A new class of robust ratio estimators for finite population variance

Tolga Zaman®’, Hasan Bulut?
Cankir Karatekin University, Faculty of Science, Department of Statistics, 18100 Cankar1, Turkey
Ondokuz Mays University, Faculty of Science, Department of Statistics, 55139 Samsun, Turkey

Email Corresponding Author: zamantolga@gmail.com (Zaman, T). Cell: 903762189540

Email: hasan.bulut@omu.edu.tr  (Bulut, H).

Abstract

It is a general practice to use robust estimates to improve ratio estimators using functions of the
parameters of an auxiliary variable. In this study, a new class of robust estimators based upon the
minimum covariance determinant (MCD) and the minimum volume ellipsoid (MVE) robust
covariance estimates have been suggested for estimating population variance in the presence of outlier
values in the data set for the simple random sampling. The expression for the mean square error
(MSE) of the proposed class of estimators is derived from the first degree of approximation. The
efficiency of the proposed class of robust estimators is compared with some competing estimators
discussed in the literature, and found that proposed estimators are better than other mentioned
estimators here. In addition, real data set and simulation studies are performed to present the
efficiencies of the estimators. We demonstrate theoretically and numerically that the proposed class of
estimators performs better than all other competitor estimators under all situations.

Keywords: Finite population variance; Robust covariance estimates; Auxiliary information; Mean
square error; Efficiency, Simple random sampling.

1 Introduction

The use of auxiliary variables can increase the precision of estimators. The ratio, product, and
regression estimators are good examples for improving the performance of estimators. Estimating the
population variance has great significance in various fields such as Industry, Agriculture, Medical,
Economic, and Biological sciences. Efficient estimators for the population variance has been discussed
by various authors referred to Kadilar and Cingi [1], Khan and Shabbir [2], Singh et al. [3], Yadav et
al. [4], Yaqub and Shabbir [5], Singh and Pal [6], Sanaullah et al. [7], Muneer et al. [8], Housila et al.
[9] and Sharma et al. [10]. However, in the presence of unusual observations in the data, since the
classical estimators are sensitive to these extreme values, their efficiencies decrease [11]. Therefore, to
reduce the negative effect of the unusual observation problem in the data, it is suggested to use the
robust regression estimate, the minimum covariance determinant (MCD), and the minimum volume
ellipsoid (MVE) estimators instead of the classical ones. Abid et al. [12] presented the ratio estimators
of variance-based using robust measures in the presence of unusual values. Naz et al. [13] proposed
the ratio-type estimators developing the efficiency of the ratio-type estimators of population variance
using robust location measures. Zaman and Bulut [14] proposed ratio-type estimators using robust
regression estimators and robust covariance matrices for stratified random sampling. Bulut and Zaman
[15] presented the ratio-type estimators utilizing MCD estimates. Zaman and Bulut [16] provided the
ratio estimators for population variance considering MCD and MVE robust covariance estimates, both
simple and stratified random sampling. Zaman et al. [17] presented the robust regression-ratio-type
estimators of the mean utilizing two auxiliary variables. Grover and Kaur [18] developed the
regression-type estimators of population mean with two auxiliary variables using the robust regression
technique. Zaman and Bulut [19] proposed the robust ratio double sampling estimator of finite
population mean in the presence of outliers. Unlike other studies, this study proposes regression-ratio-
type estimators of population variance-based MCD and MVE covariance estimates for simple random
sampling.
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We give notations used in Subsection 1.1 and some estimators in Subsection 1.2.

1.1 Notations

Consider a finite population U =(U,,U,,...,U, ) having N units. Let y; and X, be the values of the

study variable and the auxiliary variable, respectively. The notations used in this paper can be
described as follows:

N
Z : the population mean of the auxiliary variable x ,

N
= —N 1 Z( Y, —V)Z : the population variance of the study variable y,

i1
N
P 1

. 7 and 1, —EZ(yi —\7)r(xi —)?)q, r and q are non-negative integers.
(IUZ{/UOZ j i

Ao, = By - population coefficient of kurtosis of the auxiliary variable x,

10 = By - population coefficient of kurtosis of the study variable y .

— 85 (/122 _1)

: the sample regression coefficient,
sz (%4 _1)

= —ZX the sample mean of the auxiliary variable X,
Nz

n
y=— Zyi : the sample mean of the study variable vy,

i=1

1 < . - .
= 1 (xi —X)z: the sample variance of the auxiliary variable X,
n—-1%7
A y)':th le variance of the study variabl
s, = i:l(yi—y) : the sample variance of the study variable y .

The sample means (7, i) are unbiased estimators of the population means (\7, X ) , respectively, and

(sy , SX) are unbiased estimators of population variances (Sj sz) , respectively.



1.2 Some Existing Estimators

We discuss the following estimators, and we show which estimators are more efficient under what
conditions. We assume that the population variance SX2 of the auxiliary variable X is available in this
study.

The variance of the unbiased estimator (to = si) as

V(t0)=?y(ﬂ,40 -1) (1)

If the population variance SX2 of the auxiliary variable x is known, Isaki [20] introduced the ratio

estimator for sj as

SZ
t =5 (2)
The MSE of the estimator t, is given by
S4
MSE (tR):?y[(}%o _1)+(ﬂ04 _1)(1_2C):| (3)

Examining (1) and (3), Isaki's [20] estimator provides a lower MSE than the unbiased estimator under
the condition C > 0.5.

