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Abstract

The general assumption in designing a multivariate control chart is that the multiple variables
are independent and normally distributed. This assumption may not be tenable in many practical
situations, because multiple variables with dependency often need to be monitored simultaneously
to ensure the process is in control. The Gumbel’s bivariate exponential (GBE) distribution is con-
sidered to be a better model for skewed data with dependency in reliability analysis. In this paper,
a multivariate exponentially weighted moving average (MEWMA) scheme with variable sampling
interval (VSI) feature is developed to monitor the mean vector of GBE model. The Monte Carlo
simulation is used to evaluate the average time to signal (ATS) performance of the proposed VSI
MEWMA GBE scheme for three different types of shifts. Some tables are presented to show the
ATS performance of the proposed scheme with different designed parameters. Additionally, both
the zero-state and the steady-state ATS performance of the proposed scheme is compared with
that of the conventional MEWMA chart with FSI (Fix Sampling Interval) feature. Comparative
results show that the suggested scheme works better than its FSI counterpart in monitoring GBE
data. Finally, a simulation example is provided to show that the VSI MEWMA GBE scheme per-
forms well in monitoring GBE data.

Keywords: Average time to signal; Gumbel’s bivariate exponential distribution; Multivariate
EWMA control chart; Variable sampling interval; Zero-state and steady-state.

1 Introduction
Quality control plays a significant role in maintaining the reputation of a factory or company. The
most effective way to improve product quality in the manufacturing processes is to use statistical
process control (SPC). As one of the most important tools in SPC, control charts have been widely
used in many quality control applications and developed with many variants, for example, Perry [1],
Hassani et al. [2] and Khan et al. [3]. It is known that univariate control charts can only focus on a
single quality characteristic of the process, for instance, the univariate Shewhart-type control charts
are popular and efficient to detect large changes in a process, and the univariate memory-type control
charts, for example, the exponentially weighted moving average (EWMA) chart and the cumulative

1



sum (CUSUM) chart are much more effective for detecting small to moderate shifts (see Nazir et al.
[4], Castagliola et al. [5] and Olawale Ajadi and Riaz [6]). However, in practice, there are many
scenarios in which the simultaneous monitoring of several related quality characteristics of interest is
a necessity. According to Cozzucoli and Marozzi [7] and Xie et al. [8], it is usually ineffective and
misleading when several univariate schemes are used to monitor these related quality characteristics
separately. In this context, the use of a multivariate control chart can be a good solution to the problem
as it takes the natural correlation between the quality characteristics into account (see Montgomery
[9]). Most of the traditional multivariate control charts are the generalizations of their univariate coun-
terparts, such as the multivariate EWMA (MEWMA) control chart proposed by Lowry et al. [10] and
the multivariate CUSUM (MCUSUM) control chart introduced by Crosier [11]. For more details on
traditional multivariate control charts, readers can refer to Lowry and Montgomery [12] and Bersimis
et al. [13].

Although multivariate control charts have received much attention in the literature, most of the
works were based on the assumption that the data follow a multivariate normal distribution. But
in practice, the multivariate data in many situations are usually non-normal and highly skewed, as
the marginal distributions are usually based on exponential, Poisson or gamma distributions (see Xie
et al. [8], Chen et al. [14], and Cheng et al. [15]). Up to now, there are many approaches have been
proposed to construct multivariate control charts for those non-normal and highly skewed distribu-
tions, for instance, the double square-root transformation used in Xie et al. [8], and the weighted
standard deviation method proposed by Chang [16]. Different from these transformation methods,
both Stoumbos and Sullivan [17] and Testik et al. [18] pointed out that the MEWMA scheme using a
small smoothing factor was fairly robust to the non-normality assumption. In this context, Xie et al.
[8] investigated the ARL performance of the MEWMA scheme in detecting the mean shift vector of
Gumbel’s bivariate exponential distribution. Cheng et al. [15] further studied the ARL performance
of the MEWMA scheme for simultaneously monitoring the frequency and magnitude of events. The
results of these two studies implied that the MEWMA scheme with a small smoothing factor outper-
forms the other competing charts for monitoring the multivariate non-normal data in most scenarios.

The traditional practice of using a control chart for process monitoring is to take a fixed sample
size from the process at a fixed sampling interval (FSI). Extensive research works have been shown
that varying the sampling interval as a function of the process sample can make the process shift de-
tection faster than the corresponding FSI strategy (see Tang et al. [19]). In addition, simulations in
Reynolds et al. [20], Reynolds Jr [21], and Reynolds Jr and Arnold [22] showed that using two sam-
pling intervals is sufficient to provide good performance in monitoring various magnitudes of shifts,
and to keep the complexity of the variable sampling interval (VSI) charts at a reasonable level. It
is known that the VSI charts can usually be partitioned into three regions, namely, the safe region,
the warning region and the out-of-control region. The basic idea of the VSI charts is that the short
sampling interval dS can provide a quick detection when the current sample falls into the warning re-
gion, and a long sampling interval dL is taken if the current sample falls into the safe region. Finally,
if a sample falls outside the control limits, the sample belongs to the out-of-control region and the
process is considered to be out-of-control, where corrective action(s) should be taken to remove the
assignable cause(s). Some of the recent studies on VSI charts were made by Haq [23], Khoo et al.
[24] and Shojaee et al. [25].

The time to signal of a scheme is not a constant multiple of its average run length (ARL) when
the sampling interval is varied. Hence, the average time to signal (ATS), which is defined as the av-
erage time from the beginning of the process monitoring until the scheme generates an out-of-control
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signal, is often employed in VSI type charts (see Li et al. [26]). As defined in Saccucci et al. [27] and
Chew et al. [28], if a shift in the parameter occurs at the beginning of the Phase II monitoring, the
corresponding ATS is referred to as the zero-state ATS. Similarly, for the steady-state case, a mean
shift is assumed to occur at an unknown random time after process monitoring has started, and the
corresponding ATS can be referred to as the adjusted ATS (AATS) or the steady-state ATS (SATS)
(see Haq [23]). In this paper, both the zero-state and the steady-state ATS performance is investigated
to provide a comprehensive analysis of the GBE data monitoring.

According to Lee and Khoo [29] and Lee [30], the VSI feature can substantially improve the ATS
properties of MEWMA scheme, this fact motivates us to study the effectiveness of the VSI feature on
the MEWMA scheme in monitoring GBE data. Although monitoring the GBE data with a MEWMA
scheme has already been developed by Xie et al. [8], there is still no research has been done on (1)
proposing a MEWMA type scheme with VSI feature for monitoring the GBE data (hereafter denoted
as the VSI MEWMA GBE scheme), and (2) evaluating both the zero-state and the steady-state ATS
performance of the proposed VSI MEWMA GBE scheme for a direct comparison with its FSI coun-
terpart. We address these research gaps in the current paper.

The outline of this study is organized as follows: In Section 2, the GBE model is first intro-
duced, and then a VSI MEWMA type scheme for monitoring the GBE distributed data is developed.
The Monte Carlo simulations for both the zero-state and the steady-state ATS computations of the
proposed scheme are detailed in Section 3. Subsequently, in Section 4, numerical comparisons are
performed between the proposed VSI MEWMA GBE scheme and its FSI counterpart in the case of
downward, upward and hybrid shifts. Also, several guidelines for constructing the VSI MEWMA
GBE scheme are offered. In Section 5, a simulation example is provided to illustrate the imple-
mentation of the proposed VSI MEWMA GBE scheme for monitoring the GBE data. Finally, some
conclusions are made in Section 6.

