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Abstract: In this article, for achieving an effective and environmental-friendly 

production scheduling, we investigate a multi-objective low-carbon hybrid flow shop 

scheduling problem (MLHFSP) with the consideration of machines with varied 

energy usage ratios. The problem is formulated by a multi-objective mathematical 

model with two optimization objectives, i.e., minimizing total carbon emission (TCE) 

and makespan (Cmax). We primarily analyse on the formation of TCE and derive its 

mathematical expression. MLHFSP is NP-hard, therefore, to tackle the model, an 

improved multi-objective teaching-learning-based optimization (ITLBO) algorithm is 

proposed. The ITLBO algorithm mainly contains global search based teaching phase 

and local search based learning phase. In ITLBO, a solution is represented by two 

vectors, i.e., job sequence vector and machine assignment vector. Sigma method is 

utilized to quantify each individual, and to avoid local optimum, sequential 

neighbourhood search (SNS) method is also adopted. Experimental results validate 

the feasibility and effectiveness of proposed ITLBO in addressing MLHFSP. The 

research findings help manufacturing engineers to seek a sophisticated balance 

between carbon emission reduction and makespan reduction. 

 

Keywords: Production scheduling; Carbon emission; Makespan; Hybrid flow shop 

scheduling; Teaching-learning-based optimization 

1. Introduction 

Production scheduling is taken as the key technique and core issue to the management 

of numerous manufacturing enterprises [1-3]. Nowadays, manufacturing industry has 

become the main source of resource consumption and pollutant emission all over the 
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world, which leads to continuous deterioration of ecological environment and hinders 

the healthy development of global economy [4-5]. According to Efficiency [6], the 

manufacturing industry is responsible for about 30% of energy consumption and 

about 40% of CO2 emission. Strict laws and regulations are being promulgated by 

governments and relevant organizations to shape the manufacturing industry into an 

environment-friendly one [7-10]. 

It has been proven that scheduling is an effective way in reducing energy 

consumption of manufacturing industry [11]. Hybrid flow shop is close to 

manufacturing industry and is commonly adopted by manufacturing enterprises. It can 

be regarded as the combination of the general flow shop and parallel locomotive shop, 

thus has a more flexible production process and is more in line with practical 

situations [12-14]. Its derivative problem, hybrid flow shop scheduling problem 

(HFSP) can be found in many real production systems, such as chemical industry, 

paper and logistics industry [15]. In addition, the HFSP owns a theoretical 

significance due to its NP-hard property. 

Fu et al. considered a stochastic HFSP with deteriorating jobs with two 

time-related optimization objectives, i.e., makespan and total tardiness and introduced 

a novel evolutionary algorithm to seek for optimal solutions [16]. Li et al. proposed an 

improved artificial bee colony algorithm for addressing distributed HFSP with 

sequence-dependent setup times where makespan was optimized [17]. A modified 

single-player Monte-Carlo tree search-based method was used to minimize the 

makespan of HFSP with multi-constraint [18].  

With the global warming and energy resources shortage becoming more and 

more serious, increasing attention has been paid to energy conservation [19] and 

researches on energy-aware HFSP have become a hot topic recently. Chen et al. 

studied the energy-aware HFSP with lot streaming in which production makespan and 

electric power consumption were minimized [20]. A multi-objective genetic algorithm 

was designed to obtain Pareto solutions. An energy-aware HFSP with forging 

operations was proposed by Liu et al. [21]. They established a multi-objective model 

with diverse time elements considered and employed the Turn On/Off strategy to 

obtain a smaller energy consumption. Hasani et al. considered a HFSP with 

machine-dependent processing stages and aimed to seek a balance between energy 

consumption and production costs by non-dominated sorting genetic algorithm 

(NSGA-II) [22]. Li et al. discussed an energy-aware HFSP with different objective 

importance [23]. Compared with objectives of makespan and total tardiness, total 

energy consumption was most concentrated. Imperialist competitive algorithm was 

improved to find promising solutions and computational results verified solution 

efficiency and effectiveness. Zheng et al. investigated a two-stage HFSP with 

consideration of minimizing total energy costs and makespan for job batches, and 

developed a mixed ant colony optimisation algorithm to address this problem [24]. 

First input first output and Johnsons rules were utilized to schedule batches. 

Compared with NSGA-II and the strong Pareto evolutionary algorithm, effectiveness 

of the mixed algorithm was validated. Considering the varying energy prices, Schulz 

et al. established an energy-aware hybrid flow shop scheduling model where 

makespan, total energy costs and peak power were taken as the optimization 

objectives [25].  

The methods used for solving production scheduling in HFSP related literature 

can mainly be divided into three groups, i.e., exact methods, heuristic algorithms and 

intelligent optimization algorithms. However, exact methods are only suitable for 

HFSP with a small scale and heuristic algorithms are sensitive to the characteristics of 
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actual problems [26]. Intelligent optimization algorithms which get inspired from 

natural phenomena and natural principles are favoured by the majority of scholars due 

to their characteristics of simple implementation, fast convergence and strong search 

ability for optimal solutions in addressing NP-hard problems [27-29]. Recently, Ding 

et al. adopted a discrete particle swarm optimization algorithm for addressing the 

energy-aware HFSP, where tabu search method was integrated to enhance the solution 

quality in search space [30]. Dai et al. proposed an energy- aware model to illustrate 

HFSP with two optimization objectives of total energy consumption and makespan 

[31]. To solve this model, genetic algorithm and annealing algorithm were combined 

to refine potential solutions. 