If the population variance Sf of the auxiliary variable X is known and when sj in (2) is replaced

with t. , then Singh et al. [21] provided the chain ratio estimator as

tr =t = (4)
We can rewrite (4) using (2) as

ter =S, —= (5)

The MSE of the estimator t, is given by

MSE(tCR):S?;’l[(/lAO ~1)+4( 2, -1)(1-C) | (6)

— Ay —1
2'04 -1
Examining (1) and (6), Singh's et al. [21] estimator provides a lower MSE than the unbiased

estimator under the condition C >1. From (3) and (6), Singh's et al. [13] estimator provides a lower
MSE than the Isaki’s [20] estimator under the condition C >1.5.



If the population variance SX2 of the auxiliary variable x is known, Isaki [20] defined the following

regression estimator for S?, given by
teg =S, +b(S7—57) (7)
where b is the sample regression coefficient.

The MSE of the estimator t., given by

4

MSE (t,,, ) =S—ny(/140 -1)(1-p%) (8)
(’122 _1) _
\11(140 _1)(%4 _1)

Examining (1) and (8), Isaki's [20] regression ratio-type estimator provides a lower MSE than the
unbiased estimator under the condition ,o2 > 0, because the condition is always satisfied.

where p =

When the population variance Sf of the auxiliary variable x is known, Upadhyaya and Singh [22]

introduced the ratio estimator for Sj as

SZ+
e =5 [— ﬂ"“] o
Sx +/104
The MSE of the estimator t , given by
) :
MSE (t,s ) = TW“O ~1)+ 05 (Aou —1)— 29 (4, 1) | (10)
2
where g, = .
P ST
Examining (1) and (10), Upadhyaya and Singh's [22] estimator provides a lower MSE than the
. . o 2( Ay, -1)
unbiased estimator under the condition g, < ———-.
(204 _1)

When the population variance Sf of the auxiliary variable x is known, Kadilar and Cingi [1]

provided the ratio estimator for Sj as

SZ+C,
byt =S§ESZ+C j (11)
2
teco = 532/ [—j':i; _—:gx J (12)
14X X



2
tycs = 332/ [Cc::xig :j;m ] (13)
XTX 4

S, . . . .
where C, = YX is the population coefficient of variation.

The MSEs of the estimators t,; (i =1,2,3), given by
4
Sy
n

2 2 2
where g, = Sy , 0, o foSy g __ S5 [4].

S2+C, ' 2,S2+C, P C ST A,

X

MSE (tye;) = 2| (Ao =1)+ 07 (Agy —1) ~ 205 (4, -1) | (14)

X

Examining (1) and (14), Kadilar and Cingi's [1] estimators provide a lower MSE than the unbiased

2 -1) .
estimator under the condition g; < M,I =1,2,3. From (10) and (14), Kadilar and Cingi's [1]

(’104 _l)

estimators provide a lower MSE than the Upadhyaya and Singh's [22] estimator under the condition
< 2(%2 _1)
(204 _1)

In this paper, we have suggested proposed regression-ratio-type estimators and the proposed class of
robust estimators for simple random sampling in Section 2. The expression for the MSEs of the
proposed regression-ratio-type estimators the proposed class of robust estimators are provided in
Section 3. The performance comparisons of various estimators are demonstrated in Section 4. A
numerical and simulation studies are given in Sections 5 and 6, respectively. Conclusion is presented
in Section 7.

0 -0,,1=12,3.

2 Robust Estimators for the mean vector and the scatter matrix

MVE and MCD estimators are the most commonly used estimators in the literature for multivariate
location and scatter parameters. The MVE estimator selects h observations out of n observation units
that will make the volume of the ellipsoid the smallest and takes the sample mean vector of these h
observations and the covariance matrix as the MVE estimator of the location and scatter parameter of
the multivariate data. Similarly, the MCD estimator chooses h observations with the smallest
determinant of the covariance matrix among n observations and takes the sample mean vector and
covariance matrix of these h observations as the MCD estimator of the location and scatter parameter
of the multivariate data [23]. To calculate MVE and MCD estimators in the R program, MASS
package is used [24].

3 The Proposed Estimators

In this section, we propose regression-type estimators of population variance for simple random
sampling. However, the effectiveness of these classical estimators decreases when there is an outlier in
the data set. Therefore, the classical ratio estimators proposed to eliminate the negative effect of the
outlier problem have been extended to robust ratio-type estimates in Subsection 3.2.

3.1 The Proposed Regression-Type Estimators

We consider the following regression-ratio-type estimators for the population variance sj as



)(4 Si+¢) (15)

trZB

(¢si+¢)

where ¢ and & are either constant or the functions of the parameters of auxiliary variable such as C,
, B, and p . To obtain the MSE of the estimator in (15), the terms with e’s are defined as follows:

Let eO:(sj—Syz)/S§. and (SXZ—SXZ)/SXZ, such that E(e)=0,i=0,1. E(eg):M,

n
,and E(eoel)z@.

