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1. Introduction

Abstract. The main objective of this article is to identify the location of damage by a new
feature extraction technique and to propose some efficient feature analysis tools as statistical
distance measures. The proposed algorithm of feature extraction relies on a combination
of the well-known Principal Component Analysis (PCA) and convolution strategy. After
extracting the features from raw vibration signals of undamaged and damaged conditions,
those are applied to the proposed feature analysis approaches called coefficient of variation,
Fisher criterion, Fano factor, and relative reliability index, all of which are formulated by
using statistical moments of the features extracted from the PCA-convolution algorithm.
To localize damage, the sensor location with the distance value exceeding a certain threshold
limit is identified as the damaged area. The main innovations of this research are to present
a new hybrid technique of feature extraction suitable for Structural Health Monitoring
(SHM) applications and four effective statistical measures for feature analysis and damage
identification. The performance and reliability of the proposed methods are verified by
a four-story shear-building model and a benchmark concrete beam. Results demonstrate
that the approaches presented here can substantially identify the location of damage using
the features extracted from the proposed PCA-convolution algorithm.

(© 2022 Sharif University of Technology. All rights reserved.

aging, and material deterioration. For these reasouns,
Structural Health Monitoring (SHM) has emerged

Evaluating the health of civil engineering structures
has now received significant attention due to their
importance in transportation systems, social life, eco-
nomic, etc. Most of them are needed to be monitored
and maintained in an effort to prevent catastrophic
events caused by damage occurrence, natural disasters,
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to assist civil engineers in assessing the health and
safety of important civil structures and detecting any
possible structural damage [1,2]. On this basis, it is
necessary to deploy civil structures by various kinds
of sensors [3], measure raw vibration signals, construct
Finite Element (FE) or numerical models, update the
constructed numerical models, and apply model-based
or data-based methods for SHM [4]. Damage can
be defined as intentional or unintentional changes in
geometry, boundary conditions, and material proper-
ties leading to adverse alterations in the behavior and
responses of a structure [2]. These changes appear as
cracks in concrete elements and broken welds in the
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steel connections, failure, and fatigue. All of them may
cause undesirable stresses, inappropriate vibrations,
failure, and collapse in the structure. To avoid such
adverse events, the process of SHM is categorized
into four main steps: (i) Early damage detection, (ii)
damage localization, (iii) damage type recognition, and
(iv) damage severity estimation.

The first step intends to initially alarms the
occurrence of damage or safe condition. When the
structure suffers from damage, one attempts to identify
the damaged area of the structure. Once the location
of damage is identified, the type of damage (cracks,
failure, etc.) can be recognized. Finally, the severity
of damage is estimated in order to either repair the
damaged area or replace it. An important note is that
as the mentioned steps increase, the complexity and
difficulty of SHM methods increase, as well.

The model-based methods need to have FE mod-
els of civil structures and their structural properties,
i.e., mass, damping, and stiffness. Due to discrepancies
between the numerical and real models of structures,
model updating [5-7] is mandatory for the model-
based strategy. The central idea of SHM via this
strategy lies in the fact that the numerical (updated)
and real models of the structure are considered as
undamaged and current states. Hence, it is attempted
to use information of both models to define a damage
equation as an inverse problem and solve it via various
mathematical and optimization techniques [8-11]. By
contrast, the data-based methods only utilize measured
vibration signals without any FE modeling or updating
procedures, and any data transformation from raw time
domain into frequency or modal domains. It needs to
clarify that although these methods are highly suitable
for early damage detection, damage localization, and
sometimes damage type recognition, their main draw-
backs are related to the damage severity estimation.
For these steps, the model-based methods can play
important roles in accurately estimating the severity
of damage [2]. The other important note regarding the
data-based methods for the first three steps of SHM
is that the procedures of early damage detection and
localization are further prevalent and there are a few
researches on recognizing the type of damage.