Table 1 lists the relevant papers for solving HFSP. On the whole, most papers 

concentrated on either time-related objectives, cost-related objectives or 

energy-related objectives, such as makespan, total tardiness, production costs, total 

energy cost, total energy consumption, electric power consumption and so on. On the 

other hand, discharged carbon emission in various shops has great impacts on the 

environment and studying a low-carbon HFSP is an important and practical direction. 

However, there is little research on the carbon emission formulation and optimization. 

Moreover, in reality, machines often have different energy consumption 

characteristics and little research considers this yet. To address these gaps, this study 

considers a multi-objective low-carbon HFSP (MLHFSP) with the consideration of 

machines with different energy usage ratios and try to make a comprehensive 

trade-off between total carbon emission and makespan. 

Please insert Table 1 here 

The teaching-learning-based optimization (TLBO) algorithm, as a newly 

developing intelligent algorithm, has arisen extensive attention from scholars recently. 

TLBO algorithm firstly proposed by Rao et al. is an emerging nature-inspired 

population algorithm whose implementation imitates the actual teaching process of 

teachers and the learning process of students [32]. Because of its simplicity, faster 

convergence speed, strong convergence ability and less control parameters, the TLBO 

algorithm has been widely concerned in many fields, such as, machine learning [33], 

power distribution [34], parameter optimization [35], especially in the field of shop 

scheduling [36-39]. However, TLBO algorithm is primarily designed to deal with 

those continuous optimization problems, which is infeasible to address the studied 

discrete MLHFSP. Besides, TLBO algorithm can easily fall into local optimum and 

its convergence efficiency needs to be further enhanced. So, in this paper, we make 

several modifications on basic TLBO algorithm and design an improved TLBO 

(ITLBO) to solve the MLHFSP. 

Compared with previous work, this work makes the following three 

contributions. 

1) Investigating the multi-objective low-carbon hybrid flow shop scheduling 

problem (MLHFSP) with processing machines that have different energy usage ratios, 

where total carbon emission and makespan objectives are optimized simultaneously. 

2) Formulating a multi-objective mathematical model with several constraints to 

express this NP-hard scheduling problem and designing an improved TLBO (ITLBO) 

algorithm to solve it. 

3) Through numerical experiments, indicating the feasibility and effectiveness of 

the proposed ITLBO algorithm, compared with NSGA-II and MOEA/D under several 

evaluation metrics, in addressing such scheduling problems. 

The rest of the paper is arranged as follows. Section 2 gives detailed problem 

descriptions on MLHFSP and shows the process of mathematical model 
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establishment. The ITLBO algorithm is introduced in Section 3. Comparison 

experiments with other algorithms are conducted on several designed instances, and 

their results and discussions are drawn in Section 4. Section 5 concludes the paper and 

gives future researches. 

2. Problem descriptions and model establishment 

2.1. Problem description 

As shown in Fig. 1, the studied MLHFSP can be organized as follows. There are a set 

of jobs to be processed at a series of processing stages sequentially from the first stage 

to the final stage and each stage is composed of two or more identical parallel 

machines with distinct energy usage ratios. The problem is to decide the job sequence 

for each processing stage and machine assignment for each job on the purpose of 

minimizing total carbon emission (TCE) and makespan (Cmax).  

In the studied problem, the processing time of a job is fixed no matter which 

machine is used. But machines at a same stage are with different energy usage ratios. 

If a lower total carbon emission is favoured, jobs will prefer to be processed on 

machines with large energy usage ratio, which will leave machines with small energy 

usage ratio idle for a long time. Obviously, it will lead to a higher makespan and vice 

versa. In other words, there exists a trade-off between TCE and Cmax. 

Please insert Fig. 1 here 

Also, assumptions declared to describe the studied scheduling problem are 

organized as follows: (1) No job can be processed on two or more machines at a time, 

and a machine can only process one job at a time; (2) Once a job is processed on a 

specific machine, it will stay on the machine until finished; (3) Jobs travels 

sequentially through all stages and stage skipping of all jobs is not permitted; (4) A 

job will be transported to next processing stage instantly once it is finished at a 

specific stage, and transportation times for jobs between any two consecutive stages 

are ignored; (5) Machines are in good condition and random failures are not 

considered; (6) Setup times are sequence-independent, thus could be included in 

processing time; (7) Machines will be turned on once the first job assigned to them 

and will be shut down once all jobs assigned to them are finished. 

2.2. Notation illustration 

Symbol Description 

J  Set of jobs to be scheduled and  1,2, , , ,J i n . 

S  Set of processing stages and  1,2, , , ,S j s . 

jM  Set of identical parallel machines at stage j and  1,2, , , ,mj jM k  

jkM  k-th machine at stage j 

L  Set of machine positions and  1,2, , , ,L l n . 



5 

 

,i jt  Processing time of job i at stage j. 

,i js  Start time of job i at the stage j. 

,i je  Completion time of job i at the stage j. 

, ,j k lB  Beginning time of the job at position l of machine k in stage j. 

, ,j k lE  Ending time of the job at position l of machine k in stage j. 

j

workP  Power of machines working jobs at stage j. 

j

idleP  Idle power of machines in stage j. 

Q  A very large positive number. 

,j kr  Energy usage ratio of machine k in stage j. 

