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Abstract. In this study, a sensitivity analysis is implemented using response surface
strategies to control the Walters-B nanouid stagnant point ow caused by a Riga surface.
An electromagnetic actuator is known as Riga surface. The Buongiorno model is used to
construct the mathematical model that includes a Newtonian heating condition as well
as radiation e�ects. Based on the fundamental laws of mass, momentum, and energy,
transformation is incorporated to obtain nonlinear ordinary di�erential equations. To solve
the governing system, the numerical shooting approach along with Runge-Kutta scheme
is employed to solve the governing system. By considering the response of Local Nusselt
Number (LNN) to the variation of input variables, an experimental structure is incorporated
by sensitivity analysis. As underlined, the LNN is quite sensitive to radiation number
rather than other parameters of interest. Meanwhile, it is indicated that the sensitivity of
LNN to Brownian number is reduced as thermophoresis is enhanced, but sensitivity value
varies from positive to negative for all the values of Brownian number. It is examined
that maximum LNN occurs at a higher level for thermophoresis and for Brownian motion
parameters. The results are assumed to provide a tentative guidance for possible lab-based
experiments.
© 2022 Sharif University of Technology. All rights reserved.

1. Introduction

There are many compliant methods including nanopar-
ticle addition to base liquid, rendering surfaces exible,
applying a magnetic �eld, corrugating surfaces, attach-
ing �n(s), incorporating arti�cial surface roughness,
and adding obstacle(s) for improving heat transfer
from thermal devices [1{6]. The study of nanou-
ids has recently attracted the attention of current
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researchers owing to the extensive use of numer-
ous processes/industries like engine cooling, machin-
ing and electronics, heat exchanger systems, improv-
ing the performance of diesel generators and heat
transport of chillers, hybrid-powered air condition-
ers/refrigerators, solar water heating, fuel cells, and
other high-consumption energy equipment. Nanouids,
in general, have more thermal characteristics than
traditional liquids, which is the reason why they are
often referred to as advanced/next-generation heat
transport liquids. Thermal engineers have concen-
trated on nanoliquids due to their essential and in-
sightful characteristics like higher conductivity and
larger relative area of nanomaterials. The nanomate-
rials suspended in the nanoliquid signi�cantly improve
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the suspension stability and heat transfer capabilities.
Nanouids enjoy numerous use cases because they can
improve heat transfer e�ciency as compared to pure
uids. Choi and Eastman [7] pioneered the study
of heat transport in nanoliquids. Dispersion of a
small number of solid nanomaterials in pure liquid
considerably improves its thermal conductivity which
in turn leads to the enhancement of the heat transport
rate [6]. This has received much recognition and
inspired many researchers. There are numerous studies
in the literature that have discussed the mechanism
underlying the improved heat transport characteristics
[8{19]. An outstanding collection of research studies
on this matter is accessible through a review of the
referenced papers [20{33]. Riga sheet is an electro-
magnetic actuator. Riga sheets generate electric and
magnetic �elds that can generate Lorentz force parallel
to liquid ow [34]. It is obvious that liquids with high
electrical conductivity are signi�cantly a�ected when a
magnetic �eld is applied. Several researchers have been
inspired by this scenario to analyze the liquid ows
through Riga sheet. Ahmad et al. [35] considered the
dependability of the asymptotic technique to address
the impact of strong suction and mixed convective
boundary layer ow of nanoliquid through a Riga
surface. With the assistance of analytical solutions,
Dhif et al. [36] analyzed the thermal examination of
the solar collector cum storage system by utilizing a
hybrid-nanouids. Abbas et al. [37] analyzed the im-
portance of Electro-Magneto-Hydrodynamic (EMHD)
and bioconvective nanouid ow toward a porous Riga
sheet containing gyrotactic microorganisms. Nadeem
et al. [38] employed the MATLAB bvp4c methodology
to investigate the nanouid stagnant point ow via
Riga plate through induced magnetic impacts. Ganesh
et al. [39] studied two-dimensional nanoliquid ow
to achieve an expandable Riga sheet with EMHD
impacts by employing shooting numerical techniques.
Rasool et al. [40] studied the second-grade nanoliquid
ow towards a heated vertical Riga surface. Sha�q
et al. [41] investigated thermosoluted Marangoni ow
towards a vertical porous Riga sheet. Zhang et
al. [42] analyzed the bioconvection ow of nanoliq-
uid through a Riga surface with Darcy-Brinkman-
Forchheimer porous medium. Bhatti and Michaelides
[43] reported the signi�cance of Arrhenius activation
energy concerning bioconvective nanouid ow on a
Riga surface. Sha�q et al. [44] numerically studied
the Marangoni ow of carbon nanotubes over a Riga
area.