E(ef)= (%n—l)

Following Singh and Malik [25], the expressing (15) in terms of e’s, we have

oo =[ SZ(L+8,)~bS%, |[1+ A€

Up to first order of approximation, the expressions of MSE for t,; is given by
(te —S2) =(S%, ~bS%, ~ AS%,)
(te—S2) = | Syel+(b7S) + AS; +2AbS?S? )€ — 25 Jese, (bS? + AS} ) |
MSE (t,55 ) = %{s;‘ (Ao —1)+(Aos —1)[ BS + A’S} + 2ABS?S? |- 287 (4, —1)[ BS + Aisjj} (16)

S,
where A = ggz ve

Table 1 presents some of the estimators for the population variance 55 , which can be obtained by
suitable choice of constants ¢ and &.

[Table 1 Here]
3.2 The Proposed Class of Robust Estimators

We define to apply the following ratio estimators for the population variance sf, using robust
covariance estimates to data which have outliers.

2 2 2
Sy +D (Sx(n ~Syi)

(%Sf(j) +5(J>)

where s7 ;. by, S(), s, ;) and &, are obtained by considering MCD and MVE covariance
estimates, respectively.

o=

rZB( j)

)(QJ)SXZ(J) +68(i)) (17)

Using (17), the following MSE for all suggested estimators belonging to robust covariance estimates
in interest are obtained as below:



M (1) =455 (7 1)y ) 8355, 51,28 853,55

=287 ) (Zaay) 1) BiSZ )+ AySiy) [¥J = MCDand MVE

(18)

We remark that the expression for the MSE of the proposed class of robust estimators is in the same
form as expression for the MSE presented in (16), but it is clear that S}, 4,,, B, S, A,,,and A in

(16) should be replaced by S;‘(j), 140(1.), B, . Sf(j), /122(]), and AJ“) , whose values as obtained by
robust covariance estimates (j=MCD and MVE).

Table 2 presents the proposed class of robust estimators for the population variance sj, which can be

obtained by suitable choice of constants gm and §U) .
[Table 2 Here]

5 Efficiency Comparisons

We compare the proposed class of robust estimators with the other competing estimators,
5.1 With the proposed class of robust estimators

(i) With the MSE of estimators given in (16) and (18)

MSE (t,70(;)) < MSE (tz5)

1(.4 4 4 2 @2 2 2
g{5y<1>(’140(j)‘1)+(/1( 1) B8 + AL i + 2808185 S |~ 285 (e 1) BiSE) + ASiy ]}(19)
<%{s;‘ (Ao —1)+(Aos 1) B’S{ + A’S; +2ABS]S? |- 257 (4, —1)[ BS} + Alsjj}
Let
Ly = Aoy —2)| BISS) + AL Sy +2ABS5) S5 | and
My =S5 (%o ~3)| BiSZ) + AgySiy | §=MCDand MVE .
K=S;(4-1), L=(%,~1)|B’S;+A’S;+2ABS;S} |, M =S7(4,-1)[BS +AS] |,
=Sy (A1)

Thus, (20) becomes

(K =K)+(Ly —L)=2(M( —m) <0 (20)
(if) With the MSE of estimators given in (1) and (18)

MSE(rZB())<V( )



i{sﬁn(ﬁmu)‘l)*(ﬁmu ~1)[ By, + AL SH ) 28BS} Sk |- 287 (o) 1) BSE + AT )
.

S
<L(A,-1
" (71y-1)
(K =K)+L;—2M ;<0 (21)
(iii) With the MSE of estimators given in (3) and (18),

MSE (t,5s;, ) < MSE (t )

rZB())
1{530)(’1400)‘1)+(’104(i>‘1)['31253(1>+pﬁ< i+ 2888785, 1285 () ~2)[ B8+ ASi )

n
4

< (A1) (Ao -1)(1-20)]

(K =K)+L;—2M ;) =N (1-2C) <0 (22)
(iv) With the MSE of estimators given in (6) and (18),
MSE (t,5;) ) < MSE (tcs )

%{Sj(j)(/14o(j)—1)+(/104() ) BESi AT St +2A0 B Sy Sk |- 282 (e ~ 1) BISZ) + A S
4

<320 -1)+4(21)(1-C)]

(K(j)—K)+L

)—2M; —4N(1-C)<0 (23)

(i)
(v) With the MSE of estimators given in (8) and (18),

MSE (t70(;)) < MSE (t;)
%{Sf(n(’%(n‘1)+(’104(1>‘1)[st3<1>”3< )+ 288,858 =20 (A 1) [ BST + ST )

4

S
<~ (o -1)(1-p%)
2
(Kiy =K )+ L —2M ) +K p* <0 (24)
(vi) With the MSE of estimators given in (10) and (18),

MSE (t,55(;) ) < MSE (tus)



%{Sﬁn(ﬁmu)‘l)*(ﬁo«) 1) B8+ ALy Sy + 280 BiS 85 |28 (Ao ~1) [ BiSE) + AuSio
.