2 The VSI MEWMA scheme for Gumbel’s bivariate exponential
distributed data

2.1 Gumbel’s bivariate exponential model
The Gumbel’s bivariate exponential model, which is known as the GBE model, was firstly introduced
by Gumbel [31]. Let us assume that the random variables (X, Y ) used in this paper follows a standard
GBE distribution. The joint survival function F̄X,Y (x, y) of X and Y is given as,

F̄X,Y (x, y) = exp

−(( x

θx

) 1
δ

+

(
y

θy

) 1
δ

)δ
, X and Y ∈ R+ (1)

where δ ∈ (0, 1] represents the dependence parameter, θx > 0 and θy > 0 are two scale parameters.
Note that if δ ∈ (0, 1), X and Y are correlated. Otherwise, δ = 1 corresponds to the case of
independence. Furthermore, the probability density function ( p.d.f.) of the standard GBE model is
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defined as,

fX,Y (x, y) = (θxθy)
− 1
δ (xy)
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(2)

According to Nadarajah and Kotz [32], the GBE models have been extensively used in various
applications, for instance, competing risks modeling (see Lu and Bhattacharyya [33]), failure times
(see Hougaard [34]), regional analyses of precipitation (see Bacchi et al. [35]), reliability or frailty
modelling (see Pal and Murthy [36]). However, only a few studies have been conducted on the mul-
tivariate control charts to monitor the GBE distributed data due to its complexity. More importantly,
the GBE model is a meaningful multivariate reliability model that the dependence can be explained
by the random mixing effect of external stress (see Hougaard [37]). This makes it easier to be applied
in realistic situations than other multivariate reliability models where the source of dependence needs
to be specified, for example, the Marshall-Olkin’s model and the Freund’s model. All these factors
motivate us to conduct further research on the monitoring of GBE data.

The mean vector and the corresponding covariance matrix are usually required in developing a
multivariate control chart. From the joint survival function F̄X,Y (x, y) in Equation (1), it is easy to
prove that the marginal distributions of X and Y are, respectively, the exponential distributions of
parameters θx and θy. Based on this condition, the mean vector µ of (X, Y )ᵀ is given as,

µ =

(
θx
θy

)
, (3)

and the corresponding covariance matrix Σ is defined as,

Σ =

(
θ2x ρθxθy

ρθyθx θ2y

)
, (4)

where the coefficient of correlation ρ is (see Lu and Bhattacharyya [38]),

ρ =
2Γ2(δ + 1)

Γ(2δ + 1)
− 1. (5)

Note that Γ(·) is the gamma function. For more details about the properties of GBE model, readers
can refer to Lu and Bhattacharyya [33] and Lu and Bhattacharyya [38].

2.2 The proposed VSI MEWMA GBE scheme
The standard MEWMA scheme was firstly developed by Lowry et al. [10]. Similar to the univariate
EMWA control charts, MEWMA schemes also take both the current and the past samples information
of the process into account, which makes the schemes more effective in detecting small to moderate
shifts. Furthermore, based on the fact that the MEWMA scheme with a small smoothing parameter
was considered to be fairly robust to the non-normality assumption, the VSI MEWMA GBE scheme
recommended in this study is robust to the GBE distributed data.
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For the proposed VSI MEWMA GBE scheme, suppose that the vectors Mt = (Xt, Yt)
ᵀ, t =

1, 2, . . . are the GBE vectors collected at regular sampling points. Similar to Lowry et al. [10], the
MEWMA statistic Wt of the recommended scheme can be written as,

Wt = R(Mt − µ0) + (I−R)Wt−1, (6)

where µ0 = (θx, θy)
ᵀ is the in-control mean vector, I is the (2, 2) identity matrix, the process initial

statistic W0 = 0, and R =diag(r1, r2), where ri ∈ (0, 1] for i = 1, 2. Furthermore, the charting
statistic Q2

t of the proposed VSI MEWMA GBE scheme is defined as,

Q2
t = Wᵀ

tΣ
−1
Wt

Wt, (7)

where ΣWt is the in-control covariance matrix of the MEWMA statistic Wt. In general, when r1 =
r2 = r, the MEWMA statistic Wt is re-stated as,

Wt = r(Mt − µ0) + (1− r)Wt−1. (8)

Since the asymptotic in-control covariance matrix ΣWt is,

ΣWt =

(
r

2− r

)
Σ, (9)

where Σ is defined in Equation (4). The charting statistic Q2
t can be written as follows,

Q2
t =

2− r
r

Wᵀ
tΣ
−1Wt. (10)

For the proposed VSI MEWMA GBE scheme, the safety region, the warning region, and the
out-of-control region are divided by the upper control limit HU and the warning control limit HW .
Furthermore, the VSI strategy of the scheme is given as follows:

• If Q2
t ∈ [0, HW ], i.e., the current sample belongs to the safety region, the process is considered

as in-control, and the next sample is taken after a long sampling interval dL > 1.

• Otherwise, if Q2
t ∈ (HW , HU ], the current sample belongs to the warning region, the process

is also considered as in-control, but a short sampling interval dS ∈ (0, 1) is used for the next
sample.

• Finally, if Q2
t ∈ (HU ,+∞), the current sample belongs to the out-of-control region, the pro-

cess is deemed to be out-of-control, the proposed VSI MEWMA GBE scheme signals and
corresponding corrective action(s) should be taken to remove the assignable cause(s).

3 Average time to signal of the VSI MEWMA GBE scheme
For the VSI type schemes, it is necessary to directly measure the time required to signal. According
to Tang et al. [19], the ATS of the FSI type scheme is just a multiple of its ARL. Without loss of
generality, we have,

ATSFSI = ARLFSI × dFSI, (11)

where dFSI represents the fixed sampling interval used in the FSI type scheme. But the ATS of the
VSI type scheme depends on both the ARL value and the predetermined sampling intervals, say,

ATSVSI = ARLVSI × E(d), (12)
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whereE(d) represents the average of sampling intervals (ASI). As shown in Reynolds et al. [39], Sac-
cucci et al. [27], Castagliola et al. [40], and Tang et al. [19], the ASI is usually taken to be E(d) = 1
time unit.

In this study, the same in-control ATS value is used to provide a fair comparison between the VSI
MEWMA GBE scheme and its FSI counterpart. Based on this assumption, we have,

E(d) = pS × dS + pL × dL = dFSI = 1, (13)

where pS + pL = 1, and pS (pL) represents the probability of adopting the short (long) sampling
interval. It is easy to see that Equation (13) can keep the in-control ARL (hereafter denoted as ARL0)
and the in-control ATS (hereafter denoted as ATS0) of the scheme at the same value (i.e., ATSFSI

0 =
ATSVSI

0 = ARL0). With an acceptable ATS0, the smaller the out-of-control ATS (hereafter denoted
as ATS1), the better the performance of the control chart. In this paper, the in-control and out-of-
control GBE processes are, respectively, modeled by GBE(θx, θy, δ) and GBE(θ′x, θ

′
y, δ). In what

follows, both the zero-state and the steady-state ATS performance of the suggested VSI MEWMA
GBE scheme is studied.

3.1 Zero-state case
The zero-state ATS is defined as the average time to signal when the process operates with the mean
off target from the start (see Lee and Khoo [41]). As recommended by Chen et al. [14], Tang et al.
[19], and Guo and Wang [42], the short sampling interval dS should be used in the proposed VSI
MEWMA GBE scheme as a safeguard to provide additional protection against problems that may
occur during the start-up (i.e., d0 = dS , where d0 is the sampling interval used before the first sample
is taken). The Monte Carlo simulation for computing the zero-state ATS value of the VSI MEWMA
GBE scheme is given as follows:

Step 1: Specify the scale parameters θx and θy, the smoothing parameter r, and the dependence pa-
rameter δ. Meanwhile, determine the upper control limit HU and the warning control limit
HW of the suggested VSI MEWMA GBE scheme. Set the cumulative number of short sam-
pling interval NS = 1 (i.e., d0 = dS) and the cumulative number of long sampling interval
NL = 0. In addition, let the initial sampling point t = 1.

Step 2: Generate an out-of-control GBE vector MOC
t = (Xt, Yt)

ᵀ of the GBE (θ′1, θ
′
2, δ) model at

sampling point t using the following equations (see Xie et al. [43]),

E = E1 + V E2, (14)

Xt = θxU
δE, (15)

Yt = θy(1− U)δE, (16)

where U , V , E1 and E2 are four independent random variables such that U is a uniform (0, 1)
random variable, V ∈ {0, 1} is a Bernoulli random variable with parameter δ (the dependence
parameter of the GBE model), say, P (V = 0) = 1 − δ and P (V = 1) = δ, and E1 and E2

are two exponential random variables both with scale parameter θE = 1.

Step 3: Compute the charting statistic Q2
t at sampling point t using Equation (10). Then,

• if Q2
t ∈ [0, HW ], the process is considered as in-control, let t = t+ 1, and then move to

Step 2 to generate a new MOC
t after a long sampling interval dL (i.e., NL = NL + 1).
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• If Q2
t ∈ (HW , HU ], the process is also considered as in-control, let t = t + 1, and then

go to Step 2 to obtain a new MOC
t after a short sampling interval dS (i.e., NS = NS +1).