Response Surface Methodology (RSM) is a mul-
tivariate optimization approach that employs a variety
of statistical and mathematical methods. This method
is focused on �tting a polynomial term to experimental
data. In general, this approach can be utilized when-
ever a comeback or set of responses (output variables) is

inuenced by a number of independent variables (input
variables). RSM optimizes the responses at the same
time in order to achieve the best system e�ciency. Sev-
eral investigators utilized sensitivity analysis for energy
issues via RSM [45,46]. For instance, Bovand et al. [47]
employed sensitivity study of a vortex tube refrigerator.
They found the highest cold temperature di�erence in
a vortex tube to be the most sensitive to cold ori�ce
diameter than to the inlet pressure or the amount
of intake in the nozzle. Rashidi et al. [48] utilized
response surface methods to conduct a sensitivity study
for nanoliquid ow over an equilateral triangle barrier.
They found Local Nusselt Number (LNN) and Skin
Friction Coe�cient (SFC) sensitive to the solid volume
fraction of the nanoliquid in all situations. They also
discovered a signi�cant agreement between the �ndings
of computational liquid dynamics study and those of
RSM. Sha�q et al. [49] analyzed the sensitivity study
of bioconvection tangent hyperbolic nanoliquid over the
moving stretched sheet by RSM.

A thorough review of the literature reveals that
the sensitivity analysis of the Walters-B nanouid
stagnant point ow induced by a Riga plate has not
been studied previously. Therefore, the purpose of
the present research work is to study non-Newtonian
Walters-B nanouid ow over stretching Riga plate
with Newtonian heating. Buongiorno's model is uti-
lized to investigate the nanouid features. A math-
ematical model is suggested for use in the context
of partial di�erential equations. To convert them
into similarity equations, appropriate transformation
is employed. Numerical solution is sought using
Runge-Kutta-Fehlberg (RKF) method via shooting.
Moreover, an experimental framework (RSM) is in-
extricably linked to sensitivity analysis to investigate
the dependence of interested output terms over input
terms. Interestingly, the authors performed sensitivity
scrutiny using the LNN. This research is related to
possible rules in future gadget production. To date,
such research is novel for the top systematic review
discovered.

2. Mathematical formulation

Signi�cance of the stagnant point ow of Walters-B
nanoliquid along a stretching Riga plate is investi-
gated. Thermal radiation and Newtonian heating are
employed to investigate heat transfer features. Figure 1
shows a schematic depiction of the physical model
under consideration. Buongiorno's method is utilized
to investigate the nanouid properties. The governing
equation is written in the following under the given
assumptions by using Boussinesq approximations:

@v
@y

+
@u
@x

= 0; (1)
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Figure 1. Studied problem of Riga plate.
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Proper variables are incorporated as follows:

v (x; y) = �pcvf (�) ;
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y: (6)

The continuity equation is resolved instantly, whereas
the remaining governing equations are reduced to the

following forms:

f 000+A2 � (f 0)2+ff 00�We

h
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f (0) = 0; f 0 (0) = 1; f 0 (1) = A; (7)�
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Here, the prime designates di�erentiation with respect
to �. The parameters are as follows:
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The details are given in nomenclature. SFC Cf , LNN
Nux, and LSHN are as follows:
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�w
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where the wall heat ux qw and the wall skin friction
�w are as follows:
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Using Eq. (6), we have:
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(Re�x)�1=2Sh�x = ��0 (0) ; (14)

where Rex = cx2=v is the local Re.
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2.1. Nonlinear polynomial model
A statistical technique based on a standard non-linear
polynomial method may be utilized to evaluate the
relationships between the target response variable and
the independent input variables.