Most of the data-based techniques used in early
damage detection and damage localization are imple-
mented by statistical pattern recognition paradigm
under four main steps: (i) operational evaluation, (ii)
sensing and data acquisition, (iii) feature extraction,
and (iv) feature analysis [2,12]. Feature extraction
aims to extract meaningful information from the mea-
sured vibration data that should be correlated with
damage, known as a Damage-Sensitive Feature (DSF)
[13]. Time series analysis [14-16], time-frequency signal
analysis [17-19], and Principal Component Analysis
(PCA) [20-23] are widely used and effective methods

for feature extraction. Feature analysis is a decision-
making procedure that utilizes the DSFs of undam-
aged and damaged conditions extracted from vibration
signals in order to analyze them for early damage
detection and damage localization. This process can
be performed in two strategies: (i) a direct comparison
of the DSFs and (ii) training a machine-learning model.
In the first strategy, the DSFs of the undamaged and
damaged states are directly compared via statistical
metrics without learning any model. For this strategy,
statistical distance measures are the most common
approaches. Depending the type and size of the
DSFs, there are some efficient distances for both early
damage detection and damage localization such as Ma-
halanobis distance [24-26], Kullback-Leibler divergence
[27-29], correlation distance measures [19,30], classical
and robust multidimensional scaling [31,32], spectral
distances [33,34], etc.

The second strategy relies on training a machine-
learning model via some DSFs of the undamaged state,
serving as training data. Once the machine-learning
model has been trained, the remaining DSFs of the
undamaged state (validation data) as well as all DSFs
of the damaged condition, all of which are considered
to generate test data, are fed into the trained model
to make a decision in terms of early damage detection
and damage localization [35]. In general, any machine-
learning model can be developed by the concepts of
supervised learning, requiring fully labeled data, i.e.,
the DSFs of both the undamaged and damaged states
for training the model [36,37], or unsupervised learning,
which can be established by only partially labeled
data (i.e., the DSFs of the only undamaged state are
necessary to learn the model of interest and the labels of
the DSFs of the damaged condition are unknown) [38].
Although both strategies are suitable for early damage
detection and damage identification, the utilization of
the direct statistical distance is benefited by simplicity
and computational efficiency compared to the machine
learning-based strategy, especially when the extracted
features exhibit proper sensitivity to damage.

On the other hand, most of the machine-learning
methods undertake the process of early damage de-
tection in order to understand whether damage is
present throughout the whole structure (the first level
of SHM), particularly in a long-term manner. Distance-
based mnovelty detection [38-40], clustering [41-43],
and artificial neural networks [44,45] are the widely
used machine learning methods based on the concept
of unsupervised learning for early damage detection.
In contrast, the use of direct statistical measures is
often suitable for damage identification, particularly
in a short-term manner. However, the preliminary
step of this process is to apply effective and effi-
cient DSFs. The effective features mean that those
should be sensitive to damage and proper for damage
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identification. Moreover, the efficient features make
sense to extract information from vibration signals that
do not lead to a time-consuming process or rigorous
parameter estimation. Another reason for having an
appropriate result of damage identification is to use
statistical distance measures with a high rate of de-
tection along with their simplicity and computational
efficiency. Therefore, the main objective of this article
is to propose effective methods for identifying damage
on the basis of statistical pattern recognition. In this
regard, a new approach as a combination of the well-
known PCA and convolution technique, called PCA-
convolution, is proposed to extract the DSFs. In this
algorithm, one attempts to project the matrix of raw
vibration signals onto principal components and to
utilize them in the algorithm of convolution instead of
raw vibration data. Hence, the convolution of a pair
of principal components regarding the undamaged and
damaged conditions is computed as a new DSF. Addi-
tionally, this article presents some effective statistical
distance measures, called Coefficient of Variation (CV),
Fisher criterion, Fano factor, and relative reliability
index for damage localization. Accordingly, the sensor
location concerned with the largest distance quantity
is identified as the damage area. To verify the accuracy
and capability of the proposed methods, two numerical
models including a four-story shear building and a
benchmark concrete beam are considered and studied.
Results show that the proposed distance measures with
the aid of the DSFs extracted from the proposed PCA-
convolution algorithm are accurately able to identify
the damage location. Furthermore, it is seen that this
algorithm can extract reliable and sensitive features
from raw vibration signals through a simple but ef-
fective algorithm.