• Otherwise, if Q2
t > HU , the process is deemed to be out-of-control, the TS (Time to

Signal) value can be calculated using TS = dL ×NL + dS ×NS . Reset t = 1, NS = 1,
and NL = 0, and then move to the next step.

Step 4: Repeat Steps 2 and 3 to obtain 105 TS values, and then the zero-state ATS of the proposed
VSI MEWMA GBE scheme is estimated.

Furthermore, with the constraint on the desired ATS0, a two-stage procedure for searching the
upper control limit HU and the warning control limit HW of the suggested VSI MEWMA GBE
scheme is given as follows:

Step 1: Choose an acceptable in-control ATS value, say, ATS0 = A, and specify the smoothing
parameter r, the short (long) sampling interval dS (dL), and the probability pS (pL) of adopting
the short (long) sampling interval.

Step 2: With the constraint on ARL0 = ATS0/E(d) = A, search the upper control limit HU of the
recommended scheme first.

Step 3: Based on the specified dS and pS (or, dL and pL), the corresponding long (short) sampling
interval dL (dS ) can be computed using Equation (13). For instance, if dS = 0.1 and pS =
0.4, it is easy to known that pL = 1− pS = 0.6 and dL = 1.6.

Step 4: For each combination of (dS, dL), the warning control limit HW will then be determined by
the fixed upper control limit HU and ATS0 = A.

According to the two-stage procedure introduced above, when δ = 0.5, r ∈ {0.01, 0.02, 0.05,
0.07, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}, dS ∈ {0.1, 0.3, 0.5}, and pS ∈ {0.2, 0.5, 0.8}, the
HU and HW values of the proposed VSI MEWMA GBE scheme leading to the desired ATS0 = 200
are presented in Table 1.

(Please insert Table 1 here)

3.2 Steady-state case
The steady-state case is commonly based on a more realistic assumption that some random shifts
occur after a period of in-control time, the ATS obtained in this scenario is named the steady-state
ATS (see Lee and Khoo [29]). The Monte Carlo simulation for computing steady-state ATS is similar
to the zero-state ATS case, except that the in-control “warm-up period” should be implemented first
(see Xu and Jeske [44]). The steps are given as:

Step 1: Take the scale parameters θx and θy, the smoothing parameter r, and the dependence pa-
rameter δ. Meanwhile, determine the upper control limit HU and warning control limit HW .
Set the cumulative number of the short (long) sampling interval NS = 1 (NL = 0), and the
in-control warm-up period Tw. Additionally, let the initial sampling point t = 1.

Step 2: Generate an in-control GBE vector MIC
t = (Xt, Yt)

ᵀ of the GBE(θ1, θ2, δ) model at sampling
point t using Equations (14) to (16).

Step 3: Compute the charting statistic Q2
t at sampling point t using Equation (10).
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• If Q2
t ∈ [0, HW ] and the corresponding TS < Tw (i.e., set NL = NL + 1 and then

TS = dL×NL + dS ×NS < Tw), let t = t+ 1, and then go to Step 2 to get a new MIC
t .

Otherwise, if Q2
t ∈ [0, HW ] but the corresponding TS > Tw (i.e., set NL = NL + 1 and

then TS = dL×NL+dS×NS > Tw), let t = t+1, and then move to Step 4 to generate
a new MOC

t .

• If Q2
t ∈ (HW , HU ] and the corresponding TS < Tw (i.e., set NS = NS + 1 and then

TS = dL×NL + dS ×NS < Tw), let t = t+ 1, and then go to Step 2 to get a new MIC
t .

Otherwise, if Q2
t ∈ (HW , HU ] but the corresponding TS > Tw (i.e., set NS = NS + 1

and then TS = dL × NL + dS × NS > Tw), let t = t + 1, and then move to Step 4 to
generate a new MOC

t .

• If Q2
t > HU , we discard the current in-control random vector MIC

t , and move back to
Step 2 to generate a new MIC

t .

Step 4: Generate an out-of-control GBE vector MOC
t = (Xt, Yt)

ᵀ of the GBE(θ′1, θ
′
2, δ) model at

sampling point t using Equations (14) to (16).

Step 5: Compute the charting statistic Q2
t at sampling point t using Equation (10).

• If Q2
t ∈ [0, HW ], let t = t + 1, and then go to Step 4 to get a new MOC

t after a long
sampling interval dL (i.e., let NL = NL + 1).

• If Q2
t ∈ (HW , HU ], let t = t + 1, and then go to Step 4 to get a new MOC

t after a short
sampling interval dS (i.e., let NS = NS + 1).

• Otherwise, ifQ2
t > HU , the process is considered as out-of-control, and the correspond-

ing steady-state TS value, which equals to dL ×NL + dS ×NS − Tw, can be obtained.
Then reset t = 1, NS = 1, and NL = 0, move to the next step.

Step 6: Repeat Steps 2 to 5 to get 105 TS values, then the steady-state ATS value is computed by
averaging these TS values.

In the steady-state case, the two-stage procedure for searching the upper control limit HU and
the warning control limit HW of the suggested VSI MEWMA GBE scheme is similar to the one
in the zero-state case, except that the in-control warm-up period Tw has to be run first. With the
constraint on ATS0 = 200, the HU and HW values of the proposed scheme are listed in Table 2 for
δ = 0.5, r ∈ {0.01, 0.02, 0.05, 0.07, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}, dS ∈ {0.1, 0.3, 0.5},
pS ∈ {0.2, 0.5, 0.8}, and the in-control warm-up period Tw = 50.

(Please insert Table 2 here)

4 Performance Comparisons
Since Xie et al. [8] have systematically compared the ARL performance between the MEWMA
scheme and the other comparative charts, this section will compare both the zero-state and the steady-
state ATS performance between the proposed VSI MEWMA GBE scheme and its FSI counterpart in
three different types of shifts (namely, the downward shift, the upward shift, and the hybrid shift). For
both the zero-state and the steady-state cases, the mean shift vector (εx, εy) of the GBE model can be
defined as,

(εx, εy) =

(
θ′x
θx
,
θ′y
θy

)
, (17)
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where εx and εy are the variables used to quantify the mean shift. In this paper, the mean shift vector
(εx, εy) = (1, 1) is used to denote the process is in control, and then the ATS1 properties of the
recommended scheme in three different types of shifts are investigated, respectively.

4.1 Detection of the downward shift
For the GBE model studied in this paper, a downward shift is defined, when

• X shifts downward but Y keeps in-control (i.e., εx < 1, εy = 1),

• X keeps in-control but Y shifts downward (i.e., εx = 1, εy < 1),

• or both X and Y shift downward (i.e., εx < 1, εy < 1).

By definition, the first two cases are denoted as “single downward shifts”, and the third one is de-
noted as “double downward shift”. Since two single downward shift cases (εx < 1, εy = 1) and
(εx = 1, εy < 1) have similar properties, for simplicity, only the ATS performance of the single
downward shift case (εx < 1, εy = 1) and the double downward shift case (εx < 1, εy < 1) are
investigated in detail in this paper.

Without loss of generality, assume that the ATS0 = 200, the dependency parameter ρ = 0.5, the
scale parameters θx = θy = 1, and the sampling intervals (dS, dL) = (0.1, 1.9). For the downward
shift case, both the zero-state and the steady-state ATS performance of the suggested VSI MEWMA
GBE scheme is, respectively, listed in Tables 3 and 4. For instance, if (εx, εy) = (0.8, 1) and r = 0.05,
the zero-state (or the steady-state) ATS1 value of the proposed VSI MEWMA GBE scheme equals
to 63.12 (60.56) (see Table 3 and Table 4). For comparison, the in-control ATS value of the FSI
MEWMA scheme (denoted as ATS′0) is set to be the same as that of the proposed scheme, i.e.,
ATS′0 = ATS0 = 200. Then, both the zero-state and the steady-state ATS performance of the FSI
MEWMA scheme is also presented in Tables 3 and 4, respectively. For instance, the out-of-control
ATS value of the FSI MEWMA scheme (denoted as ATS′1) in the zero-state (or the steady-state) case
is 82.65 (79.85) when (εx, εy) = (0.8, 0.8) and r = 0.02 (see Table 3 and Table 4).