S
< Fyli(&w _l)+ gg (%4 _l)_ 290 (Azz _1)]
(K(j)—K)+L<j)—2M(j)—g0N(go—2C) (25)
(vii) With the MSE of estimators given in (14) and (18),

MSE (t20(;)) < MSE (tic,)

1(aa
H{Sy(i)(ﬂ'

40(j)

1)+ (o ~1)| BIS) *+ AL Si) + 28008180 S%) |- 2820 (A ~3)| BiS )+ A St }}
.

S .
< Fy[(&w ~1)+ 07 (Ao —1)-29; (4, -1) |.i=1,2,3
(K —K)+L;—2M;, ~gN (g, -2C);i =1.2,3 (26)

The proposed class of robust estimators (t 28 )) perform better than all other estimators considered
here if Conditions (i)-(vii) are satisfied.
5.2 With the proposed regression-type estimators
(i) With the MSE of estimators given in (1) and (16)
MSE (t,,5 ) <V (t,)

1 (e 2ed | nzcd 2027 e s acel Sy
H{sy (Aio —1)+(Aos 1) B?S; + A’S; + 2ABS]S! |-2S? (4,,~1)[ BS + A&sy]} < ﬁ(zm -1)

L-2M <0 (27)
(ii) With the MSE of estimators given in (3) and (16)

MSE (t,,5 ) < MSE(t;)

%{s;‘ (Ao —1)+( %y —1)[ B’S; + A’S; + 2ABS’S? |- 257 (4, —1)[ BS; + AS! ||

< (2014 (A -1)(1-20)]

L-2M -N(1-2C)<0 (28)
(iii) With the MSE of estimators given in (8) and (16)
MSE (t,55 ) < MSE (t,,, )



84
%{s;‘ (Ao —1)+( %y —1)[ B’S; + AS; + 2ABS}S? |- 25} (4, —1)[ BS? + AS’ |} <7y(,140 -1)(1-p?)

Kp?>+L-2M <0 (29)
(iV) With the MSE of estimators given in (10) and (16)

MSE (t,5 ) < MSE (t,s )

1{sj (Ao —1)+( %y ~1)[ B’S; + A’S; + 2ABS?S? |-257 (4, ~1)[ BS} + AS! ||
S4
< ?y[(ﬂm _1)+ gg (%4 _1)_290 (ﬂzz _1)]

L—2M—gON(gO—ZC)<0 (30)
(v) With the MSE of estimators given in (14) and (16)

MSE (1,55 ) < MSE (t,q ):i =1,2,3.

%{sj (Ao —1)+( %oy ~1)[ B’S; + A’S; + 2ABS}S? |- 257 (4, —1)[ BS; + AS. ||

S
< ?y[(}%o _1)+ gi2 (204 _1)_29i (ﬂzz _1)]
L-2M —g;N(g;-2C),i=1,2,3. (31)

The proposed classical ratio estimators (trZB( j)) perform better than all other classical estimators

considered here if Conditions (i)-(v) are satisfied.

6 Applications

We use the data in Zaman and Bulut [26] and Zaman et al. [27] in order to compare the performances
between the proposed classical ratio estimators and the proposed class of robust estimators given in
(16) and (18), respectively. The statistics of the population are presented in Table 3. We have
contaminated the last observation of this data set by multiplying the Y value by 50 and the value of X
by 25.

[Table 3 Here]

[Table 4 Here]

We proposed two different estimators for simple random sampling in the study. The first estimators
are as given in (15). The MSE of these estimators is given in (16). We obtained the MSE values of
proposed classical estimators in (15), the unbiased estimator, Isaki estimator in (2), Singh et al.
estimator in (4), the regression estimator in (7), Upadhyaya and Singh estimator in (9), and Kadilar
and Cingi estimators in (11). These values are given in the uncontaminated data part of Table 4.

The efficiency of these estimators decreases when there are outliers in the data. Here, a second
estimator using robust covariance estimates is proposed to eliminate this negative effect of the outlier.
The estimators are given in (17). The MSE of these estimators is given in (18). In the presence of

10



outliers in the data, we obtained the MSE values of proposed classical estimators in (15), the proposed
class of robust estimators in (17) and estimators considered here. These values are given in the
contaminated data part of Table 4. According to this part, as inferred by the theoretical comparisons,
we observe that all of the proposed class of robust estimators have smaller MSE values than the
proposed classical estimators and some existing estimators in data with outliers for simple random
sampling. These results are expected results because the conditions (19)-(26) are satisfied for the
proposed class of robust estimators. These situations are clearly seen in Tables 5, 6, 7, 8, 9, 10, and 11.

The most efficient estimators are t_,,, robust estimator based on MCD covariance estimate for the

dataset. On the other hand, proposed classical estimators in given (15) do not provide lower MSE than
unbiased, and estimators proposed by lIsaki, Singh et al., the regression, Upadhyaya and Singh, and
Kadilar and Cingi. This situation is expected because the conditions (27)-(31) are not satisfied for all
estimators under the dataset. This situation is clearly seen in Table 12. Note recall that the proposed
classical estimators should be perform better than existing estimators in here if the conditions (27)-
(31) were satisfied.