2. Mixture feature extraction

2.1. Princtpal Component Analysis (PCA)
PCA is a multivariate statistical process that is used
to convert a set of correlated variables into a set of
values of linearly uncorrelated variables called principal
components. Mathematically, PCA is defined as an
orthogonal linear transformation that transforms data
into a new coordinate system [20,22]. Assume that X €
R™*™ ig an original data matrix containing information
from m variables (sensors) and m measured vibration
data points. Before applying PCA, it is necessary to
carry out a standardization process on the data matrix
to remove the differences between the ranges of vari-
ables. Once the variables are standardized, the matrix
of covariance related to the vibration measurements is
defined as follows:

1
Cxy=——XTX 1
X m—1 ’ (1)

CxP =PA. (2)

In these equations, Cx € R™*™ is a square symmetric
that represents the matrix of covariance of the original
matrix X. The covariance matrix measures the linear
relationship degree within the original data set among
all possible pairs of variables. Meanwhile, the eigenvec-
tors of Cx are the columns of P and the eigenvalues
are the diagonal terms of A = diag (A, Ao, .., Am).
Of note, the eigenvector with the highest eigenvalue
takes into account as the first principal component of
the data set; therefore, the eigenvectors corresponding
to the columns of matrix P are arranged on the basis
of the eigenvalues in descending order. In such a way,
a new matrix P (i.e., P sorted and reduced) can be
established as the PCA model. In fact, P € R™** is a
linear transformation matrix, which is used to convert
the correlated data matrix X into an uncorrelated
matrix T € %"** in the following form:

T = XP, (3)

with a view to obtain the uncorrelated matrix, it is
important to choose a matrix of transformation named
as P such that the covariance of the new data matrix
T is diagonal, that is:

1

Cr =
==

TIT. (4)

Substituting Eq. (3) into Eq. (4), one can write:
1
Cr= —1PTXTXP =PICxP. (5)
n—

The variance of each column vector in matrix T can be
expressed in the form:

. 1 1 T
Utzj = — ltftj = —] (ij) (ij)
=p, Cxp; = Aj, (6)

where t; and p; are the jth vectors of matrices T and
P, respectively. Furthermore, the covariance is:

. 1 1
2 ]
o2, = t7¢, = — (Xp)T (Xps
ty,tr n_1"7 k n 1( p]) (Xpx)

=p; Cxpir = A;p, pr = 0. (7)

As a result, each vector of the transformed data
matrix T is uncorrelated and its variances is given by
the covariance matrix eigenvalues Cx of the original
matrix. In the full dimension case, the transformation
process is invertible since PPT = I, where I is the
unity matrix; thus, the original data matrix can be
recovered as X = TP, By considering T, it is not
possible to recover the original matrix in a complete
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manner; however, this matrix can be projected back
onto the original m-dimensional domain and another
matrix can be obtained in the following form:

X =TP7, (8)
in which,

X=X -E, (9)

E=X (I - PPT) . (10)

In this equation, X denotes the projection of the matrix
X onto the selected k principal components and E is
the projection onto the residual left components.

2.2. Convolution

In signal processing, the convolution of two signals, u
and v, measures their similarity under the points as u
slides across v [46]. From a mathematical viewpoint,
the convolution is a mathematical operation on two
functions, producing a third function. In the time-
domain signals, the convolution of two signals involves
integration for the continuous signals and summing for
the discrete signals, where one of them is shifted [47].
On this basis, the general form of convolution of two
signals, u € R” and v € R®, is given by:

c=Y uli)-vig—j+1), (1)

where j = 1,2,...,7;7 and s are the sizes of the signal
vectors u and v, respectively. In this equation, c is the
vector of convolution with the length of ¢, where ¢ =
r+s—1. Suppose that u and v are two vectors (e.g., two
signals) from two different conditions. According to the
convolution theory, if there is no difference between
the two conditions, the convolution of these vectors
indicates a full similarity between them; otherwise, a
clear dissimilarity can be observed from the convolution
vector ¢. Even though one can directly apply the
convolution method to detect and/or locate damage
by finding the dissimilarity between the two vibration
signals in the two different structural states, the success
significantly depends on the quality of the vibration
signals. This means that the presence of any irrelevant
information in the signals to damage, e.g., noise,
signal variability caused by environmental changes,
etc., causes erroneous results of damage detection and
localization. In such cases, the probability of the
occurrence of false alarm and/or false detection errors
increases seriously. Accordingly, the direct use of the
convolution algorithm on the raw vibration signal is
not sufficiently applicable to either feature extraction
or feature analysis. For these reasons, this article
proposes the capability of this algorithm (i.e., as a non-
parametric approach) with the aid of the PCA (i.e.,
a parametric approach) to develop a more effective
method for feature extraction.