2.3. Two optimization objectives 

 
 

, , , ,

, , 1 , ,

1,2, , 1,

TCE
j j

j

work i j i j k l j

c j k l j k l idle

i J j S k M l L j S k M l nj k

P t x
K B F P

r


       

  
     

  
     (1) 

 max ,max i s
i J

C e


                          (2) 

Eq. (1) shows the total carbon emission in the shop, elements in brackets refers 

to total energy consumption in the period. According to [40], there exists a linear 

relationship between carbon emission and energy consumption in manufacturing. 

Parameter Kc represents the electricity carbon emission factor and is set to 0.1524 g 

CO2/kJ according to [40]. The left symbol denotes the energy consumption when 

machines are in processing state; and the right symbol denotes the energy 

consumption when machines are in idle state. 

Eq. (2) formulates the makespan, i.e., the maximum of completion times of all 

jobs at the last processing stage. 

2.4. Mathematical model 

According to the characteristics of the studied MLHFSP, its corresponding 

mathematical model is established as bellows: 

1Min  TCEf                                                         (3) 

2 maxMin  f C                                                         

(4) 
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s.t. 

, , , 1  ,
j

i j k l

k M l L

x i J j S
 

                                                      (5) 

, , , 1  , ,i j k l j

i J

x j S k M l L


                                                    (6) 

 , , , , , , 1  , , 1,2, , 1i j k l i j k l j

i J i J

x x j S k M l n

 

                                      (7) 

, , , , , ,   ,
j

i j i j i j i j k l

k M l L

e s t x i J j S
 

                                          (8) 

, , , , , , , ,   , ,j k l j k l i j i j k l j

i J

F B t x j S k M l L


                                      (9) 

 , , 1  , 1,2, , 1i j i je s i J j s                                              (10) 

 , , , , 1  , , 1,2, , 1j k l j k l jF B j S k M l n                                      (11) 

 , , , , , ,+M 1   , , ,j k l i j i j k l jB s x i J j S k M l L                                 (12) 

 , , , , , ,M 1   , , ,j k l i j i j k l jB s x i J j S k M l L                                 (13) 

, 0  ,i js i J j S                                                         (14) 

, , 0  , ,j k l jB j S k M l L                                                  (15) 

, , ,

1,   if job  is assigned to the -th position of machine  at stage 

0,   otherwise
i j k l

i l k j
x


 


               (16) 

The objective (3) is to minimize the TCE, and the objective (4) is to minimize 

the makespan Cmax. Constraint (5) guarantees that each job can only be assigned to 

only one position of one machine at per processing stage. Constraint (6) ensures that 

no two or more jobs can be assigned to a same position of one machine at per 

processing stage. Constraint (7) makes sure that jobs must be assigned to preceding 

positions of one machine and position skip is not allowed. Constraints (8) and (9) 

ensure that job operations cannot be interrupted. Constraints (10) and (11) specify the 

order of time. (10) makes sure that a job cannot be transferred to next stage until its 

current processing operations have been done. (11) makes sure that a machine can 

only process the next job after finishing the current one. Constraints (12) and (13) try 

to establish the relationship between , ,j k lB  and ,i js . Constraints (14)-(16) describe 

some variables and (16) is a binary variable. 

3. Improved teaching-learning-based optimization (ITLBO) algorithm  

In this section, we introduce an improved TLBO algorithm (ITLBO) to address the 

MLHFSP and its procedures are summarized in Fig. 2. Compared with basic TLBO, 

we make the following five improvements: (1) a two-vector encoding mechanism and 

an integrated initialization strategy are designed to represent solutions efficiently and 
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improve the quality of initial population; (2) an external archive with fixed capacity is 

set to store the elite teachers iteratively updated via Sigma method to guide the whole 

population; (3) three crossover operators are specially designed and conducted 

between teachers and students in teaching phase to enhance the global search ability; 

(4) three neighbourhood structures based sequential neighbourhood search (SNS) 

method is introduced and implemented on all individuals in learning phase to enhance 

the local search capability; (5) self-learning is removed from basic TLBO and 

individuals that haven’t been improved in learning phase in several rounds will be 

abandoned and replaced by a new individual so as to skip local optimum. 

Please insert Fig. 2 here 

3.1. Encoding and decoding representation 

The basic TLBO algorithm is primarily designed to deal with those continuous 

optimization problems, and due to that the studied MLHFSP is essentially a discrete 

problem, encoding and decoding methods ought to be highly addressed to suit the 

actual condition. The studied problem contains two sub-problems, i.e., job sequence 

and machine assignment. To achieve an effective schedule, a solution is encoded by 

two vectors: job sequence vector (JV) and machine assignment vector (MV). 

For the MLHFSP with n jobs, m stages, a solution is represented in Fig. 3. The 

JV represents a feasible job sequence and has the same dimension as job count. i  

indicates job index and n denotes the job count. The MV is a n s  matrix that 

records the machine selection along sequential processing stages. ijz  represents the 

machine which job i assigned at stage j. 

Please insert Fig. 3 here 

To get corresponding schedules, the decoding process is also designed. Its 

detailed procedure can be divided into following steps: 

Step 1: Initialize available times of all machines and completion times of all jobs to 

zero. 

Step 2: At processing stage 1(i.e., current stage index j=1), pick out job i  from SV 

one-by-one and do followings: (1) select its assigned machine 1iz  from MV and 

available time of this machine; (2) compute completion time of job i  by adding its 

processing time; (3) update available time of machine 1iz . 1j j  , go to Step 3. 

Step 3: If current processing stage index satisfies j s , implement Step 4; if not, 

implement Step 5. 