(Please insert Tables 3 and 4 here)

Note that the steady-state ATS values of these two schemes are obtained by simulations with the
in-control warm-up period Tw = 50. For each predetermined downward shift vector (εx, εy), the
minimum out-of-control ATSs of the VSI MEWMA GBE scheme and its FSI counterpart (denoted
as ATSmin and ATS′min) are respectively bolded in tables. Several conclusions for the downward shift
detection can be drawn as follows:

(1) For both the zero-state and the steady-state cases, the proposed VSI MEWMA GBE scheme
is effective for detecting the whole downward shift domain when a relatively small smoothing
parameter r ∈ (0, 0.1] is selected. For example, when the downward shift vector (εx, εy) =
(0.8, 1), the zero-state ATSmin of the proposed VSI MEWMA GBE scheme can be obtained
when r = 0.02 is selected (see Table 3). Meanwhile, when the downward shift vector (εx, εy) =
(0.8, 0.8), the steady-state ATSmin of the suggested scheme is obtained when r equals to 0.01
(see Table 4). On the other hand, for both the zero-state and the steady-state cases, most ATS1

values of the suggested VSI MEWMA GBE scheme are larger than the desired ATS0 when r
ranges from 0.2 to 1 (the phenomenon known as “ATS-biased”). This means that the proposed
scheme may lose its effect on the downward shift detection if a relatively large smoothing
parameter r ∈ [0.2, 1] is considered.
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(2) Irrespective of the zero-state or the steady-state cases, every ATSmin of the VSI MEWMA GBE
scheme is smaller than the corresponding ATS′min of the FSI MEWMA scheme. This indicates
that the VSI MEWMA GBE scheme is effective than the FSI MEWMA scheme to detect a
downward shift. For example, when (εx, εy) = (0.2, 1), the zero-state ATSmin and ATS′min

are 5.08 and 11.86, respectively (see Table 3), and the corresponding steady-state ATSmin and
ATS′min are 5.14 and 11.26, respectively (see Table 4).

(3) Irrespective of the zero-state or the steady-state cases, with the same smoothing parameter
r, the VSI MEWMA GBE scheme is more effective for detecting a single downward shift
than the corresponding double downward shift. For instance, when the smoothing parameter
r = 0.05, the zero-state ATS1 values of the proposed VSI MEWMA GBE scheme for the
single downward shift vector (εx, εy) = (0.5, 1) and the corresponding double downward shift
vector (εx, εy) = (0.5, 0.5) are 11.91 and 14.52, respectively (see Table 3). Meanwhile, the
corresponding steady-state ATS1 values are 10.98 and 12.86, respectively (see Table 4).

(4) In order to compare the ATS performance from quantitative assessment, according to Wu et al.
[45], the average of the ratio (AR) of ATS values is defined as follows,

AR =

∑m
j=1 (ATSmin(εx,j, εy,j)/ATS′min(εx,j, εy,j))

m
, (18)

where m is the number of mean shift vectors included in the comparison, ATSmin(εx,j, εy,j) is
the minimum ATS1 value produced by the proposed VSI MEWMA GBE scheme at the jth
mean shift vector (εx,j, εy,j), and ATS′min(εx,j, εy,j) is the minimum ATS′1 value of the FSI
MEWMA scheme at the same mean shift vector. Obviously, if the AR value is smaller than
one, the proposed scheme is generally more effective than the FSI MEWMA scheme in the
whole shift domain and vice versa. For the downward shift detection, as it can be computed
from Tables 3 and 4, the AR of the proposed VSI MEWMA GBE scheme for the zero-state
case is 0.54. Meanwhile, for the steady-state case, the AR of the proposed scheme is 0.53. This
fact indicates that the VSI MEWMA GBE scheme outperforms the FSI MEWMA scheme for
detecting the whole downward shift domain, in average.

4.2 Detection of the upward shift
The upward shift in the GBE model can be defined, if

• X shifts upward but Y keeps in-control (i.e., εx > 1, εy = 1),

• X keeps in-control but Y shifts upward (i.e., εx = 1, εy > 1),

• or both X and Y shift upward (i.e., εx > 1, εy > 1).

Similar to the downward shift cases, only the ATS performance of the single upward shift case (εx >
1, εy = 1) and the double upward shift case (εx > 1, εy > 1) are investigated in detail in this section.
In addition, the same settings, say, ATS0 = 200, ρ = 0.5, θx = θy = 1, and (dS, dL) = (0.1, 1.9)
are used in this section. For the upward shift detection, both the zero-state and the steady-state ATS
performance of the proposed VSI MEWMA GBE scheme is presented in Tables 5 and 6, respectively.
For example, the zero-state (or the steady-state) ATS1 of the proposed VSI MEWMA GBE scheme
is 15.51 (15.39) when (εx, εy) = (1.5, 1) and r = 0.1 are selected (see Table 5 and Table 6).

(Please insert Tables 5 and 6 here)
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As a comparison, when ATS′0 = ATS0 = 200, both the zero-state and the steady-state ATS
performance of the FSI MEWMA scheme for the upward shift domain is also given in Tables 5 and
6, respectively. For instance, when (εx, εy) = (2, 1) and r = 0.07, the zero-state ATS′1 of the FSI
MEWMA scheme is 6.62 (see Table 5), and the corresponding steady-state ATS′1 is 6.73 (see Table
6). It is worth noting that, for the upward shift detection, the steady-state ATS values of these two
schemes are also obtained by using the in-control warm-up period Tw = 50. Several conclusions of
the upward shift detection can be made as follows:

(1) For both the zero-state and the steady-state cases, the proposed VSI MEWMA GBE scheme
with a relatively small (or large) smoothing parameter r is effective in detecting a small (large)
upward shift. For instance, when the upward shift vectors are (εx, εy) = (1.5, 1) and (εx, εy) =
(10, 1), the zero-state ATSmin of the proposed VSI MEWMA GBE scheme can be obtained
when the smoothing parameters r are 0.07 and 0.9, respectively (see Table 5). Meanwhile,
when the upward shift vectors are (εx, εy) = (1.5, 1.5) and (εx, εy) = (10, 10), the steady-state
ATSmin of the suggested scheme can be obtained when the smoothing parameters r are 0.1 and
1, respectively (see Table 6).

(2) Irrespective of the zero-state or the steady-state cases, when using the same smoothing param-
eter r, the VSI MEWMA GBE scheme seems more effective in detecting the double upward
shift than the corresponding single upward shift. For instance, when the smoothing parameter
r = 0.2, for the upward shift vectors (εx, εy) = (5, 1) and (εx, εy) = (5, 5), the zero-state ATS1

values of the proposed scheme are, respectively, 1.13 and 1.03 (see Table 5). Meanwhile, the
steady-state ATS1 are 1.82 and 1.80, respectively (see Table 6).

(3) Irrespective of the zero-state or the steady-state cases, every ATSmin of the VSI MEWMA
GBE scheme is smaller than the corresponding ATS′min of the FSI MEWMA scheme. This
indicates that the VSI MEWMA GBE scheme works better than the FSI MEWMA scheme in
monitoring upward shifts. For instance, when the upward shift vector (εx, εy) = (2, 2), the zero-
state ATSmin and ATS′min are 5.56 and 8.68, respectively (see Table 5), and the corresponding
steady-state ATSmin and ATS′min are 1.70 and 2.34, respectively (see Table 6).

(4) The zero-state and the steady-state AR values for the upward shift case are 0.47 and 0.72,
respectively (see Tables 5 and 6). This means that, in average, the VSI MEWMA GBE scheme
works better than the FSI MEWMA scheme in detecting upward shifts.

4.3 Detection of the hybrid shift
For the GBE model, a hybrid shift is defined, if

• X shifts downward but Y shifts upward (i.e., εx < 1, εy > 1),

• or X shifts upward but Y shifts downward (i.e., εx > 1, εy < 1).