R = r0 + r1A1 + r2B1 + r3C1 + r11A2
1 + r22B2

1

+r33C2
1 + r12A1B1 + r13A1C1 + r23B1C1: (15)

The mathematical model contains one intercept term,
three bilinear two-factor terms, three linear terms, and
three quadratic terms. Thus, R indicates the LNN
response. It is focused on three independent input
parameters that are coded by symbols A1, B1, and
C1 (radiation, thermophoresis, and Brownian motion
numbers, respectively). According to the RSM, 20
runs with 19 DOF (Degrees Of Freedom) are optimal
for the selected three stages of variables. These are
the low, medium, and high stages including (�1, 0,
1), respectively. Table 1 lists the input variables
along with their symbols and levels. Furthermore,
in R-programming, Central Composite Design (CCD)
is typically utilized for the execution of a numerical
or computational experiment. A set of 20 runs of
experiments is arranged in terms of 2F + 2F + P ,
in which the number of factors is F = 3 and the
number of center points is P = 6. Table 2 describes
the experimental program sequence. The Analysis of
Variance (ANOVA) is a statistical technique for deter-
mining the importance of the variability performance
of de�ned variables on the RSM model. ANOVA is
used to investigate the optimization criterion in the
RSM model in terms of model precision, with numerical
estimators such as DOF, Sum of Squares (SS), and
Minimum Mean Square (MMS) as well as p-value and
F -value. The LNN for the ANOVA analysis is shown
in Table 3.

Table 4 shows the deterioration coe�cients for
responses (local Nu) based on the p-value set for the
nonlinear polynomial model in Eq. (14). The high
p-value is known as statistically insigni�cant, which
implies that no relative change to the output can be
noted due to the changes made to the input. On the
other hand, it is possible to ignore the term with a low
p-value (� 0:05), which is statistically signi�cant else-
where. As a consequence, A;B;C;A2; B2; C2; AB, and

Table 1. Experimental variables and their level.

Level

Parameter symbol Low
(�1)

Medium
(0)

High
(1)

LNN
R1 A 0.1 0.2 0.3
N1 B 0.2 0.4 0.6
N2 C 0.2 0.4 0.6

Table 2. Experiment design and response performance of
�Re�1=2

x Nux.

Runs Coded value Real values Responses
A1 B1 C1 Rd N1 N2 �Re�1=2

x Nux
1 {1 {1 {1 0.1 0.2 0.2 0.281664
2 1 {1 {1 0.3 0.2 0.2 0.347108
3 {1 1 {1 0.1 0.6 0.2 0.289786
4 1 1 {1 0.3 0.6 0.2 0.35714
5 {1 {1 1 0.1 0.2 0.6 0.296965
6 1 {1 1 0.3 0.2 0.6 0.370294
7 {1 1 1 0.1 0.6 0.6 0.264525
8 1 1 1 0.3 0.6 0.6 0.331376
9 {1 0 0 0.1 0.4 0.4 0.295673
10 1 0 0 0.3 0.4 0.4 0.365663
11 0 {1 0 0.2 0.2 0.4 0.330977
12 0 1 0 0.2 0.6 0.4 0.324526
13 0 0 {1 0.2 0.4 0.2 0.319590
14 0 0 1 0.2 0.4 0.6 0.317144
15 0 0 0 0.2 0.4 0.4 0.330705
16 0 0 0 0.2 0.4 0.4 0.330705
17 0 0 0 0.2 0.4 0.4 0.330705
18 0 0 0 0.2 0.4 0.4 0.330705
19 0 0 0 0.2 0.4 0.4 0.330705
20 0 0 0 0.2 0.4 0.4 0.330705

BC are signi�cant factors for local Nu. Consequently,
the mathematical Eq. (15) may be rewritten as follows:

Nux =0:3304169 + 0:0342968A� 0:0059655B

� 0:0014984C + 0:0006833A2 � 0:0022332B2

� 0:0116177C2�0:0005710AB+0:0009227AC

� 0:0111890BC: (16)

In addition, the values of R-squared, R2 and adjusted
R-squared, and R2 � adj are shown in Table 4, giving
detailed information from the goodness-of-�t of the
RSM model. It is noted that Nu is reported with higher
R2 and R2 � adj values 98.78%, 99.58%, respectively,
illustrating a precisely expected correlation between
output response variables and independent input vari-
ables.