Step 4: Based on First Come First Serve (FCFS) principle, arrange completion times 

of all jobs at previous stage in ascending order and obtain a new job sequence 

1 2, , , n     
 

. And then pick out job i   from it one-by-one and do followings: 

(1) select its assigned machine 
i j

z
 

 from MV and available time of this machine; (2) 

compute completion time of job i   by adding its processing time; (3) update 

available time of machine 
i j

z
 

. 1j j  , go to Step 3. 

Step 5: A feasible schedule is produced, and then output TCE and Cmax via Eqs. (1) 

and (2). 
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3.2. Population initialization 

In the ITLBO algorithm, each student/teacher represents a potential solution. 

Obviously, the quality of initial populations has great influences on the convergence 

speed and solution quality of an algorithm. Random generation, as a common 

initialization method, can be easily coded and implemented. However, the initial 

population generated by this is not ideal in terms of not only the optimal solution 

quality also the convergence speed. If the corresponding initialization method is 

designed based on the characteristics of specified optimization objectives, more 

desired solutions can be produced at the beginning, thus improving the algorithm 

efficiency. As a result, random generation and strategy determination are combined to 

generate a set of initial solutions with high quality. 

As discussed in Section 2.1, there exists a trade-off between TCE and Cmax. In 

this paper, random generation is used for 20% of the initial population, that is, 

randomly sorting the numbers from 1 to n in SV and randomly assigning machines to 

MV with constraint of limited machine count per processing stage. 40% is built based 

on a low TCE strategy, that is, choosing machines with high energy usage ratios as 

much as possible in MV. For the rest 40%, we adopt a low Cmax strategy, that is, 

distributing jobs as evenly as possible to parallel machines so as to enable jobs to 

enter next stage earlier and shorten Cmax. Clearly, the integrated initialization method 

is easy to conduct and can improve the solution quality and diversity of initial 

population. The population is simply denoted as set P . 

3.3.Multi-objective optimization, sigma method and archive maintenance 

As discussed in Section 2, two objectives are formulated in this paper, i.e., TCE and 

Cmax. When objectives are in a state of conflict, there will be no optimal solution that 

can make all the objectives reach the maximum or minimum simultaneously, we can 

only seek non-dominated solutions or Pareto solutions where the improvement of one 

objective is at cost of spoiling other objectives. 

After implementation of initialization process, population P of size N is 

produced. In order to quantitatively evaluate all the students/individuals, sigma 

method proposed by [41] is used. Its calculation procedures contain the following two 

steps:  

Step 1: All of the solutions will be sorted by employing the fast non-dominated 

sorting technique [42] and finally, each solution will get its corresponding rank. 

Step 2: Calculate the sigma values for all individuals via: 

 

 
 

rank

2

1

1

rank 1 2k i
Ni i

k
k

j

f X
Sigma

f j



 
 
    
 
 
 




            (17) 

where iSigma is the sigma value of individual Xi ;  Xk if is the k -th objective value of 

individual Xi ; ranki corresponds to the rank layer index in which individual Xi lies; 

and rankN represents the count of individuals that with the same rank ranki . Note that 

individuals with small sigma values are preferred. Sigma method is also presented in 

Fig. 4. For more details on sigma method and its applications in scheduling field, 

please also refer to [43-45]. 

Please insert Fig. 4 here 
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In proposed ITLBO algorithm, an external archive  that preserves the best 

individuals (Pareto solutions) so far is set and  will be updated each generation. 

Meanwhile, there also exists a finite set Ψ called teacher set in ITLBO. Ψ stores 

relatively good individuals with size of TN ( T1 N N  ) and those individuals are 

treated as teachers. In other words, there exists TN  teachers in the whole class to 

improve the students’ scores. And according to [46], it is feasible and effective to 

employ more than one teacher to solve NP-hard optimization problems.  

As Fig. 2 shows,  works as follows: At the beginning of ITLBO algorithm,  

is formed by non-dominated solutions in initial population; at the end of a specific 

generation,  will be combined with P  and fast non-dominated sorting technique is 

utilized to this mixed population. The individuals with rank 1 will be thrown into new 

, that is how archive  is updated. Note that  is an external set with an unfixed 

capacity. On the other hand, Ψ works as follows: At the beginning of ITLBO 

algorithm, sigma method is employed into initial population and individuals with TN  

best sigma values make up for Ψ; at the end of a specific generation, previous 

population P  evolves to population P  after teaching phase and learning phase, and 

then sigma method will be used again on P  to determine TN  best solutions, that is 

how set Ψ is updated. Note that a bigger TN  can occupy huge computing resources 

and is not conducive to the population evolution. Therefore, TN  should be carefully 

determined. 

3.4. Teaching phase 

Teaching phase aims to explore promising regions in the search space. In this phase, 

individuals/students get their performance improved through learning knowledge 

from the teacher. The crossover operator is commonly used to imitate the information 

sharing process because of its strong global search capability. Considering the 

characteristics of the studied problem, three crossover operators are designed for JV 

and MV to improve the diversity of population. 

(1) two crossover operators for JV: Two-point crossover (TPX) and Order 

crossover (OX) are designed and their corresponding processes are presented in Fig. 

5. 

 (2) one crossover operator for MV: Due to the difference in quantity of parallel 

machines in those processing stages, a simple crossover operator is designed for MV. 

It works as follows: 1) determine a teacher Xteacher  and a student Xi ; 2) randomly 

select two positions that satisfy 1  Position 1 < Position 2 ns  ; 3) replace the 

elements between the two positions in Xi  with the elements in Xteacher  on same 

positions. The crossover operator for MV is called Direct crossover (DX) and its 

procedure is also visualized in Fig. 6. 