The same settings as in the upward shift case are also used for the hybrid shift case, i.e., ATS0 = 200,
ρ = 0.5, θx = θy = 1, and (dS, dL) = (0.1, 1.9). For the hybrid shift detection, both the zero-state
and the steady-state ATS performance of the proposed VSI MEWMA GBE scheme is, respectively,
given in Tables 7 and 8. For instance, when (εx, εy) = (0.8, 1.5) and r = 0.2, the zero-state ATS1 of
the proposed VSI MEWMA GBE scheme is 11.44 (see Table 7), and the corresponding steady-state
ATS1 value equals to 11.55 (see Table 8). For comparison, both the zero-state and the steady-state
ATS performance of the FSI MEWMA scheme based on ATS′0 = 200 is also listed in Tables 7 and 8.
For instance, when (εx, εy) = (0.5, 2) and r = 0.4, the zero-state ATS′1 of the FSI MEWMA scheme
is 2.68 (see Table 7), and the corresponding steady-state ATS′1 value is 3.24 (see Table 8).
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(Please insert Tables 7 and 8 here)

From Tables 7 and 8, some conclusions can be made as follows:

(1) Similar to the upward shift case, when using a relatively small (or large) smoothing parameter
r, the suggested VSI MEWMA GBE scheme is also effective for detecting small (large) hybrid
shifts. For example, when the hybrid shift vectors (εx, εy) = (0.8, 1.5) and (εx, εy) = (0.2, 5),
the zero-state ATSmin of the proposed scheme can be obtained when the smoothing parameters
are r = 0.1 and r = 0.8, respectively (see Table 7). In addition, when the hybrid shift vectors
are (εx, εy) = (0.5, 2) and (εx, εy) = (0.1, 10), the steady-state ATSmin of the suggested scheme
can be obtained when smoothing parameters are r = 0.3 and r = 1, respectively (see Table 8).

(2) Every ATSmin of the VSI MEWMA GBE scheme is smaller than the corresponding ATS′min of
the FSI MEWMA scheme. This indicates that the VSI MEWMA GBE scheme performs better
than the FSI MEWMA scheme for detecting hybrid shifts. For example, when the upward
shift vector (εx, εy) = (0.5, 2), the zero-state ATSmin and ATS′min values are 2.61 and 6.95,
respectively (see Table 7). Meanwhile, the steady-state ATSmin and ATS′min values are 3.17
and 6.80, respectively (see Table 8).

(3) The zero-state and the steady-state AR values in the case of hybrid shift are 0.30 and 0.56,
respectively (see Tables 7 and 8). This fact means that the suggested VSI MEWMA GBE
scheme also outperforms the FSI MEWMA scheme in the whole hybrid shift detection.

5 A simulation example
Similar to the headache relief time dataset analyzed by Xie et al. [8], a simulation example of muscle
strain relief time is used here to illustrate the implementation of the proposed VSI MEWMA GBE
scheme for monitoring GBE data.

In the medical experiment, it was assumed that each of the first 10 volunteers had been treated
separately for muscle strain with modality therapy and manual therapy, the corresponding relief time
(in hours) from muscle strain are denoted as X and Y , respectively. All of these 10 paired GBE
data (X, Y ) are recorded in Table 9. According to Xie et al. [8], if the first 10 couples are con-
sidered as the in-control GBE data, the corresponding average relief time µ̂ can be estimated us-
ing µ̂ = M̄ = 1

n

∑n
t=1 Mt. Additionally, the dependency parameter is estimated by using δ̂ =

− log2

(
1
n

∑n
t=1 min

(
Xt/X̄, Yt/Ȳ

))
, where n = 10 in this example (see Lu and Bhattacharyya [38]).

Based on these two formulas, the estimated scale parameters and dependency parameter are θ̂1 = 3.43,
θ̂2 = 2.68, and δ̂ = 0.21, respectively.

(Please insert Table 9 here)

We further assume that a new medicine will be used in combination with these two physical ther-
apies in the subsequent medical experiment, and the pharmaceutical company claims that the new
medicine could reduce the average relief time of these two treatments effectively. Based on this as-
sumption, we use the proposed VSI MEWMA GBE scheme to monitor the relief time data to verify
the effectiveness of the new medicine, and the medical experiment can be ended when the suggested
VSI MEWMA GBE scheme signals. According to the pre-designed experimental guidelines, only
after a specified waiting time to ensure that the new medicine is completely metabolized and has no
other side effects, then a new volunteer can be invited to combine the new medicine for two physical
therapies to obtain the next relief time data. If the statistic (in this example, it is Q2

t ) shows that the

12



efficacy of the new medicine is not significant, we need to wait longer to ensure that the health of
volunteers is not damaged by other unknown factors. But when the statistic (i.e., Q2

t ) shows that the
therapeutic effect is obvious, we can shorten the waiting time to speed up the experiment on the basis
that the medicine is completely metabolized. In this example, we assume that the desired experimen-
tal time is 4800 hours (i.e., ATS0 = 4800), the average waiting time interval E(d) = 24 hours, the
short waiting time interval dS = 12 hours, and the long waiting time interval dL = 36 hours.

On the other hand, if we assume that the use of the new medicine can shorten the average relief
time of two physical therapies to 80% and 50% of the defined one, say, (εx, εy) = (0.8, 0.5), then
the corresponding Phase II GBE data are listed in Table 9. According to the guideline mentioned
in Section 4.1, the proposed VSI MEWMA GBE scheme is effective for detecting the whole down-
ward shift domain when a relatively small smoothing parameter r ∈ (0, 0.1] is selected. Hence, the
smoothing parameter r = 0.02 is considered in this example. Moreover, based on the two-stage pro-
cedure introduced above, when δ̂ = 0.21, dS = 12, and dL = 36, the upper control limit HU and
the warning control limit HW of the VSI MEWMA GBE scheme can be easily obtained to achieve
the desired ATS0 = 4800, say, HU = 5.256 and HW = 0.902. With these designed parameters, the
charting statistic Q2

t of the VSI MEWMA GBE scheme can be obtained, see Column 6 in Table 9.
Note that the proposed VSI MEWMA GBE scheme signals at the 25th volunteer (in bold), and the
corresponding waiting time is 276 hours. However, if the FSI MEWMA scheme is used in the process
to monitor the relief time data, the waiting time will be 360 hours (15 volunteers × 24 hours). This
fact indicates that the suggested VSI MEWMA GBE scheme works better than the FSI MEWMA
scheme in monitoring the GBE data.

6 Conclusion
In this paper, a VSI MEWMA type scheme is proposed to monitor the mean vector of GBE model. For
each type of shift, the Monte Carlo approach is used to evaluate the properties of the proposed scheme
in both the zero-state and the steady-state cases. Comparisons between the suggested VSI MEWMA
GBE scheme and the FSI MEWMA scheme in detecting three types of shifts are conducted, and the
simulation results show that the suggested VSI MEWMA GBE scheme works better than the FSI
MEWMA scheme in monitoring the whole shift domain. Finally, a simulation example is provided
to illustrate the implementation of the suggested VSI MEWMA GBE scheme for monitoring the data
of muscle strain relief time.

It is sensible to note that the zero-state and the steady-state ATS can not represent the entire
TS distribution of the VSI charts. The median time to signal (MTS) could also be used as a new
performance measure for the VSI MEWMA GBE scheme in both the zero-state and steady-state
cases. Hence, the current work can be extended to design a VSI MEWMA type scheme based on
MTS for monitoring the GBE data.
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Table captions
Table 1: Both HU and HW values of the suggested VSI MEWMA GBE scheme in the zero-state case,
for ATS0 = 200, δ = 0.5, r ∈ {0.01, 0.02, 0.05, 0.07, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1},
dS ∈ {0.1, 0.3, 0.5}, and pS ∈ {0.2, 0.5, 0.8}.
Table 2: Both HU and HW values of the suggested VSI MEWMA GBE scheme in the steady-state
case, for ATS0 = 200, δ = 0.5, r ∈ {0.01, 0.02, 0.05, 0.07, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9,
1} , dS ∈ {0.1, 0.3, 0.5}, pS ∈ {0.2, 0.5, 0.8}, and Tw = 50.
Table 3: Zero-state ATS values of the proposed VSI MEWMA GBE and FSI MEWMA schemes for
the downward shift domain (ATS0 = ATS′0 = 200, δ = 0.5, dS = 0.1, dL = 1.9).
Table 4: Steady-state ATS values of the proposed VSI MEWMA GBE and FSI MEWMA schemes
for the downward shift domain (ATS0 = ATS′0 = 200, δ = 0.5, dS = 0.1, dL = 1.9).
Table 5: Zero-state ATS values of the proposed VSI MEWMA GBE and FSI MEWMA schemes for
the upward shift domain (ATS0 = ATS′0 = 200, δ = 0.5, dS = 0.1, dL = 1.9).
Table 6: Steady-state ATS values of the proposed VSI MEWMA GBE and FSI MEWMA schemes
for the upward shift domain (ATS0 = ATS′0 = 200, δ = 0.5, dS = 0.1, dL = 1.9).
Table 7: Zero-state ATS values of the proposed VSI MEWMA GBE and FSI MEWMA schemes for
the hybrid shift domain (ATS0 = ATS′0 = 200, δ = 0.5, dS = 0.1, dL = 1.9).
Table 8: Steady-state ATS values of the proposed VSI MEWMA GBE and FSI MEWMA schemes
for the hybrid shift domain (ATS0 = ATS′0 = 200, δ = 0.5, dS = 0.1, dL = 1.9).
Table 9: An example of using the proposed VSI MEWMA GBE chart on monitoring the relief time
of volunteers after taking the new medicine (in hours).
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Table 1: Both HU and HW values of the suggested VSI MEWMA GBE scheme in the zero-state
case, for ATS0 = 200, δ = 0.5, r ∈ {0.01, 0.02, 0.05, 0.07, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9,