2.2. Sensitivity analysis
As previously mentioned, sensitivity refers to the par-
tial derivation of the response function from the model
parameters. As a result, the sensitivity functions of
LNN are articulated in relation to governing variables,
radiation variable (A), thermophoresis variable (B),
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Table 3. ANOVA scrutiny for the LNN.

Source

�Re�1=2
x Nux DOF Sum of

square
Contribution Adj. mean

square
F -value p-value

Model 9 0.013953 99.78% 0.004651 505.3 4:32� 10�12

Linear 3 0.012141 86.82% 0.004047 1318.92 0
Square 3 0.000801 5.73% 0.000267 87.02 0
Interaction 3 0.001011 7.23% 0.000337 109.83 0
Residual error 10 0.000031 0.22% 0.000000 { {
Lack of �t 5 0.000031 0.22% 0.000000 { {
Pure error 5 0.000000 { 0.000000 { {
Total 19 0.013984 { { { {

Table 4. Estimated regression coe�cients via local Nu.

Term
�Re�1=2

x Nux Estimate Std. error t-value p-value
Constant 0.3304169 0.0006022 548.694 2 � 10�16

A 0.0342968 0.0005539 61.915 2:94� 10�14

B {0.0059655 0.0005539 {10.769 8:03� 10�7

C {0.0014984 0.0005539 {2.705 0.0221
A2 0.0006833 0.0010563 0.647 0.5323
B2 {0.0022332 0.0010563 {2.114 0.0606
C2 {0.0116177 0.0010563 {10.998 6:60� 10�7

AB {0.0005710 0.0006193 {0.922 0.3782
AC 0.0009227 0.0006193 1.490 0.1671
BC {0.0111890 0.0006193 {18.067 5:78� 109

R2 = 99:78% R2 � adj = 99:58%

and Brownian motion variable (C) through Eq. (16):

@Nux
@A

= 0:0342968 + 0:0013666A� 0:0005710B

+0:0009227C;

@Nux
@B

= �0:0059655� 0:0044664B � 0:0005710A

�0:0005710C;

@Nux
@C

= �0:0014984� 0:0232354C + 0:0009227A

�0:0111890B:

By utilizing Eqs. (17) and (18), the sensitivity �ndings
of the responses (Nux) as well as the input governing
variables (A, B, and C) are established (see Table 5).
A positive degree of sensitivity illustrating the increase
in input governing variable causes an increment in the
response function, and vice versa, for the negative
sensitivity value. The sensitivity inspection results

have been plotted into vertical bar charts (Figures 2
and 3) for a more noteworthy insight.

3. Results and discussion

The present statistical analysis attempts to shed light
on some signi�cant insights into the stagnant point ow
of Walters-B nanoliquid on a radiative Riga surface.
To illustrate the signi�cance of the considered problem,
the sensitivity analysis of the LNN is investigated based
on the relevant parameters. To this end, the param-
eters of interest including radiation, thermophoresis,
and Brownian motion parameter are assumed. In ad-
dition, a Bar chart is drawn according to the numerical
values of the SFC and LNN.

Table 6 shows the process of a comprehensive
analysis in a limited scope when Q = � = 0 = We.
This table points to the high level of acceptance.
Table 7 is arranged to analyze the e�ect of related
parameters like We;A, and Q on SFC. It is worth
remembering that SFC is reduced for larger We;A ,
and Q. The inuence of We;A;Q;Rd; �, and Pr on
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Table 5. Sensitivity for LNN when A = �1.