Please insert Fig. 5 here 

Please insert Fig. 6 here 

In this teaching phase, each generation individual gets its scores enhanced by 

learning from one teacher that randomly selected from set , as presented in Fig. 2. 

At this time, two conditions exist: I) If the current individual happens to be a 

constituent member of , then it learns knowledge from one of other teachers in ; II) 

If the current individual doesn’t belong to , then directly pick up one teacher from  
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and learn from him. 

The interaction among three designed crossover operators guarantees the 

diversity of population in search space, and only new individuals Xnew

i
 are produced 

while Xteacher  remains unchanged. It should be noted that executing all the three 

crossover operators is time-consuming, thus we developed a novel teaching strategy 

where operators are triggered by two probabilities p1 and p2, which is presented in Fig. 

2. Usually, solving job sequence problem is more complicated and difficult than 

addressing machine assignment problem, thus we give a bigger opportunity for JV to 

execute its crossover operations. We set p2 as 0.6 and TPX shares a same probability 

with OX, which is p1 = 0.3 based on a number of experiments. 

3.5. Learning phase 

Learning phase aims to enhance the local search capability of algorithm, it simulates 

the phenomenon that students enrich their knowledge with the assistance of their 

mutual interaction. In ITLBO algorithm, an effective SNS method is adopted to refine 

a candidate solution around promising areas. The SNS method is composed of three 

neighbour structures, including neighbour structure job insertion, neighbour structure 

job swap and neighbour machine assignment. The former two is designed for JV and 

the last one is for MV, which is presented as follows: 

Neighbour Structure Job Insertion (NS1): Randomly select a job in JV and 

insert it to a different position. Meanwhile, MV keeps unchanged. An example is 

shown in Fig. 7. 

Neighbour Structure Job Swap (NS2): Randomly pick two jobs in JV and 

exchange them. Similar to NS1, MV keeps unchanged. An example is shown in Fig. 

7. 

Neighbour Structure Machine Assignment (NS3): Randomly select one 

element in MV and find its corresponding processing stage. Assigned a different 

machine index constrained by machine quantity in this stage to it. In NS3, JV remains 

unchanged. An example is shown in Fig. 7. 

Please insert Fig. 7 here 

To avoid falling into local optimum, an individual will be abandoned and 

replaced by a new randomly generated one if a certain number of neighbourhood 

execution cannot find a better individual. In ITLBO, the certain number is controlled 

by a positive integer 1Limit   and neighbourhood execution index is set as count . 

Overall, the SNS method in the learning phase (also visualized in Fig. 2) is as 

follows: 

Step 1: Set execution index count to 0. 

Step 2: Apply NS1 on current individual X i  to obtain a new individual Xnew

i
. If 

Xnew

i
 dominates X i , go to Step 6; else continue to the next step, i.e., Step 3. 

Step 3: Apply NS2 on current individual X i  to obtain a new individual Xnew

i
. If 

Xnew

i
 dominates X i , go to Step 6; else continue to the next step, i.e., Step 4. 

Step 4: Apply NS3 on current individual X i  to obtain a new individual Xnew

i
. If 

Xnew

i
 dominates X i , go to Step 6; else do count = count +1 and go to Step 5. 

Step 5: If count ≤ Limit, go to Step 2; else go to Step 7. 

Step 6: Replace X i  with the better Xnew

i
. 
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Step 7: Replace X i  with a new randomly produced individual. 

The SNS continues to run until all of individuals in P  are updated. 

3.6. Termination rules 

As shown in Fig. 2, maximum CPU time is determined as the stop condition of 

ITLBO algorithm. By this, we can apply more computational resources for instances 

with large scales. The maximum CPU time is characterized as n s v   (unit: ms), 

and recall that n  refers to the count of jobs and s  denotes the count of processing 

stages. v  is a fixed value and is set as 600 based on our pretesting results. 

4. Experiments and results 

In this section, we carry out extensive experiments to test the performance of 

proposed ITLBO algorithm in dealing with MLHFSP. Note that all the experiments 

are coded in MATLAB and runs on an Intel i7-7700 2.80GHz PC with 8 GB memory. 

4.1 Test instances generation  

As described above, test instances used for addressing the MLHFSP are composed of 

count of jobs ( n ), count of processing stages ( s ), count of unrelated parallel machines 

in each processing stage ( m j
), working time of jobs on stages (

,i jt ), processing/idle 

powers of machines ( j

workP / j

idleP ) and energy usage ratios of machines (
,j kr ).We 

initialize the above data by follows. Specifically, there is a set of jobs 

 20,30,40,60,80,100n  available. The count of processing stages has four levels 

 3,5,8,10s  and m j
are randomly produced from a discrete uniform distribution with 

arrange of  2 5U ， , where U represents the normal distribution. 
,i jt are randomly 

created from  U 1, 99 . j

workP and j

idleP  are randomly produced from discrete uniform 

distribution on  4,8 and  1,3 , respectively. At last, ,j kr
 are sampled from 

 0.7,1.0U
.  

Considering the levels of n  and s , we have 24 problem configurations in total. 

For each configuration, five instances will be created and therefore, we can get a 

group of 120 instances for experimental tests. 