1}, dS ∈ {0.1, 0.3, 0.5}, and pS ∈ {0.2, 0.5, 0.8}.

pS (dS, dL)

r

0.01 0.02 0.05 0.07 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

HU 3.78 5.26 7.52 8.67 10.34 14.67 18.17 21.15 23.65 25.72 27.32 28.47 29.21 29.53

0.2
(0.1,1.225) HW 1.64 2.11 2.62 2.67 2.656 2.73 2.58 2.334 2.27 2.11 2.01 2.04 1.95 1.946
(0.3,1.175) HW 1.649 2.13 2.55 2.637 2.656 2.705 2.561 2.316 2.253 2.07 2.01 2.01 1.94 1.924
(0.5,1.125) HW 1.647 2.129 2.533 2.637 2.629 2.705 2.561 2.325 2.24 2.04 2.01 2.009 1.94 1.924

0.5
(0.1,1.9) HW 0.71 0.93 1.13 1.15 1.17 1.18 1.11 1.05 0.98 0.93 0.88 0.84 0.81 0.80
(0.3,1.7) HW 0.71 0.93 1.13 1.17 1.17 1.18 1.12 1.06 0.984 0.93 0.88 0.84 0.814 0.801
(0.5,1.5) HW 0.72 0.94 1.13 1.17 1.156 1.18 1.13 1.06 0.99 0.94 0.89 0.84 0.81 0.798

0.8
(0.1,4.6) HW 0.214 0.288 0.36 0.377 0.387 0.394 0.389 0.376 0.365 0.352 0.344 0.34 0.339 0.346
(0.3,3.8) HW 0.214 0.288 0.36 0.377 0.387 0.394 0.387 0.376 0.363 0.353 0.347 0.345 0.344 0.344
(0.5,3.0) HW 0.214 0.292 0.36 0.377 0.387 0.394 0.387 0.376 0.363 0.352 0.344 0.345 0.344 0.348

Table 2: Both HU and HW values of the suggested VSI MEWMA GBE scheme in the steady-state
case, for ATS0 = 200, δ = 0.5, r ∈ {0.01, 0.02, 0.05, 0.07, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9,

1} , dS ∈ {0.1, 0.3, 0.5}, pS ∈ {0.2, 0.5, 0.8}, and Tw = 50.

pS (dS, dL)

r

0.01 0.02 0.05 0.07 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

HU 4.16 5.56 7.65 8.77 10.37 14.75 18.23 21.18 23.62 25.71 27.34 28.49 29.21 29.54

0.2
(0.1,1.225) HW 1.551 1.96 2.45 2.55 2.65 2.56 2.45 2.28 2.17 2.03 1.91 1.80 1.785 1.77
(0.3,1.175) HW 1.611 1.96 2.48 2.58 2.65 2.56 2.45 2.28 2.20 2.03 1.91 1.83 1.865 1.77
(0.5,1.125) HW 1.641 1.99 2.51 2.58 2.65 2.56 2.45 2.28 2.23 2.03 1.91 1.83 1.895 1.77

0.5
(0.1,1.9) HW 0.70 0.89 1.11 1.15 1.18 1.16 1.11 1.04 0.99 0.93 0.88 0.83 0.81 0.796
(0.3,1.7) HW 0.72 0.91 1.12 1.15 1.19 1.15 1.10 1.04 0.98 0.935 0.873 0.84 0.81 0.80
(0.5,1.5) HW 0.75 0.93 1.11 1.16 1.19 1.16 1.09 1.04 0.98 0.93 0.87 0.84 0.82 0.80

0.8
(0.1,4.6) HW 0.214 0.278 0.353 0.371 0.382 0.387 0.379 0.369 0.363 0.349 0.339 0.337 0.34 0.339
(0.3,3.8) HW 0.224 0.289 0.359 0.374 0.387 0.387 0.379 0.369 0.36 0.349 0.34 0.337 0.34 0.34
(0.5,3.0) HW 0.229 0.293 0.361 0.374 0.389 0.389 0.379 0.369 0.36 0.349 0.337 0.337 0.34 0.341
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Table 3: Zero-state ATS values of the proposed VSI MEWMA GBE and FSI MEWMA schemes for
the downward shift domain (ATS0 = ATS′0 = 200, δ = 0.5, dS = 0.1, dL = 1.9).

VSI MEWMA GBE chart and FSI MEWMA chart

(εx, εy)
r 0.01 0.02 0.05 0.07 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
HW 0.71 0.93 1.13 1.15 1.17 1.18 1.11 1.05 0.98 0.93 0.88 0.84 0.81 0.80
HU 3.78 5.26 7.52 8.67 10.34 14.67 18.17 21.15 23.65 25.72 27.32 28.47 29.21 29.53

(1,1) ATS0 199.78 200.12 200.58 199.84 200.59 200.17 199.85 200.22 199.64 199.64 199.41 200.38 199.80 200.44
ATS′0 199.94 200.12 200.40 200.29 200.20 199.62 199.86 199.67 200.01 200.13 200.17 200.18 199.89 199.83

(0.8,1)
ATS1 53.28 49.94 63.12 86.78 127.17 * * * * * * * * *
ATS′1 66.23 67.92 98.17 136.99 185.20 * * * * * * * * *

(0.5,1)
ATS1 18.96 15.72 11.91 11.04 11.56 23.09 46.77 75.93 104.93 133.28 159.83 186.27 * *
ATS′1 24.97 22.76 22.51 25.82 39.35 96.77 141.81 176.64 * * * * * *

(0.2,1)
ATS1 11.46 9.32 6.62 5.77 5.08 5.72 7.46 9.90 12.83 16.87 22.78 33.08 50.71 84.69
ATS′1 15.34 13.53 11.86 11.94 13.38 30.53 56.10 82.05 104.94 124.73 139.88 153.82 165.39 176.77

(0.1,1)
ATS1 10.17 8.28 5.65 5.07 4.19 4.43 5.46 7.42 9.29 10.85 12.19 14.03 18.34 32.51
ATS′1 13.64 11.94 10.27 10.16 10.90 21.38 40.08 61.27 81.20 99.40 114.06 127.36 137.75 149.23

(0.8,0.8)
ATS1 60.66 59.10 104.19 * * * * * * * * * * *
ATS′1 76.01 82.65 175.11 * * * * * * * * * * *

(0.5,0.5)
ATS1 21.89 18.46 14.52 13.94 21.41 * * * * * * * * *
ATS′1 28.07 26.05 27.67 35.32 112.56 * * * * * * * * *

(0.2,0.2)
ATS1 13.07 10.76 7.73 6.93 6.16 * * * * * * * * *
ATS′1 16.99 15.10 13.50 13.90 16.55 * * * * * * * * *

(0.1,0.1) ATS1 11.40 9.22 6.62 5.90 4.98 * * * * * * * * *
ATS′1 15.03 13.24 11.53 11.57 12.82 * * * * * * * * *

The asterisk (*) represents the ATS value lager than 200.