[Table 5 Here]
[Table 6 Here]
[Table 7 Here]
[Table 8 Here]
[Table 9 Here]
[Table 10 Here]
[Table 11 Here]
[Table 12 Here]

7 Simulation Study

In this section, we use the following simulation study for numerical comparisons. We have used the
following models:

Y, =5X; +& which we generate ¢ and X; independently and calculate Y, for i=12,...,N.
(1) X isfrom U(0,1) and ¢ is from N (0,1) and independent of X
(2) X isfrom Exp(1) and & is from N (0,1) and independent of X

(3) X isfrom N(5,1) and & is from N (0,1) and independent of X

Simulation can be summarized with the steps below. X is generated from above given distributions by
taking as N =200. The ratios of outliers are 10 and we have guaranteed that there is the least an
outlier in sample selection.

Firstly, classical estimators given in Section 2 are obtained for each sample size, using SRSWOR
(simple random sampling without replacement).

Then, for each sample taken, the proposed estimators, say siz, such as t,g , given in Section 3 and the
proposed class of robust estimators, trZB( i) given in Section 4 in simple random sampling are

obtained.

11



The values of MSE for all cases are obtained with the help of (32)

1 10000 ) 2\2
MSE :m < (Syi —Sy) (32)

where Sf is the population variance.

Sample sizes are taken as n=20,30 and40 under simple random sampling. Tables 13, 14 and 15

show the values of MSE of the proposed class of robust estimators, proposed regression-type
estimators and some existing estimators for the various sample sizes when it comes to uniform,
exponential and normal distributions, respectively. These values are computed using (32). From
Tables 13, 14 and 15 it is concluded that the proposed class of robust estimators are perform better
than the proposed classical estimators and some existing estimators for all sample sizes in simple
random sampling. All of these findings support the theoretical results in the contaminated data part of
Table 4. It is worth to point out that the values of MSE of the proposed class of robust estimators with
respect to the classical estimators in Tables 13, 14, and 15 would decrease notably, when there were
more extreme observations in data.

[Table 13 Here]
[Table 14 Here]
[Table 15 Here]

From theoretical and empirical study, the proposed regression-type estimators did not provide a
significant advantage over the estimators known in the literature. For example, when X comes from

the uniform distribution, the proposed classical estimator t, 5, has a worse result than the estimator t,

, while it has a more efficient results than the estimator t . In this context, we have developed a new

class of robust estimators while there is an outlier in the data. The proposed class of robust estimators
provided a significant superiority to the classical estimators considered here in empirical and
simulation study. These results are clearly seen in Tables 13, 14, and 15. The contaminated data part
of Table 4 shows these findings clearly.

8 Conclusion

This study has proposed a new class of robust estimators using MCD and MVE estimates in the simple
random sampling The expression for MSE of the proposed class of robust estimators are obtained.
Conditions are obtained under which the proposed class of robust estimators perform better than the
classical estimator and the existing estimators in terms of MSE. In addition, robustness to outliers is a
characteristic of the proposed class of estimators. Finally, it is recommended to use the proposed
estimators over the classical and other existing estimators, especially in the presence of extreme
observations in the data. In future work, we hope to extend the proposed class of robust estimators
given in this article to the stratified two-stage sampling.
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Classical MCD MVE Real Values (without outlier)
Y 36.34234  18.02439 18.35366 29.27928
X 448.8649  235.3171 231.8519 394.1622
Sj 5999.464  70.07523 78.74556 651.3122
S? 476858.7  15063.36 13397.14 160288.2
C, 1.538435 0.04707897 0.04640262 1.015724
Aoy = By 48.54609 47.0208 46.86658 8.994593
Ao =P, 8599221  84.78439 84.96302 10.26559
Ay 64.25012  62.63676 62.59346 8.8654
C 1.33029067 1.33932396 1.342883206 0.983839953
P 09949801 09026157 %28 0.9138736
0.01673668 0.00623058 0.007893181 0.003997717
g, 0.99989821 0.99688818 0.996513942 0.999943888
g, 0.99999677 0.99999687 0.999996536 0.999993663
g, 0.99999993 0.99999993 0.999999926 0.999999295
ds 0.99993383 0.93781866 0.929895963 0.999944757
n 30
N 111

Table 3: Data statistics used for simple random sampling
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Estimators

Uncontaminated Data

Contaminated Data

Classical MCD MVE
t, 131017.7843 1.02E+08 - -
t 131010.0481 7244378 - -
te 131018.3011 26606542 - -
reg 21596.32214 1021215 - -
ts 35627.27383 85386937 - -
tees 35628.89487 7328424 - -
tecs 35630.48609 7246107 - -
tecs 35627.33348 9000031 - -
t, 134641.8707 144531.9 1565.182  2159.938
t s 134629.1846 144518.2 1563.343  2157.107
t s 134640.438 144530.4 1565.174  2159.925
(I 134640.5816 144530.5 1565.033  2159.712
t o 134641.7114 144531.7 1565.181  2159.936
t e 134629.381 144518.4 1526.682  2100.859
t e 134640.6016 144530.5 1562.001  2155.131
t o 134640.3029 144530.3 1565.172  2159.922
t 6o 134633.2569 144531.7 1565.168  2159.915
t 10 134627.9891 144517.2 1562.973  2156.455
Table 4: Theoretical results for the MSE of estimators
MCD MVE
Condition Values  Results | Condition Values Results
(C.V) (R) (C.V) (R)
Lze1 -1.7E+09 TRUE -1.7E+09 TRUE
tzs2 -1.7E+09 TRUE -1.7E+09 TRUE
tz3 -1.7E+09 TRUE -1.7E+09 TRUE
tiz84 -1.7E+09 TRUE -1.7E+09 TRUE
tzas -1.7E+09 TRUE -1.7E+09 TRUE
tz86 -1.7E+09 TRUE -1.7E+09 TRUE
tz87 -1.7E+09 TRUE -1.7E+09 TRUE
Lz -1.7E+09 TRUE -1.7E+09 TRUE
Lz -1.7E+09 TRUE -1.7E+09 TRUE
L2810 -1.7E+09 TRUE -1.7E+09 TRUE