4.2 Comparative algorithms and evaluation metrics 

To test the performance of ITLBO in addressing MLHFSP with 120 instances, two 

popular multi-objective optimization algorithms, NSGA-II [42] and MOEA/D [47] 

are chosen as its peers. NSGA-II is based on the evolution of gene and MOEA/D is on 

the basis of the idea that a multi-objective problem can be decomposed into several 

single objective optimization problems. The two algorithms are commonly used in 

solving optimization problems and show good performance. 

Several performance metrics that can be employed to assess the results of 

multi-objective optimization algorithms. In the experiment, three following evaluation 

metrics are selected to evaluate algorithm performance quantitatively finally. Note 

that obtainPF  and truePF  refer to the PF obtained by a specific algorithm and the PF 
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gotten from PFs among all runs of different algorithms after Pareto dominance, 

respectively. 

1) Generational Distance Metric (GD): this metric is used to measure how 

close obtainPF  is to truePF , formulated as [48]: 

2

1

1
GD

N

i

i

d
N 

                        (18) 

where N refers to the size of obtainPF , di refers to the Euclidean distances between the 

i-th solution in obtainPF  and its nearest point in truePF . Usually, a smaller GD value 

indicates an algorithm is with better convergence. 

2) Spread Metric (): this metric is to illustrate the diversity of solutions in 

obtainPF , formulated as [48]: 

 

1

1=
1

N

f l ii

f l

d d d d

d d N d




  


  



                     (19) 

where d  refers to the average of all distances id , 
fd  and ld  represent the 

Euclidean distances between extreme solutions in obtainPF  and boundary solutions in 

truePF . The smaller  is, the better the obtainPF  is in terms of distribution and diversity. 

To eliminate the influence of dimensions, a normalization process is utilized. 

3) Inverted Generation Distance Metric (IGD): this a comprehensive metric to 

reflect both convergence and diversity, formulated as [48]: 
*

*2

*
1

1
IGD

N

i

i

d
N 

                      (20) 

where *N represents the count of solutions in truePF . As a variation of the GD 

indicator, *

id  in IGD refers to Euclidean distances between the i-th solution in truePF  

and its nearest point in obtainPF . Similar to the GD indicator, a smaller IGD is 

preferred. In summary, lower GD, , and IGD values are more desired. 

4) Hyper-volume Metric (HV): this metric is to illustrate the diversity and 

advancement of solutions in obtainPF , formulated as [49]: 

obtainPF

1

HV i

i

V


                     (21) 

where obtainPF  refers to the size of 
obtainPF . 

iV  represent the hyper-volume 

produced from ith non-dominated solution in 
obtainPF to a reference point which is 

dominated by all non-dominated solutions. The MLHSFP is a minimization problem 

and the reference point is set as (1.2, 1.2). Meanwhile, we normalize the objective 

values of solutions in 
obtainPF into  0,1 .Usually, a bigger HV indicates a better 

approximation and distribution. 

4.3 Parameter setting 

As mentioned above, three main parameters, i.e., population size N , teacher number

TN , and maximum neighbourhood execution count Limit  in proposed ITLBO 
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algorithm should be determined. In this paper, we use design of experiment (DOE) 

method to determine an optimal parameter combination of the three main parameters. 

As Table 2 represents, each parameter has four different levels and therefore, a 
16L  

orthogonal array is established. 

Please insert Table 2 here 

The proposed ITLBO algorithm will run 20 times independently on problem 

configuration 30 5 , and the average IGD value for 20 times is selected as average 

responding value (ARV). The computational results are reported in Table 3. Based on 

the data in Table 3, Table 4 presents significant rank of three main parameters by 

DOE. Also, Fig. 8 shows the parameter trends. It can be seen from Table 4 that 

Limit  has the biggest influence on the performance of ITLBO, followed by 

parameters N and TN . Given a fixed running time, if Limit  is too small, individuals 

may not occupy enough opportunities to refine themselves. Population size N  plays 

a second important role as it has a direct relationship with population diversity and 

global search capability. The existence of multiple teachers can accelerate the 

convergence speed of algorithm, however, if TN  is too large, the premature problem 

will occur. From Fig. 8, ITLBO can gain a better performance when 80N  , 

T 0.2*N N and 20Limit  . This parameter configuration will be used in the 

following numerical experiments. 

Please insert Fig. 8 here 

Please insert Table 3 here 

Please insert Table 4 here 

4.4 Comparison results 

In this section, we are going to compare the performance of the proposed ITLBO 

algorithm with NSGA-II and MOEA/D based on GD,  and IGD indicators. For an 

instance, each algorithm will run five times independently and its corresponding three 

indicator values will be obtained, and then obtained values are averaged and grouped 

under the same problem configuration n s . Computational results are reported in 

Table 5 where best results among the algorithms are highlighted. In addition, to 

provide the results with confidence, additional statistical tests are conducted by using 

one-factor analysis of variance (ANOVA) technology in which the algorithm type is 

taken as a single factor. Mean plots with Tukey honestly significant difference 

intervals (95% confidence level) of GD,  and IGD indicators are presented in Figs. 

9-11, respectively. Besides, experimental results on the mean hyper-volume values are 

recorded and they are also reported in Table 6, where the best results among the three 

algorithms are highlighted. 