Sensitivity

A B C @Nux
@A

@Nux
@B

@Nux
@C

A
=
�1

{1
{1 0.0325785 {0.0003571 0.0320033

0 0.0335012 {0.0009281 0.0087679

1 0.0344239 -0.0014991 {0.0144675

0
{1 0.0320075 -0.0048235 0.0208143

0 0.0329302 {0.0053945 {0.0024211

1 0.0338529 -0.0059655 {0.0256565

1
{1 0.0314365 -0.0092899 0.0096253

0 0.0323592 {0.0098609 {0.0136101

1 0.0332819 -0.0104319 {0.0368455

A
=

0

{1
{1 0.0339451 {0.0009281 0.032926

0 0.0348678 {0.0014991 0.0096906

1 0.0357905 -0.0020701 {0.0135448

0
{1 0.0333741 -0.0053945 0.021737

0 0.0342968 {0.0059655 {0.0014984

1 0.0352195 {0.0065365 {0.0247338

1
{1 0.0328031 {0.0098609 0.010548

0 0.0337258 {0.0104319 {0.0126874

1 0.0346485 -0.0110029 {0.0359228

A
=

1

{1
{1 0.0353117 {0.0014991 0.0338487

0 0.0362344 {0.0020701 0.0106133

1 0.0371571 -0.0026411 {0.0126221

0
{1 0.0347407 {0.0059655 0.0226597

0 0.0356634 {0.0065365 {0.0005757

1 0.0365861 {0.0071075 {0.0238111

1
{1 0.0341697 -0.0104319 0.0114707

0 0.0350924 {0.0110029 {0.0117647

1 0.0360151 {0.0115739 {0.0350001

Table 6. Comparison of f"(0) through Hayat et al. [50]
and Mahapatra and Gupta [51] for We = � = Q = 0.

A Current
work

Hayat
et al. [50]

Mahapatra and
Gupta [51]

0.2 �0:91790 �0:91692 �0:9181

0.5 �0:66740 �0:66722 �0:6673

2.0 2.01750 2.01750 2.01750

3.0 4.72920 4.72910 4.72930

LNN is illustrated through Table 8. This table demon-
strates that LNN intensi�es following the increment
in modi�ed Hartman number Q, ratio parameter A,
conjugate parameter �, thermal radiation parameter

Table 7. Numerical values of SFC Re1=2
x Cf for values of

di�erent physical parameters.

Re1=2
x Cf A We Q

0.7380 0.2 0.0 0.2
0.5563 { 0.1 {
0.3464 { 0.2 {
0.0957 { 0.3 {
0.5948 0.0 { {
0.5838 0.1 { {
0.5563 0.2 { {
0.5149 0.3 { {
0.6856 { { 0.0
0.6196 { { 0.1
0.5563 { { 0.2
0.4947 { { 0.3

Table 8. Values of LNN Re�1=2
x Nux for di�erent physical

parameters values.

We A Q Rd � Pr �Re�1=2
x Nux

0.0 0.2 0.2 0.1 0.5 1.0 0.7074
0.1 { { { { { 0.7009
0.2 { { { { { 0.6937
0.3 { { { { { 0.6858
0.1 0.1 0.2 0.1 0.5 1.0 0.6861
{ 0.2 { { { { 0.7009
{ 0.3 { { { { 0.7154
{ 0.4 { { { { 0.7224

0.1 0.2 0.0 0.1 0.5 1.0 0.6657
{ { 0.1 { { { 0.6829
{ { 0.2 { { { 0.7009
{ { 0.3 { { { 0.7176

0.1 0.2 0.2 0.1 0.5 1.0 0.6614
{ { { 0.2 { { 0.6998
{ { { 0.3 { { 0.7389
{ { { 0.4 { { 0.7806

0.1 0.2 0.2 0.1 0.1 1.0 0.7590
{ { { { 0.2 { 0.7669
{ { { { 0.3 { 0.7773
{ { { { 0.4 { 0.7910

0.1 0.2 0.2 0.1 0.5 1.0 0.6992
{ { { { { 1.2 0.7739
{ { { { { 1.3 0.8105
{ { { { { 1.4 0.8471
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Figure 2. Bar Chart of SFC.