Table 5: The results of condition in Equation (20)
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MCD MVE
Cc.V R CcV R
Lz -3.1E+09 TRUE -3.1E+09 TRUE
tizgo -3.1E+09 TRUE -3.1E+09 TRUE
tizgs -3.1E+09 TRUE -3.1E+09 TRUE
tizgs -3.1E+09 TRUE -3.1E+09 TRUE
tizgs -3.1E+09 TRUE -3.1E+09 TRUE
tizge -3.1E+09 TRUE -3.1E+09 TRUE
tize7 -3.1E+09 TRUE -3.1E+09 TRUE
tizgs -3.1E+09 TRUE -3.1E+09 TRUE
tizge -3.1E+09 TRUE -3.1E+09 TRUE
L7810 -3.1E+09 TRUE -3.1E+09 TRUE
Table 6: The results of condition in Equation (21)
MCD MVE
cV R c.v R
Lz -3E+09 TRUE -3E+09 TRUE
tzs2 -3E+09 TRUE -3E+09 TRUE
L7835 -3E+09 TRUE -3E+09 TRUE
tiz84 -3E+09 TRUE -3E+09 TRUE
tzas -3E+09 TRUE -3E+09 TRUE
tz86 -3E+09 TRUE -3E+09 TRUE
tz87 -3E+09 TRUE -3E+09 TRUE
Lz -3E+09 TRUE -3E+09 TRUE
Lz -3E+09 TRUE -3E+09 TRUE
L2810 -3E+09 TRUE -3E+09 TRUE
Table 7: The results of condition in Equation (22)
MCD MVE
Cc.V R c.v R
Lz -3E+09 TRUE -3E+09 TRUE
tizgo -3E+09 TRUE -3E+09 TRUE
tizgs -3E+09 TRUE -3E+09 TRUE
tizgs -3E+09 TRUE -3E+09 TRUE
tizgs -3E+09 TRUE -3E+09 TRUE
tizgs -3E+09 TRUE -3E+09 TRUE
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tz87 -3E+09 TRUE -3E+09 TRUE
Lz -3E+09 TRUE -3E+09 TRUE
Lz -3E+09 TRUE -3E+09 TRUE
L2810 -3E+09 TRUE -3E+09 TRUE
Table 8: The results of condition in Equation (23)
MCD MVE
C.vV R c.v R
Lz -6.1E+09 TRUE -6.1E+09 TRUE
tzs2 -6.1E+09 TRUE -6.1E+09 TRUE
tz3 -6.1E+09 TRUE -6.1E+09 TRUE
tiz84 -6.1E+09 TRUE -6.1E+09 TRUE
tzas -6.1E+09 TRUE -6.1E+09 TRUE
tz86 -6.1E+09 TRUE -6.1E+09 TRUE
tz87 -6.1E+09 TRUE -6.1E+09 TRUE
Lz -6.1E+09 TRUE -6.1E+09 TRUE
Lz -6.1E+09 TRUE -6.1E+09 TRUE
L2810 -6.1E+09 TRUE -6.1E+09 TRUE
Table 9: The results of condition in Equation (24)
MCD MVE
cV R C.V R
tzes -3E+09 TRUE -3E+09 TRUE
tizso -3E+09 TRUE -3E+09 TRUE
tizgs -3E+09 TRUE -3E+09 TRUE
tizgs -3E+09 TRUE -3E+09 TRUE
tizgs -3E+09 TRUE -3E+09 TRUE
tizge -3E+09 TRUE -3E+09 TRUE
tizg7 -3E+09 TRUE -3E+09 TRUE
tizgs -3E+09 TRUE -3E+09 TRUE
tizgo -3E+09 TRUE -3E+09 TRUE
L7810 -3E+09 TRUE -3E+09 TRUE

Table 10: The results of condition in Equation (25)
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MCD (g,) MCD (g,) MCD (g,) MVE (g,) MVE (g,) MVE (g,)