Table 4: Steady-state ATS values of the proposed VSI MEWMA GBE and FSI MEWMA schemes
for the downward shift domain (ATS0 = ATS′0 = 200, δ = 0.5, dS = 0.1, dL = 1.9).

VSI MEWMA GBE chart and FSI MEWMA chart

(εx, εy)
r 0.01 0.02 0.05 0.07 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
HW 0.70 0.89 1.11 1.15 1.18 1.16 1.11 1.04 0.99 0.93 0.88 0.83 0.81 0.796
HU 4.16 5.56 7.65 8.77 10.37 14.75 18.23 21.18 23.62 25.71 27.34 28.49 29.21 29.54

(1,1) ATS0 199.93 200.70 200.64 200.04 200.51 199.47 199.83 200.40 200.06 200.62 199.71 199.20 200.40 200.51
ATS′0 200.25 199.82 200.14 200.17 199.80 199.72 199.73 200.11 199.48 200.59 199.62 199.90 199.65 200.18

(0.8,1)
ATS1 45.86 44.26 60.56 85.90 126.91 * * * * * * * * *
ATS′1 63.98 64.94 97.13 137.02 184.41 * * * * * * * * *

(0.5,1)
ATS1 16.48 13.80 10.98 10.39 11.15 22.85 47.05 75.91 106.75 134.07 161.06 185.07 * *
ATS′1 24.30 21.71 21.53 25.07 38.82 97.19 143.22 176.97 * * * * * *

(0.2,1)
ATS1 10.32 8.47 6.34 5.66 5.14 5.87 7.95 10.41 13.21 17.18 23.53 33.14 51.49 84.71
ATS′1 14.94 12.93 11.26 11.46 13.00 30.68 56.44 81.90 104.50 124.52 140.81 153.48 164.69 175.97

(0.1,1)
ATS1 9.23 7.57 5.61 4.98 4.46 4.59 6.04 7.80 9.64 11.31 12.96 14.92 19.12 32.78
ATS′1 13.26 11.42 9.75 9.73 10.52 21.49 40.38 61.48 81.00 98.36 114.41 126.68 138.49 148.34

(0.8,0.8)
ATS1 51.84 51.98 103.64 * * * * * * * * * * *
ATS′1 73.31 79.85 178.53 * * * * * * * * * * *

(0.5,0.5)
ATS1 18.53 15.64 12.86 12.74 20.74 * * * * * * * * *
ATS′1 27.30 24.86 26.53 34.70 113.58 * * * * * * * * *

(0.2,0.2)
ATS1 11.39 9.37 7.11 6.38 5.92 * * * * * * * * *
ATS′1 16.45 14.32 12.75 13.27 16.05 * * * * * * * * *

(0.1,0.1) ATS1 10.08 8.27 6.18 5.50 4.98 * * * * * * * * *
ATS′1 14.52 12.52 10.87 11.03 12.37 * * * * * * * * *

The asterisk (*) represents the ATS value lager than 200.
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Table 5: Zero-state ATS values of the proposed VSI MEWMA GBE and FSI MEWMA schemes for
the upward shift domain (ATS0 = ATS′0 = 200, δ = 0.5, dS = 0.1, dL = 1.9).

VSI MEWMA GBE chart and FSI MEWMA chart

(εx, εy)
r 0.01 0.02 0.05 0.07 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
HW 0.71 0.93 1.13 1.15 1.17 1.18 1.11 1.05 0.98 0.93 0.88 0.84 0.81 0.80
HU 3.78 5.26 7.52 8.67 10.34 14.67 18.17 21.15 23.65 25.72 27.32 28.47 29.21 29.53

(1,1) ATS0 199.78 200.12 200.58 199.84 200.59 200.17 199.85 200.22 199.64 199.64 199.41 200.38 199.80 200.44
ATS′0 199.94 200.12 200.40 200.29 200.20 199.62 199.86 199.67 200.01 200.13 200.17 200.18 199.89 199.83

(1.5,1)
ATS1 22.90 19.71 16.35 15.46 15.51 18.49 21.96 25.74 28.93 32.17 34.69 37.24 38.86 40.06
ATS′1 26.15 23.65 21.24 21.38 22.28 26.37 30.63 34.26 37.28 39.75 41.71 43.58 45.07 46.29

(2,1)
ATS1 11.32 9.59 7.34 6.62 6.07 5.69 6.06 6.88 7.80 8.87 9.97 11.03 12.01 12.77
ATS′1 13.35 11.78 10.01 9.69 9.66 10.32 11.39 12.52 13.62 14.60 15.56 16.27 17.08 17.72

(5,1)
ATS1 2.90 2.42 1.80 1.60 1.42 1.13 0.97 0.90 0.86 0.81 0.77 0.78 0.82 0.91
ATS′1 4.02 3.58 3.04 2.89 2.78 2.65 2.65 2.67 2.71 2.75 2.82 2.87 2.95 3.02

(10,1)
ATS1 1.33 1.12 0.85 0.76 0.68 0.54 0.46 0.42 0.39 0.35 0.31 0.27 0.26 0.27
ATS′1 2.34 2.13 1.88 1.81 1.77 1.69 1.66 1.65 1.66 1.66 1.66 1.68 1.68 1.71

(1.5,1.5)
ATS1 23.01 19.89 16.37 15.41 15.02 16.18 17.82 19.59 21.12 22.68 23.84 24.69 25.47 25.17
ATS′1 26.01 23.00 19.63 19.06 19.19 20.67 22.59 24.52 26.00 27.33 28.25 29.30 30.05 30.81

(2,2)
ATS1 10.96 9.19 7.07 6.41 5.88 5.56 5.74 6.15 6.66 7.17 7.73 8.20 8.37 8.34
ATS′1 13.15 11.42 9.43 8.93 8.68 8.68 9.13 9.62 10.16 10.55 10.98 11.45 11.78 12.15

(5,5)
ATS1 2.53 2.11 1.58 1.39 1.24 1.03 0.93 0.89 0.87 0.86 0.87 0.88 0.90 0.87
ATS′1 3.78 3.32 2.78 2.64 2.53 2.37 2.32 2.32 2.32 2.33 2.35 2.38 2.41 2.43

(10,10) ATS1 1.11 0.93 0.71 0.64 0.57 0.48 0.44 0.41 0.39 0.38 0.37 0.36 0.36 0.35
ATS′1 2.14 1.96 1.73 1.67 1.62 1.54 1.52 1.50 1.49 1.50 1.50 1.50 1.51 1.51

Table 6: Steady-state ATS values of the proposed VSI MEWMA GBE and FSI MEWMA schemes
for the upward shift domain (ATS0 = ATS′0 = 200, δ = 0.5, dS = 0.1, dL = 1.9).

VSI MEWMA GBE chart and FSI MEWMA chart

(εx, εy)
r 0.01 0.02 0.05 0.07 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
HW 0.70 0.89 1.11 1.15 1.18 1.16 1.11 1.04 0.99 0.93 0.88 0.83 0.81 0.796
HU 4.16 5.56 7.65 8.77 10.37 14.75 18.23 21.18 23.62 25.71 27.34 28.49 29.21 29.54

(1,1) ATS0 199.93 200.70 200.64 200.04 200.51 199.47 199.83 200.40 200.06 200.62 199.71 199.20 200.40 200.51
ATS′0 200.25 199.82 200.14 200.17 199.80 199.72 199.73 200.11 199.48 200.59 199.62 199.90 199.65 200.18

(1.5,1)
ATS1 20.38 17.73 15.48 15.08 15.39 18.54 22.62 26.32 29.84 32.78 35.29 37.39 39.85 40.64
ATS′1 25.42 22.79 20.76 20.99 21.89 26.40 30.55 34.14 37.15 39.59 41.94 43.50 45.14 46.54

(2,1)
ATS1 10.53 9.00 7.30 6.73 6.31 6.12 6.61 7.46 8.50 9.57 10.74 11.71 12.90 13.66
ATS′1 13.04 11.46 9.80 9.52 9.50 10.31 11.40 12.53 13.61 14.54 15.54 16.38 17.17 17.70

(5,1)
ATS1 3.41 2.98 2.45 2.26 2.09 1.82 1.71 1.65 1.61 1.59 1.60 1.62 1.71 1.79
ATS′1 3.96 3.50 2.97 2.85 2.74 2.63 2.63 2.66 2.71 2.76 2.82 2.88 2.94 3.01