Figure 3. Bar Chart of LNN.

Rd, and Pr although it decreases upon increasing We.
Based on the data of skin friction (see Table 7), the
bar charts are plotted separately and in combination.
Also, a bar chart is drawn for the Nusselt number data,
as given in Table 8.

The box plot portrays the distribution dispersion
or spread. It makes use of the highest and lowest
values for the data, the quartiles (Q1 and Q3), and
the median Q2. Figure 4 plots a box plot for Nusselt
number responses in the case of Nusselt number and
SFC. The SFC is evenly distributed to a greater degree
with a smaller range. There is a signi�cant increase in
Nusselt number and responses of Nusselt number that
are not evenly distributed. The distribution of Nusselt
number is positively skewed. Sometimes, high or low
values appear in a set of data. The solid points are
the extreme values of the SFCs and responses of the
Nu. In Figure 5, the residual curves in each response
are displayed individually to provide further analysis of
the model accuracy. A normal probability plot is very
helpful in testing normality assumptions. There are
two versions of normal probability plots: P � P and
Q � Q plots. It is important to keep in mind that

Figure 4. Box plot for Nusselt number, responses of
Nusselt number, and Skin friction coe�cient.

the normality of the �ndings is veri�ed by drawing
the usual probability plots for residual distribution.
With a few exceptions, the usual probability plots for
the response are nearly straight lines. This suggests
that the regression model �ts with the observed values
accurately and that the model is valuable and relevant
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Figure 5. Normal P-P and Q-Q plot of the residuals for
the Nusselt number.

enough. Figure 6 shows the density and histogram for
residual distribution. It is observed that the residual
histogram has a lower degree of skewness and is more
similar to a symmetrical distribution.

The �ndings of the sensitivity analyses are demon-

strated with vertical bar charts for a better comprehen-
sion (see Figures 7(a){(c) and 9(a){(c)). According to
this notion, the above and right bar displays a direct
sensitivity value, while the inverted bar displays an
inverse sensitivity value. As noted earlier, when Fig-
ure 7(a){(c) reveal a general pattern in which the direct
sensitivity of LNN (Nux) to A (Radiation parameter)
rises upon increment in C (Brownian motion number)
from �1 to 1. Meanwhile, the sensitivity of LNN to C
decreases upon increase in B; however, the sensitivity
value also varies from positive to negative for all values
of C. As shown in Figure 8(a){(c), in the case of A = 0,
we observe that the posit2ive sensitivity of LNN to
A (radiation parameter) rises with an increment in C
(Brownian motion number) from �1 to 1 and also, for
B (thermophoresis number) from �1 to 1. In addition,
the sensitivity of LNN to B and C is reduced with an
increment in B and also, in the case of C (�1; 0; 1).
The sensitivity of LNN to A rises due to an increase in
C and also for enhancement B is noted in Figure 9(a){
(c) when A = 1.

Figure 6. Density and histogram plots of residuals for Nu number.

Figure 7. Sensitivity results for LNN when A = �1.
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Figure 8. Sensitivity results for LNN when A = 0.

Figure 9. Sensitivity results for LNN when A = 1.

Figure 10. Predicted responses for LNN: (a) B and C, (b) A and C, and (c) A and B.

Figure 10 plots the predicted LNN as a function
of radiation (A), thermophoresis (B), and Brownian
motion (C) parameters when A = �1 = C = B. The
impacts of thermophoresis and Brownian number on
LNN for A = �1 (R1 = 0:1) are given in Figure 10(a).
It is to be investigated that the maximum LNN occurs
at a higher level of thermophoresis (B) and for Brown-
ian motion (C) parameters. Moreover, the opposite
behavior is given in Figure 10(c). In addition, the
maximum average LNN occurs in an area closer to the
low levels for radiation (A) and Brownian (B) numbers
(see Figure 10(b)).