CV R CV R CV R CV R CV R CV R
tzes  -384+09  TRUE | .3g+09 TRUE | _3e+09 TRUE | _3e+09 TRUE | _3e+09 TRUE | 3e+09 TRUE
lzse  -3E+09  TRUE | _.3e+09 TRUE | _3e+09 TRUE | 3g+09 TRUE | .3g+09 TRUE |.3e+09 TRUE
lzss  -3E+09  TRUE | _.3e+09 TRUE | _3e+09 TRUE | 3g+09 TRUE | .3g+09 TRUE |.3e+09 TRUE
lzss  -3E+09  TRUE | _.3e+09 TRUE | _3e+09 TRUE | _3e+09 TRUE | .3g+09 TRUE |_.3e+09 TRUE
lzss  -3E+09  TRUE | _.3e+09 TRUE | _3e+09 TRUE | 3g+09 TRUE | .3g+09 TRUE |.3e+09 TRUE
lzse  -3E+09  TRUE | _.3e+09 TRUE | _3e+09 TRUE | 3g+09 TRUE | .3g+09 TRUE |.3e+09 TRUE
lzsr  -3E+09  TRUE | _.3e+09 TRUE | _3e+09 TRUE | 3g+09 TRUE | .3g+09 TRUE |.3e+09 TRUE
Lzss  -3E+09  TRUE | 3e+09 TRUE | .3g+09 TRUE | _3g+09 TRUE | _3e+09 TRUE | _3g+09 TRUE
lzse  -3E+09  TRUE | 3p+09 TRUE | .3g+09 TRUE | _3g+09 TRUE | _3e+09 TRUE | _3g+09 TRUE
Lzso -3E409  TRUE | 3409 TRUE | _3e+09 TRUE | _3e+09 TRUE| _3e+09 TRUE | 3e+09 TRUE

Table 11: The results of condition in Equation (26)
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Eq. (27) Eq. (28) Eq. (29) Eqg. (30) Eq. (31 (9,)) Eq. (31 (9,)) Eq. (31 (g,))

CcV R CcV R cV R CV R CV R oAV, R CV R
t, |1087225914 FALSE|3390480.257 FALSE|3700585.629 FALSE|3390469.468 FALSE|3390480.951 FALSE |3390480.334 FALSE|3390486.303 FALSE
t,, |108342.0095 FALSE |3390099.675 FALSE |3700205.047 FALSE |3390088.886 FALSE 3390100369 FALSE |3390099.752 FALSE|3390105.721 FALSE
t,, |108679.6106 FALSE |3390437.276 FALSE |3700542.648 FALSE |3390426.487 FALSE|3390437.971 FALSE |3390437.353 FALSE|3390443.322 FALSE
t,, |108683.9204 FALSE |3390441.586 FALSE |3700546.958 FALSE |3390430.797 FALSE|339044228 FALSE |3390441.663 FALSE|3390447.632 FALSE
t . |108717.8129 FALSE |3390475478 FALSE |3700580.85 FALSE |3390464.689 FALSE|3390476.173 FALSE |3390475.556 FALSE |3390481.524 FALSE
t,, |108347.9007 FALSE |3390105566 FALSE |3700210.938 FALSE |3390094.777 FALSE|3390106.261 FALSE |3390105.643 FALSE 3390111612 FALSE
t, |108684519 FALSE|3390442.185 FALSE |3700547.557 FALSE |3390431.395 FALSE 3300442879 FALSE |3390442.262 FALSE|3390448.23 FALSE
t,, |108675.56 FALSE|3390433.225 FALSE 3700538598 FALSE |3390422.436 FALSE|3390433.92 FALSE |3390433.303 FALSE|3390439.271 FALSE
t,, |108464.1784 FALSE |3390221.844 FALSE |3700327.216 FALSE |3390211.055 FALSE 3390222538 FALSE |3390221.921 FALSE|3390227.89 FALSE
{ ., | 108306.1456 FALSE | 3390063.811 FALSE |3700169.183 FALSE 3390053022 FALSE |3390064.505 FALSE |3390063.888 FALSE |3390069.857 FALSE

Table 12: The results of condition in Equations (27)-(31)
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n: 20 30 40

Estimators Classical MCD MVE Classical MCD MVE Classical MCD MVE
ty 1.25E+15 - - 1.37E+13 - - 1.10E+15 " "
Lo 427E+19 - - 2.38E+15 - - 4.02E+19 - -
treg 3.36E+12 - . 2.56E+12 - . 2.25E+12 . .
ts 3.79E+12 - - 2.69E+12 - - 2.27TE+12 - -
lica 0.74E+12 - - 460E+12 - 435E+12 - -
tyc2 2.38E+14 - - 1.19E+13 - - 1.46E+14 - -
tycs 518E+12 - 3.20E+12 - - 263E+12 - -
tze1 2.14E+15 182403.3 182389.6 2.44E+13 211756.7 211741.2 2.46E+15 306725 306705.4
tzso 4.45E+12 182404.9 182392 2.88E+12 211756.3 2117415 2.44E+12 306725.2 306719.1
tzes 1.52E+13 182404.8 182391.9 6.77E+12 211756.3 211741.4 7.21E+12 306725.2 306718.2
tzg4 1.02E+14 182404.7 182391.8 148E+13 211756.3 211741.5 5.91E+13 306725.2 306717.3
tzes 4.17E+14 182404  182390.5 2.08E+13 211756.5 211741.2 3.23E+14 306725.1 306711.8
t7e6 7.03E+12 182404.9 182392 4.03E+12 211756.3 211741.5 3.40E+12 306725.2 306719.1
t7e 3.14E+14 182404.6 182391.8 1.95E+13 211756.3 211741.5 2.14E+14 306725.2 306717.2
t7es 8.47E+12 182404.9 182391.9 4.84E+12 211756.3 211741.4 4.05E+12 306725.2 306718.6
tzeo 1.39E+15 182403.7 182390.2 2.34E+13 211756.5 211741.3 1.27E+15 306725 306709.6
tzg10 3.76E+12 182404.9 182392 2.62E+12 211756.3 211741.4 2.20E+12 306725.2 306719.1

