • Al-Shawi, S. G., Andreevna Alekhina, N., Aravindhan, S., Thangavelu, L., Elena, A., Viktorovna Kartamysheva, N., & Rafkatovna Zakieva, R. "Synthesis of NiO nanoparticles and sulfur, and nitrogen co doped-graphene quantum dots/nio nanocomposites for antibacterial application". Journal of Nanostructures, 11(1), 181-188, (2021).
    • Norouzi M, Rezaie MR. "An exact analysis on heat convection of nonlinear viscoelastic flows in isothermal microtubes under slip boundary condition". Journal of the Brazilian Society of Mechanical Sciences and Engineering. 40(9):1-7, (2018).
    • Chen, H., Bokov, D., Chupradit, S., Hekmatifar, M., Mahmoud, M. Z., Sabetvand, R., & Toghraie, D. "Combustion process of nanofluids consisting of oxygen molecules and aluminum nanoparticles in a copper nanochannel using molecular dynamics simulation". Case Studies in Thermal Engineering, 101628, (2021).
    • Sani, M. H., Sami, P., Shen, C., & Behzadnia, H. "High Resolution Biosensor with Simultaneous Detection of Two Refractive Index Sample in Optical Microstructure". Journal of Research in Science, Engineering and Technology, 9(03), 64-75, (2021).
    • Watandost, H., Achak, J., & Haqmal, A. "Oxidation of hydrogels based of sodium alginate and MnO2 as catalyst". International Journal of Innovative Research and Scientific Studies, 4(4), 191–199. (2021). https://doi.org/10.53894/ijirss.v4i4.77
    • Pham, Q. H., Chupradit, S., Widjaja, G., Alhassan, M. S., Magizov, R., Mustafa, Y. F., & Suksatan, W. "The Effects of Ni or Nb Additions on the Relaxation Behavior of Zr55Cu35Al10 Metallic Glass". Materials Today Communications, 102909, (2021).
    • Jahanmahin O., Kirby D. J., Smith B. D., Albright C. A., Gobert Z. A., Keating C. D., Fichthorn K. A., "Assembly of gold nanowires on gold nanostripe arrays: simulation and experiment". The Journal of Physical Chemistry C. 124(17), 9559-9571 (2020).    
    • Mojtabavi, L., & Razavi, A. "The Effects Of Addition Of Copper On The Structure And Antibacterial Properties Of Biomedical Glasses". European Chemical Bulletin, 9(1), 1-5, (2020).
    • Abdulrazzaq T., Togun H., Goodarzi M., Kazi S., Ariffin M., Adam N., Hooman K., "Turbulent heat transfer and nanofluid flow in an annular cylinder with sudden reduction". Journal of Thermal Analysis and Calorimetry. 141(1), 373-385 (2020).
    • Tayebi T., Öztop H. F., Chamkha A. J., "MHD natural convection of a CNT-based nanofluid-filled annular circular enclosure with inner heat-generating solid cylinder". The European Physical Journal Plus. 136(2), pp. 1-21 (2021).
    • He W., Toghraie D., Lotfipour A., Pourfattah F., Karimipour A., Afrand M., "Effect of twisted-tape inserts and nanofluid on flow field and heat transfer characteristics in a tube". International Communications in Heat and Mass Transfer. 110, pp. 34-56 (2020).
    • Chen Y., Shen C., Shi M., Peterson G. P., "Visualization study of flow condensation in hydrophobic microchannels". AIChE Journal. 60(3), pp. 1182-1192 (2014).
    • Fu, C., Rahmani, A., Suksatan, W., Alizadeh, S. M., Zarringhalam, M., Chupradit, S., & Toghraie, D. (2021). "Comprehensive investigations of mixed convection of Fe–ethylene-glycol nanofluid inside an enclosure with different obstacles using lattice Boltzmann method". Scientific Reports, 11(1), 1-16.
    • Shan B., Wang P., Zhang Y., Guo Z., "Discrete unified gas kinetic scheme for all Knudsen number flows. IV. Strongly inhomogeneous fluids". Physical Review E. 101(4), pp. 34-56 (2020).