(10,1)
ATS1 2.10 1.90 1.62 1.52 1.44 1.31 1.26 1.22 1.20 1.18 1.17 1.14 1.15 1.16
ATS′1 2.30 2.09 1.86 1.80 1.75 1.68 1.65 1.65 1.65 1.66 1.67 1.68 1.68 1.70

(1.5,1.5)
ATS1 21.06 18.41 15.87 15.32 15.20 16.56 18.52 20.16 22.01 23.40 24.78 25.46 26.21 25.79
ATS′1 25.47 22.30 19.33 18.76 18.86 20.57 22.70 24.38 25.87 27.09 28.31 29.38 29.91 30.70

(2,2)
ATS1 10.55 9.00 7.27 6.77 6.39 6.13 6.45 6.88 7.44 7.99 8.57 8.91 9.24 9.14
ATS′1 12.88 11.16 9.27 8.80 8.54 8.65 9.08 9.60 10.07 10.55 11.07 11.37 11.76 12.08

(5,5)
ATS1 3.21 2.79 2.32 2.15 2.00 1.80 1.74 1.70 1.71 1.71 1.74 1.75 1.78 1.76
ATS′1 3.77 3.29 2.77 2.63 2.51 2.36 2.32 2.31 2.31 2.35 2.37 2.38 2.40 2.44

(10,10) ATS1 1.97 1.77 1.54 1.46 1.39 1.30 1.28 1.26 1.25 1.25 1.25 1.25 1.25 1.23
ATS′1 2.14 1.95 1.72 1.66 1.61 1.54 1.51 1.50 1.49 1.50 1.50 1.50 1.50 1.51
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Table 7: Zero-state ATS values of the proposed VSI MEWMA GBE and FSI MEWMA schemes for
the hybrid shift domain (ATS0 = ATS′0 = 200, δ = 0.5, dS = 0.1, dL = 1.9).

VSI MEWMA GBE chart and FSI MEWMA chart

(εx, εy)
r 0.01 0.02 0.05 0.07 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
HW 0.71 0.93 1.13 1.15 1.17 1.18 1.11 1.05 0.98 0.93 0.88 0.84 0.81 0.80
HU 3.78 5.26 7.52 8.67 10.34 14.67 18.17 21.15 23.65 25.72 27.32 28.47 29.21 29.53

(1,1) ATS0 199.78 200.12 200.58 199.84 200.59 200.17 199.85 200.22 199.64 199.64 199.41 200.38 199.80 200.44
ATS′0 199.94 200.12 200.40 200.29 200.20 199.62 199.86 199.67 200.01 200.13 200.17 200.18 199.89 199.83

(0.8,1.5)
ATS1 17.07 14.39 11.22 10.32 9.83 11.44 14.52 18.20 21.84 25.61 29.08 32.41 35.65 38.05
ATS′1 20.52 18.41 16.50 16.62 17.66 22.15 26.51 30.55 34.22 37.06 39.77 42.34 43.95 45.56

(0.5,2)
ATS1 7.69 6.38 4.67 4.07 3.57 2.89 2.61 2.68 2.93 3.37 3.96 4.83 6.10 7.92
ATS′1 9.83 8.61 7.26 7.02 6.95 7.45 8.42 9.44 10.54 11.58 12.47 13.37 14.17 14.92

(0.2,5)
ATS1 2.41 2.01 1.47 1.28 1.11 0.84 0.70 0.63 0.58 0.49 0.36 0.31 0.31 0.33
ATS′1 3.60 3.21 2.73 2.58 2.50 2.37 2.36 2.39 2.42 2.47 2.54 2.57 2.64 2.72

(0.1,10) ATS1 1.20 1.00 0.75 0.67 0.59 0.46 0.39 0.35 0.32 0.26 0.17 0.16 0.16 0.17
ATS′1 2.23 2.03 1.80 1.74 1.69 1.61 1.59 1.58 1.58 1.58 1.60 1.60 1.62 1.63

Table 8: Steady-state ATS values of the proposed VSI MEWMA GBE and FSI MEWMA schemes
for the hybrid shift domain (ATS0 = ATS′0 = 200, δ = 0.5, dS = 0.1, dL = 1.9).

VSI MEWMA GBE chart and FSI MEWMA chart

(εx, εy)
r 0.01 0.02 0.05 0.07 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
HW 0.70 0.89 1.11 1.15 1.18 1.16 1.11 1.04 0.99 0.93 0.88 0.83 0.81 0.796
HU 4.16 5.56 7.65 8.77 10.37 14.75 18.23 21.18 23.62 25.71 27.34 28.49 29.21 29.54

(1,1) ATS0 199.93 200.70 200.64 200.04 200.51 199.47 199.83 200.40 200.06 200.62 199.71 199.20 200.40 200.51
ATS′0 200.25 199.82 200.14 200.17 199.80 199.72 199.73 200.11 199.48 200.59 199.62 199.90 199.65 200.18

(0.8,1.5)
ATS1 15.17 12.96 10.61 10.01 9.79 11.55 14.94 18.65 22.57 26.26 29.75 32.78 36.36 38.91
ATS′1 19.97 17.70 16.10 16.31 17.31 22.00 26.44 30.46 34.19 37.08 39.61 42.24 43.86 45.66

(0.5,2)
ATS1 7.37 6.18 4.79 4.31 3.90 3.29 3.17 3.24 3.53 4.01 4.71 5.55 6.96 8.65
ATS′1 9.61 8.30 7.02 6.81 6.80 7.40 8.39 9.42 10.49 11.55 12.50 13.36 14.22 14.90

(0.2,5)
ATS1 3.00 2.60 2.11 1.94 1.79 1.54 1.43 1.36 1.31 1.27 1.24 1.20 1.19 1.22
ATS′1 3.53 3.13 2.66 2.55 2.45 2.37 2.35 2.38 2.42 2.47 2.53 2.59 2.64 2.71

(0.1,10) ATS1 2.00 1.78 1.53 1.43 1.35 1.23 1.18 1.15 1.12 1.10 1.08 1.06 1.05 1.04
ATS′1 2.20 2.00 1.77 1.72 1.67 1.61 1.58 1.58 1.58 1.58 1.59 1.60 1.62 1.63

22



Table 9: An example of using the proposed VSI MEWMA GBE chart on monitoring the relief time
of volunteers after taking the new medicine (in hours).

VSI MEWMA GBE chart
(r = 0.02, δ = 0.21, HU = 5.256, HW = 0.902)

t
Mt Wt Q2

t dt ΣdtXt Yt W1,t W2,t

0 - - 0 0 - - -
1 3.400 1.900 -0.001 -0.016 0.015 - -
2 2.700 1.800 -0.015 -0.033 0.035 - -
3 5.100 5.300 0.019 0.020 0.006 - -
4 4.600 4.400 0.042 0.054 0.057 - -
5 4.300 3.000 0.058 0.059 0.053 - -
6 4.100 3.800 0.070 0.081 0.109 - -
7 4.000 1.100 0.080 0.047 0.059 - -
8 2.700 2.400 0.064 0.041 0.036 - -
9 3.100 3.000 0.056 0.047 0.030 - -

10 0.300 0.100 -0.007 -0.006 0.001 - -
11 0.161 0.122 -0.073 -0.057 0.047 36 36
12 0.985 0.410 -0.120 -0.101 0.142 36 72
13 9.933 3.391 0.012 -0.085 0.590 36 108
14 3.485 1.760 0.013 -0.102 0.828 36 144
15 0.342 0.142 -0.049 -0.150 0.931 36 156
16 3.529 1.162 -0.046 -0.178 1.447 12 168
17 5.199 2.431 -0.010 -0.179 2.002 12 180
18 6.325 2.459 0.048 -0.180 3.093 12 192
19 2.070 0.454 0.020 -0.221 3.719 12 204
20 3.116 0.878 0.014 -0.253 4.618 12 216
21 3.913 2.209 0.023 -0.257 5.013 12 228
22 2.475 1.995 0.003 -0.266 4.824 12 240
23 1.419 0.891 -0.037 -0.296 4.922 12 252
24 1.610 1.266 -0.072 -0.318 4.865 12 264
25 5.456 2.118 -0.031 -0.323 6.135 12 276
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