Please insert Fig. 9 here 

Please insert Fig. 10 here 

Please insert Fig. 11 here 

From Table 5, regarding the comparison results on GD, the GD values of 

ITLBO vary from 0.0098 to 0.0862 while those are between 0.0086 and 0.3240 for 

comparative algorithms NSGA-II and MOEA/D, which indicates the good solving 

capability of ITLBO. From the  comparison results we can find that, ITLBO 

outperforms the comparative algorithms in most instances, and in one case it is the 

opposite. The average  values indicate that ITLBO is superior than the rest in terms 

of solution distribution and NSGA-II is inferior than it. Based on IGD computational 
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results, ITLBO performs better than NSGA-II and MOEA/D in convergence ability to 

true Pareto fronts and solution diversity. As presented in Table 6, although the 

proposed ITLBO algorithm performs slightly poorly when test instance is 80×5, for 

most instances (in 23 out of 24), the ITLBO algorithm receives higher HV values than 

NSGA-II and MOEA/D, which indicates that ITLBO performs better than NSGA-II 

and MOEA/D.  

Regarding Figs. 9-11, we can find that the proposed ITLBO algorithm gets the 

lowest mean GD, Spread and IGD values among the three algorithms. ITLBO 

receives the smallest operating deviation in terms of GD and IGD metrics. Although 

NSGA-II is slightly more stable than ITLBO for Spread metric, but its mean value is 

not ideal. From the above results, we can draw a conclusion that proposed ITLBO is 

competitive and performs significantly better in generating promising candidates than 

its peers. The success of ITLBO relies on its algorithm design. First, two-vector 

encoding mechanism and hybrid initialization strategy provide a solid foundation. 

Second, crossover operators and neighbourhood structures are specially designed to 

enhance the global search ability and local search capability. Third, we introduce 

some techniques to skip the local optimum. 

Please insert Table 5 here 

Please insert Table 6 here 

To intuitively represent the performance of ITLBO and its peers, Fig. 12 plots 

Pareto fronts gotten by those algorithms in four problem configurations. The 

horizontal axis represents the maximum makespan and the vertical axis refers to the 

total carbon emission. It can be seen that the ITLBO can find the non-dominated 

solutions with better approximation and good distribution, and the Pareto front of 

ITLBO is lower than that of the rest compared algorithms. Therefore, the 

effectiveness of proposed ITLBO is confirmed and verified. What is more, as shown 

in Fig. 12, ITLBO generates a wide range of solutions, which can provide 

manufacturing enterprises/manufacturers with more choices. Manufacturers with a 

strong sense of time can choose a schedule with small makespan, while manufacturers 

who cares about the processing impacts on the environment may prefer a schedule 

with low carbon emission.  

Please insert Fig. 12 here 

4.5 Managerial insights 

This work owns important practical significance for management. One of the 

most essential aspects of the hybrid flow shop management is to design an appropriate 

schedule to manufacture different kinds of products or jobs. Besides, the MLHFSP 

takes total carbon emission and makespan as its optimization goals, which has great 

significance in realizing a green and effective schedule and can gain a comprehensive 

trade-off between environmental impacts and production efficiency. In addition, the 

MLHFSP considers machines with different energy usage ratios, which is a general 

configuration and can be applied to various real-world manufacturing enterprises. 

Moreover, this work uses ITLBO algorithm to address the proposed scheduling 

problem effectively. 

5. Conclusion 

In this paper, we investigated a MLHFSP with total carbon emission and makespan. A 
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multi-objective mathematical model based on those two optimization objectives is 

established. To tackle it, ITLBO algorithm is proposed, where a two-vector encoding 

mechanism and an integrated initialization strategy are designed to represent 

solutions. In ITLBO, an external archive with fixed capacity is set to store the elite 

teachers iteratively updated via Sigma method to guide the whole population. Three 

crossover operators and three neighbourhood structures are specially designed to 

enhance the global and local search capability. In addition, to skip local optimum, 

individuals that haven’t been improved in several rounds will be abandoned and 

replaced by a new individual. Regarding the experimental results, ITLBO can deal 

with the studied problem more effectively, leading to non-dominated solutions with 

better approximation and good distribution. Our future works will concentrate on two 

directions: (1) encode the ITLBO algorithm and implant codes into a 

computer-assisted support system for solving MLHFSP intelligently; (2) introduce 

some fuzzy theories into this filed for dealing with uncertain processing details 

[50-51]. 
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Machine-dependent 

processing stages 

[21] 
Total tardiness, makespan and 

total energy consumption 

Imperialist competitive 

algorithm 

Different objective 

importance 

[22] 
Total energy costs and 

makespan 

Ant colony optimisation 

algorithm 
Limited processing stages 

[23] 
Makespan, total energy costs 

and peak load 
Iterated local search Varying energy prices 

[26] 
Total tardiness and electric 

power costs 

Particle swarm 

optimization algorithm 

Varied processing speeds 

and electricity prices. 

[27] 
Total energy consumption and 

makespan 

Genetic algorithm and 

annealing algorithm  
Varied processing speeds 

 

Table 2. Input control parameters and their levels 

Parameters Level 

 1 2 3 4 

N  40 60 80 100 

TN  0.2* N  0.4* N  0.6* N  0.8* N  

Limit  5 10 15 20 
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Table 3. L16 orthogonal array and computational results 