    • Pathare, P. G., Tekale, S. U., Damale, M. G., Sangshetti, J. N., Shaikh, R. U., Kótai, L., & Silaev, R. P. "Pyridine and benzoisothiazole based pyrazolines: synthesis, characterization, biological activity, molecular docking and admet study". european chemical bulletin, 9(1), 10-21, (2020).
    • Reddy, N. A., Kamala, K., Dayam, R., & Saritha, K. V. "Glycerol Mediated One-Pot Synthesis Of Pyrazole Conjugated Tetrahydroquinoline Derivatives And Evaluation Of Their Anticancer Activity". European Chemical Bulletin, 9(9), 300-305, (2020).
    • Talavari, A., Ghanavati, B., Azimi, A., & Sayyahi, S. "PVDF/ MWCNT hollow fiber mixed matrix membranes for gas absorption by Al2O3" nanofluid Progress in Chemical and Biochemical Research, 4(2), 177-190, (2021). doi:10.22034/pcbr.2021.270178.1177    
    • Adebayo, M. A., Akande, S. O., Olorunfemi, A. D., Ajayi, O. O., Orege, J. I., & Daniel, E. F. "Equilibrium and Thermodynamic Characteristics of the Corrosion Inhibition of Mild Steel Using Sweet Prayer Leaf Extract in Alkaline Medium". Progress in Chemical and Biochemical Research, 4(1), 80-91, (2021). doi:10.22034/pcbr.2021.120449
    • Malvandi A., Ganji D., "Brownian motion and thermophoresis effects on slip flow of alumina/water nanofluid inside a circular microchannel in the presence of a magnetic field". International Journal of Thermal Sciences. 84, pp. 196-206 (2014).
    • Zhang T., Jia L., Yang L., Jaluria Y., "Effect of viscous heating on heat transfer performance in microchannel slip flow region". International journal of heat and mass transfer. 53(21-22), pp. 4927-4934 (2010).
    • Shamshiri M., Ashrafizaadeh M., Shirani E., "Effects of rarefaction, viscous dissipation and rotation mode on the first and second law analyses of rarefied gaseous slip flows confined between a rotating shaft and its concentric housing". Energy. 37(1), pp. 359-370 (2012).
    • Yari M., "Second-law analysis of flow and heat transfer inside a microannulus". International communications in heat and mass transfer. 36(1), pp. 78-87 (2009).    
    • Zhao J., "Axisymmetric convection flow of fractional Maxwell fluid past a vertical cylinder with velocity slip and temperature jump". Chinese Journal of Physics. 67, pp. 501-511 (2020).
    • Erbay L. B., Yalçın M. M., Ercan M. Ş., "EG in parallel plate microchannels". Heat and mass transfer. 43(8), pp. 729-739 (2007).    
    • Karimipour A., Ghasemi S., Darvanjooghi M. H. K., Abdollahi A., "A new correlation for estimating the thermal conductivity and dynamic viscosity of CuO/liquid paraffin nanofluid using neural network method". International Communications in Heat and Mass Transfer. 92, pp. 90-99 (2018).    
    • Jangili S., Gajjela N., Beg O. A., "Mathematical modeling of EG in magnetized micropolar flow between co-rotating cylinders with internal heat generation". Alexandria Engineering Journal. 55(3), pp. 1969-1982 (2016).
    • Thumma T., Mishra S., Bég O. A., "ADM solution for Cu/CuO–water viscoplastic nanofluid transient slip flow from a porous stretching sheet with EG, convective wall temperature and radiative effects". Journal of Applied and Computational Mechanics. 78, pp. 1-15 (2021).
    • Galchynska, J., Larina, Ya., Varchenko, O., Struk, N., & Gryshchenko, O. Perspectives of Ukrainian bioenergy development estimation by means of cluster analysis and marketing approach Economic Annals-ХХI, 187(1-2), 63-74 (2021).
    • Al-warda, H. S., Ahmed, M. R., & Al-Abachi, M. Q. "Thermodynamic study and spectrophotometric determination of cefixime trihydrate in pure form and pharmaceutical tablets using batch and normal flow injection analysis". Eurasian Chemical Communications, 3(7), 495-507, (2021). doi:10.22034/ecc.2021.289383.1183
    • Abdulrazzaq T, Togun H, Goodarzi M, Kazi SN, Ariffin MK, Adam NM, Hooman K. "Turbulent heat transfer and nanofluid flow in an annular cylinder with sudden reduction". Journal of Thermal Analysis and Calorimetry.141(1):373-85, (2018).