Table 13: Simulation results for the MSE of estimators for various sample sizes when it comes to
Uniform distribution (X ~U (0,1))

Estimators Classical MCD MVE Classical MCD MVE Classical MCD MVE
ty 9.06E+17 - - 456E+16 - 5.29E+14 -
Lo 170E+23 - - 1.94E+21 - - 4.80E+16 - -
Leg 2.95E+14 120E+14  — - 138E+14 -
ts 6.50E+14 - - 2.55E+14 - - 1.64E+14 - -
leca 1.19E+16 - - 2.10E+15 - - 352E+14 -
tyc2 6.60E+17 - - 3.43E+16 - 519E+14 -
tycs 193E+15 - - 6.20E+14 - - 2.25E+14 - -
tze1 9.39E+17 24190505 24188468 1.55E+17 4975362 4974004 6.74E+14 3406051 3407571
tss 6.83E+14 24190424 24196828 3.58E+14 4975075 4978358 1.76E+14 3406186 3409347
t7es 1.27E+16 24190468 24195776 5.49E+15 4975154 4977771 4.23E+14 3406154 3409007
tzg4 7. 71E+17 24190466 24192613 4.40E+16 4975283 4976777 6.30E+14 3406048 3408230
tzes 6.85E+17 24190511 24189739 1.16E+17 4975341 4974567 6.58E+14 3406056 3407716
t7e6 2.07E+15 24190423 24196823 1.16E+15 4975076 4978352 2.54E+14 3406186 3409346
tze7 8.84E+17 24190462 24192421 9.42E+16 4975286 4976593 6.56E+14 3406048 3408198
t7ge 1.01E+15 24190432 24196788 2.19E+15 4975089 4978094 2.39E+14 3406186 3409318
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Lz 9.36E+17 24190502 24188756 1.47E+17 4975357 4974209 6.72E+14 3406049 3407603
Lze1o 3.06E+14 24190423 24196867 1.85E+14 4975073 4978371 1.40E+14 3406186 3409356

Table 14: Simulation results for the MSE of estimators for various sample sizes when it comes to
Exponential distribution (X ~ Exp (1))

n: 20 30 40
Estimators Clsical MCD MVE Classical MCD MVE Classical MCD MVE
ty 9.84E+15 - - 9.65E+15 - - 9.91E+15 " "
ter 6.48E+16 - - 1.14E+16 - - 1.80E+16 - -
treg 9.71E+15 - . 1.02E+16 - - 9.87E+15 . .
tys 9.73E+15 - - 9.65E+15 - - 9.89E+15 " "
bt 9.82E+15 - - 9.65E+15 - - 9.91E+15 " "
teco 9.84E+15 - - 9.65E+15 - - 9.91E+15 " "
tycs 9.79E+15 - - 9.65E+15 - - 9.90E+15 " "
tzes 1.38E+16 9.01E+08 9.01E+08  9.94E+15 9.91E+08 9.91E+08  1.23E+16 1.47E+09 1.47E+09
Lizs2 1.33E+16 9.01E+08 9.01E+08  9.88E+15 9.91E+08 9.91E+08  1.22E+16 1.47E+09 1.47E+09
Lizgs 1.37E+16 9.01E+08 9.01E+08  9.93E+15 9.91E+08 9.91E+08  1.23E+16 1.47E+09 1.47E+09
Lizgs 1.38E+16 9.01E+08 9.01E+08  9.93E+15 9.91E+08 9.91E+08  1.23E+16 1.47E+09 1.47E+09
Lizgs 1.38E6  9.01E+08 9.01E+08  9.94E+15 9.91E+08 9.91E+08  1.23E+16 1.47E+09 1.47E+09
Lizge 1.36E+16 9.01E+08 9.01E+08  9.91E+15 9.91E+08 9.91E+08  1.23E+16 1.47E+09 1.47E+09
Liza7 1.38E+16 9.01E+08 9.01E+08  9.94E+15 9.91E+08 9.91E+08  1.23E+16 1.47E+09 1.47E+09
Lz 1.37E+16 9.01E+08 9.01E+08  9.92E+15 9.91E+08 9.91E+08  1.23E+16 1.47E+09 1.47E+09
Lizge 1.38E+16 9.01E+08 9.01E+08  9.94E+15 9.91E+08 9.91E+08  1.23E+16 1.47E+09 1.47E+09
L7810 1.31E+16 9.01E+08 9.01E+08  9.87E+15 9.91E+08 9.91E+08  1.22E+16 1.47E+09 1.47E+09

Table 15. Simulation results for the MSE of estimators for various sample sizes when it comes to
Nmal distribution (X ~N (5,1))
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