2.3. PCA-convolution algorithm

Assume that X and Y € R™™™ are the vibration
data matrices in the undamaged and damaged condi-
tions. Based on the fundamental principle of the PCA
technique, one can transform these matrices into two
uncorrelated data matrices, T, and T, by using the
linear transformation matrices P, and P, as follows:

T, = XP,, (12)
T, = YP,. (13)

In the following, two new data matrices in the original
coordinate can be obtained as:

X =1T,P’, (14)
Y=T,P,, (15)

where X and Y are obtained by projecting the original
data matrices X and Y onto the principal components.
Now, the matrices X and Y are applied to compute the
convolution between their column vectors. In order to
locate damage via the proposed statistical measures,
one needs to calculate a convolution vector between
the undamaged state and itself, c;, as well as another
convolution vector between the undamaged and dam-
aged conditions, ¢,. These vectors are formulated in
the following forms:

¢ =Y %)) Kilg—j+ 1), (16)

J

cy =Y %lj) Vila—j+1), (17)

J

where i = 1,2,....m; X; and y, are the i*" vector
(sensor) of X and Y, respectively. Note that the
vectors ¢, and c, serve here as the new DSFs regarding
the undamaged-only and undamaged and damaged
conditions. Although these are the convolution vectors,
there are some advantages that make the proposed
feature extraction method more suitable for damage
identification.  First, noise in measured vibration
signals is filtered out by the PCA method. Therefore,
one can handle the drawback of directly using the
convolution technique for the raw data. Second, as the
convolution technique indicates the overlap between
two signals (i.e., vectors), the convolution vectors
obtained from X and Y can increase the rate of
detectability and localizability.

3. Statistical distance measures

Upon extracting the DSFs from the proposed mixture
approach, those should be applied to some distance
metrics, i.e., CV, Fisher criterion, Fano factor, and
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relative reliability index for damage localization. In
the following, there measures are briefly described and
formulized:

o Coefficient of variation

In statistics and probability theory, the CV, which
indicates the ratio of the standard deviation to
the mean, is a statistical measure of the dispersion
of a probability distribution or a random variable
around the mean. In this article, this criterion
is employed as a distance measure to identify the
damage location based on the DSFs obtained from
the proposed PCA-convolution algorithm. Given
the convolution vector c,, the CV is expressed as
follows:

o, = (") . (18)

Hy

wherei =1,2,...,m; 0, and p1, denote the standard
deviation and mean values of ¢, respectively.

o Fisher criterion

The Fisher criterion or Fisher’s linear discrimi-
nant is a classification method that projects high-
dimensional data onto a line. This projection
maximizes the dissimilarity between the means of
the two classes while minimizing the variance within
each class. Considering ¢, and c, as the DSFs of the
training and testing data sets, Fisher criterion (.J)
for identifying damage location is formulated as:

J = (W) 7 (19)

2 2
oy +o3

where o, and p, are the standard deviation and
mean values of the convolution vector c,, respec-
tively.

e Funo factor
In statistics, the Fano factor is a value of the
dispersion of a probability distribution or a random
variable at a specific time window. This measure
highly resembles the CV except using the variance
of data samples instead of their standard deviation
considered in the CV. Hence, it is possible to extend
the general formulation of the Fano factor based on
the convolution vectors for identifying the damage
location. Considering the vectors ¢, and ¢, a
developed Fano factor for these sets can simply be
written using their variance and mean values. To
achieve meaningful results regarding the damage
localization problem, a direct difference between the
Fano factors of the vectors ¢, and c, is computed

as (;—* — Z—J) which can be rewritten as follows:
Ed y
o (20)
1 .
Pz flby ;

o Relative reliability index.

The reliability index is a useful indicator to compute
the failure probability in the structural reliability
analysis. This measure is based on the ratio of
the mean value to the standard deviation, in which
case one can understand that the reliability index is
the inverse of the CV. However, this index cannot
directly be applied to the problem of damage local-
ization due to its reverse situation with respect to
the CV, which has been proposed to locate damage.
To deal with the limitation of applying this index
to the problem of interest, a relative error between
the reliability index between the vectors ¢, and c,
is computed and designated as a new statistical
measure R as follows:

Ri — ‘(uway — Ny0w> )
Oyla i

Regarding this equation, since it is possible to de-
termine the negative value of R, one should utilize
the absolute operator. An important property of the
proposed statistical measures is that each of them
gives a positive scalar value at each sensor location.
Having considered m sensors optimally installed on the
structure, four m-dimensional vectors of the statistical
measures can be derived. In each of these vectors, the
sensor location with the largest amount of that statis-
tical measure is identified as the location of damage.