The predicted LNN as a function of radiation (A),
thermophoresis (B), and Brownian (C) parameters is
given in the case of A = 0 = B = C and A =
1 = C = B in Figures 11 and 12. The impacts
of thermophoresis and Brownian motion parameters
over LNN for A = 0 are given in Figure 11(a). We
investigate if the LNN is maximum in a region close
to the high level of thermophoresis (B) and Brownian
motion (C) variables. For the case of B = 0, the
maximum LNN is observed when A lies from �1 to
�0:5 and C varies from �1 to 1 (see Figure 11(b)).
Moreover, in the case of C = 0, the maximum
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Figure 11. Predicted responses for LNN: (a) B and C, (b) A and C, and (c) A and B.

Figure 12. Predicted responses for LNN: (a) B and C (b) A and C and (c) A and B.

average LNN occurs in a region near the low levels for
thermophoresis (B) and for all levels of A. The same
behavior is observed in Figure 12(a) in comparison to
that in Figure 10(a). In the case of B = 1, LNN attains
the maximum level at higher values of C and lower
level of A. Moreover, in the case of high radiation and
lower thermophoresis, LNN attains its maximum level
for C = 1 (see Figure 12 (c)).

4. Conclusions

A numerical analysis of heat transport enhancement
corresponding to a sensitivity analysis was performed
using response surface strategies to control the Walters-
B nanouid stagnant point ow caused by a Riga sur-
face employing Response Surface Methodology (RSM).
The main �ndings are given below:

� The distribution of Nusselt number was positively
skewed;

� Box plot for Nusselt number responses in the case of
Nusselt number and skin friction coe�cient showed
that the skin friction coe�cient was more evenly
distributed in a smaller range, whereas there was
a signi�cant increment in Nusselt number and re-

sponses of Nusselt number that were not evenly
distributed;

� The normal probability plots P � P and Q � Q
residual plot showed the excellent �tted regression
model for Local Nusselt Number (LNN);

� The values of the factors A, B, C, B2, C2, and BC
were signi�cant for the LNN;

� Maximum LNN occurred at the higher values of
thermophoresis and Brownian motion parameters;

� Maximum average LNN occurred at lower values of
radiation (A) and Brownian (B) numbers;

� Sensitivity of LNN to C decreased with increase in
B; however, the sensitivity value also varied from
positive to negative for all values of C.

Nomenclature

T Nanouid temperature, K
M0 Magnetization of the permanent

magnets mounted on the area of Riga
plate

a Width of the magnets between the
electrodes
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~Dts Thermophoretic di�usivity coe�cient,
m2s�1

j0 Applied current density in electrodes
~H Concentration of nanouid, mol m�3

Cw Wall's nanoparticle volume fraction,
mol m�3

C1 Ambient concentration, mol m�3

~Db Brownian di�usivity coe�cient, m2 s�1

cp Heat at uniform pressure, Kg�1 J K�1

Rd Radiation parameter
K Thermal conductivity, Kg m s�3 K�1

N1 Thermophoresis parameter
Pr Prandtl number
Tw Wall's temperature, K
(x; y) Coordinate system
qr Radiative ux
k1 Mean absorption coe�cient
(u; v) Velocity components, m s�1

qr Radiative ux, W m�2

Sc Schmidt number
T1 Ambient uid's temperature, K
Ue Free stream velocity
� Conjugate term
Q1 Modi�ed Hartman number
N2 Brownian motion parameter
� Dimensionless parameter
We Weissenberg number
A Ratio parameter

Greek symbols
� Dynamic viscosity of base liquid, kg

m�1 s�1

~� Fraction of e�ective heat capacity
� Non-dimensional concentration
�� Stefan-Boltzmann constant
� Fluid thermal di�usivity, m s�1

� Electrical conductivity, 
�1 m�1

� Density of liquid, kg m�3

� Similarity variable
� Nondimensional temperature
~�� Coe�cient of mean adsorption
� Dynamic viscosity, m2 s�1

Abbreviation
LNN Local Nusselt Number
RSM Response Surface Methodology
SFC Skin Friction Coe�cient
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