    • Sarafraz MM, Shadloo MS, Tian Z, Tlili I, Alkanhal TA, Safaei MR, Goodarzi M, Arjomandi M. "Convective bubbly flow of water in an annular pipe: role of total dissolved solids on heat transfer characteristics and bubble formation". Water, 11(8):1566., (2018).
    • Anand V., "Slip law effects on heat transfer and EG of pressure driven flow of a power law fluid in a microchannel under uniform heat flux boundary condition". Energy. 76, 716-732 (2014).
    • Kiyasatfar M., "Convective heat transfer and EG analysis of non-Newtonian power-law fluid flows in parallel-plate and circular microchannels under slip boundary conditions". International Journal of Thermal Sciences. 128, pp. 15-27 (2018).
    • Ramanuja M., Krishna G. G., Sree H. K., Radhika V. N., "Free Convection in a Vertical Slit Micro-channel with Super-hydrophobic Slip and Temperature Jump Conditions". Journal homepage. 38(3), pp. 738-744 (2020).
    • Li Y., Kalbasi R., Karimipour A., Sharifpur M., Meyer J. P., "Using of Artificial Neural Networks (ANNs) to predict the rheological behavior of MgO-Water nanofluid in a different volume fraction of nanoparticles, temperatures, and shear rates". Authorea Preprints. 56(4), pp. 78-97 (2020).
    • Lin Y., Zheng L., Zhang X., "Radiation effects on Marangoni convection flow and heat transfer in pseudo-plastic non-Newtonian nanofluids with variable thermal conductivity". International Journal of Heat and Mass Transfer. 77, pp. 708-716 (2014).
    • Ghalandari M., Mirzadeh Koohshahi E., Mohamadian F., Shamshirband S., Chau K. W., "Numerical simulation of nanofluid flow inside a root canal". Engineering Applications of Computational Fluid Mechanics. 13(1), 254-264 (2019).
    • Campbell C. S., Gong A., "The stress tensor in a two-dimensional granular shear flow". Journal of Fluid Mechanics. 164, pp. 107-125 (1986).
    • Gabbanelli S., Drazer G., Koplik J., "Lattice Boltzmann method for non-Newtonian (power-law) fluids". Physical review E. 72(4), pp. 45-67 (2005).
    • Hojjat M., Etemad S. G., Bagheri R., Thibault J., "Rheological characteristics of non-Newtonian nanofluids: experimental investigation". International Communications in Heat and Mass Transfer. 38(2), pp. 144-148 (2011).
    • Ahmadizadeh, P., Mashadi, B., & Lodaya, D. "Energy management of a dual-mode power-split powertrain based on the Pontryagin's minimum principle". IET Intelligent Transport Systems, 11(9), 561-571, (2017).
    • Satapathy A. K., "Slip flow heat transfer in an infinite microtube with axial conduction". International Journal of Thermal Sciences. 49(1), pp. 153-160 (2010).
    • Al-Kahtani, A. A., Tabassum, S., Raya, I., Khlewee, I. H., Chupradit, S., Davarpanah, A., & Ali, S. "Influence of Different Rotations of Organic Formamidinium Molecule on Electronic and Optical Properties of FAPbBr3 Perovskite". Coatings, 11(11), 1341, (2021).
    • Bahiraei M., Alighardashi M., "Investigating non-Newtonian nanofluid flow in a narrow annulus based on second law of thermodynamics". Journal of Molecular Liquids. 219, 117-127 (2016).
    • Anggono, A. D., Elveny, M., Abdelbasset, W. K., Petrov, A. M., Ershov, K. A., Zhu, Y., & Surendar, A. "Creep Deformation of Zr55Co25Al15Ni5 Bulk Metallic Glass Near Glass Transition Temperature: A Nanoindentation Study". Transactions of the Indian Institute of Metals, 1-8, (2021).