Combination number 
Parameters 

ARV 
N  

TN  Limit  

1 1(40) 1(0.2* N ) 1(5) 0.0745 

2 1(40) 2(0.4* N ) 2(10) 0.0826 

3 1(40) 3(0.6* N ) 3(15) 0.0829 

4 1(40) 4(0.8* N ) 4(20) 0.0754 

5 2(60) 1(0.2* N ) 2(10) 0.0685 

6 2(60) 2(0.4* N ) 1(5) 0.0765 

7 2(60) 3(0.6* N ) 4(20) 0.0842 

8 2(60) 4(0.8* N ) 3(15) 0.0799 

9 3(80) 1(0.2* N ) 3(15) 0.0760 

10 3(80) 2(0.4* N ) 4(20) 0.0479 

11 3(80) 3(0.6* N ) 1(5) 0.0725 

12 3(80) 4(0.8* N ) 2(10) 0.0711 

13 4(100) 1(0.2* N ) 4(20) 0.0662 

14 4(100) 2(0.4* N ) 3(15) 0.0893 

15 4(100) 3(0.6* N ) 2(10) 0.0729 

16 4(100) 4(0.8* N ) 1(5) 0.0701 

 

Table 4. Response of ARV for ITLBO 

Level N  
TN  Limit  

1 0.07885 

2 

0.07130 0.07340 

2 0.07728 0.07408 0.07378 

3 0.06687 0.07813 0.08203 

4 0.07462 0.07412 0.06843 

Delta 0.0120 0.0068 0.0136 

Rank 2 3 1 

 

Table 5 GD,  and IGD comparison values of ITLBO and its peers 

Problems ITLBO NSGA-II MOEA/D 

 GD  IGD GD  IGD GD  IGD 

20×3 0.0862 0.7341 0.0660 0.0805 0.7886 0.0789 0.1589 0.8247 0.1098 

20×5 0.0745 0.7217 0.0615 0.0823 0.8185 0.0831 0.2014 0.9265 0.1237 
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20×8 0.0721 0.7020 0.0554 0.0834 0.8547 0.0821 0.2139 0.9785 0.1823 

20×10 0.0649 0.7823 0.0722 0.0811 0.7963 0.0725 0.1655 0.8962 0.1560 

30×3 0.0585 0.7288 0.0622 0.0765 0.9218 0.1131 0.2478 0.9155 0.2300 

30×5 0.0691 0.8055 0.0702 0.0782 0.9370 0.1237 0.1850 0.8740 0.1545 

30×8 0.0622 0.7851 0.0658 0.0722 0.8416 0.0945 0.2032 0.9023 0.1721 

30×10 0.0427 0.7024 0.0531 0.0752 0.8722 0.1043 0.1922 0.9341 0.1623 

40×3 0.0119 0.5688 0.0129 0.0538 0.7589 0.0712 0.2548 0.9229 0.2856 

40×5 0.0284 0.6623 0.0290 0.0594 0.7852 0.0735 0.2766 0.9647 0.3440 

40×8 0.0223 0.6245 0.0241 0.0645 0.8364 0.0748 0.3152 0.9886 0.3641 

40×10 0.0098 0.5649 0.0116 0.0687 0.8629 0.0825 0.3240 0.9702 0.3014 

60×3 0.0216 0.6756 0.0301 0.0289 0.7388 0.0322 0.1847 0.8612 0.1913 

60×5 0.0122 0.6232 0.0146 0.0408 0.8741 0.0437 0.2068 0.8755 0.2198 

60×8 0.0105 0.5796 0.0127 0.0391 0.7604 0.0500 0.0954 0.7397 0.0980 

60×10 0.0302 0.7088 0.0318 0.0411 0.8729 0.0458 0.1023 0.7546 0.1344 

80×3 0.0116 0.5911 0.0119 0.0236 0.8341 0.0331 0.0346 0.9457 0.0402 

80×5 0.0124 0.6582 0.0136 0.0086 0.7864 0.0132 0.0285 0.9612 0.0424 

80×8 0.0230 0.8057 0.0314 0.0248 0.8707 0.0302 0.0412 0.9828 0.0533 

80×10 0.0145 0.6843 0.0257 0.0244 0.8554 0.0317 0.0321 0.9214 0.0388 

100×3 0.0342 0.7117 0.0355 0.0628 0.8043 0.0649 0.0633 0.8523 0.0754 

100×5 0.0181 0.5778 0.0153 0.0554 0.7872 0.0598 0.0895 0.8928 0.0894 

100×8 0.0234 0.6488 0.0243 0.0625 0.8310 0.0670 0.1255 0.9012 0.1324 

100×10 0.0228 0.6376 0.0252 0.0596 0.8144 0.0622 0.1426 0.9342 0.1501 

 

Table 6 HV comparison values of ITLBO and its peers 

Problems ITLBO NSGA-II MOEA/D Problems ITLBO NSGA-II MOEA/D 

20×3 1.2620 1.2466 0.4563 60×3 0.8456 0.5165 0.2150 
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20×5 1.2723 1.2210 0.6582 60×5 1.3120 1.1866 0.6379 

20×8 1.3066 1.2632 0.4030 60×8 1.0412 0.8374 0.3129 

20×10 1.1009 0.8354 0.5313 60×10 0.9561 0.8587 0.6325 

30×3 1.3566 1.2211 0.9547 80×3 1.1810 0.9361 0.7630 

30×5 1.0059 0.6083 0.4224 80×5 1.0389 1.1238 0.8966 

30×8 1.2136 1.1252 0.8263 80×8 0.7856 0.5214 0.3659 

30×10 1.3189 1.0397 0.7632 80×10 1.2578 1.1583 0.7239 

40×3 0.9845 0.9365 0.8521 100×3 0.8416 0.6215 0.4322 

40×5 0.9523 0.9033 0.8316 100×5 1.2554 1.0386 0.5951 

40×8 0.8963 0.7825 0.7365 100×8 1.1368 0.9626 0.6542 

40×10 1.2645 0.9984 0.8976 100×10 0.8863 0.7263 0.6215 
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