(21)

4. Numerical examples

4.1. A four-story shear building frame
In order to demonstrate the accuracy and ability of the
proposed methods, a simple four-story shear-building
model is constructed, as depicted in Figure 1. It is a dis-
crete dynamic system with four Degrees Of Freedoms
(DOF's) so that each floor includes one DOF in the
horizontal coordinate. Suppose that four accelerome-
ters (S1-S4) are mounted on the model to measure the
acceleration time history at each DOF. The structural
characteristics of the model including mass and stiff-
ness are represented in Table 1. The classical damping
is an appropriate idealization. Furthermore, Rayleigh
damping model is utilized to construct the damage
matrix using 5% damping ratio for all modes. The
state-space method is employed to implement dynamic
time-domain analysis and measure the acceleration
time histories from the simulated sensors. In order to
excite the model, four different Gaussian white noise
signals are applied to the points across the sensors for
simulating ambient vibration. As a sample, Figure 2
shows the excitation and acceleration response signals
at the location of Sensor 4 in the undamaged condition.
To simulate damage, it is assumed that an addi-
tional concentrated mass is inserted in the third story.
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4th story
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2nd story

81
1st story

Figure 1. The four-story shear-building model.

Table 1. The structural properties of the shear-building
model.

Story Mass Stiffness
no. (kg) (kN/m?)
1 4000 1600
2 3000 1400
3 2000 1200
4 1000 1000

Several mass increasing factors including 10, 30, and
50% are allocated to the mass of the third story to
simulate the damage pattern. In the same manner,
the structural dynamic analysis in the time domain
is applied to the damaged cases to measure their
acceleration time histories. Based on the statistical
pattern recognition paradigm, the measured vibration
responses in the undamaged condition (without adding
the mass) generate the data matrix X and the measure-
ments in the three damaged conditions produce the

'

[\

Ambient
vibration

'
N (=]

o=

[V
o

Time (sec)

()

40 60 80 100 120

14000

Bl Undamaged

I 10% mass increasing
120001 [ 30% mass increasing | |
[C_150% mass increasing
10000
g
-
S
= 8000
5
I}
5
e}
= 6000
8
3
=
40001
20001
0

Number of sensors

Figure 3. Euclidean norms of the PCA convolution
vectors of the training and testing data sets.

data matrix Y. After simulating and measuring the
acceleration time-domain responses, the PCA method
is applied to convert the original data matrices into
the new spaces, X and Y. The proposed feature
extraction technique is employed to compute the PCA-
convolution vectors ¢, and c,. Figure 3 illustrates the
Euclidean norm of these vectors in all sensors of the
undamaged and damaged conditions.

As shown in Figure 3, the Euclidean norms of the
PCA-convolution vectors are reduced upon increasing
the level of damage from the undamaged condition to
the highest level of damage (50% mass increasing). It
is obvious that the undamaged state has the largest
norm, whereas the highest damage scenario gives the
smallest norm value. This observation confirms that
the proposed feature extraction technique provides the
reliable and accurate DSFs due to the sensitivity of
the PCA-convolution vectors to damage. Despite this
advantage, it cannot properly detect the damage or
identify the location of damage. Thus, it is a necessity
to apply the proposed distance measures for locating
damage. For further investigation, Figure 4 shows the
PCA-convolution vectors ¢, and ¢, in Sensor 3 (the
location of damage).

As can be observed from Figure 4, the values of
PCA-convolution vectors are reduced by increasing the
level of damage. By comparing the PCA-convolution

1.8
0.9
0.0

0.0 "1
1.8

Acceleration (g)

0 20 40 60 80 100 120
Time (sec)

'(b)

Figure 2. The simulation process at Sensor 4: (a) Ambient vibration and (b) acceleration response.
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Figure 4. The PCA convolutions of training and testing sets at Sensor 3 (the location of damage).

x10* Coefficient of variation x10° Fisher criterion
15
I voL B vl
I ot | | I o
10
3 4
5
2
0 0
1 2 3 4 1 2 3 4
Number of sensors Number of sensors
x10° Fano factor x10* Relative reliability index
3 2.0
I vpL I vl
I oL 15| | I P
2
f, & 1.0
1
0.5
0 0.0
- 1 2 3 4 1 2 3 4

Number of sensors

Number of sensors

Figure 5. The damage localization in the first damaged case: 10% mass increase.

vectors in the damage cases, it can be suggested that
damage leads to a reduction in their values. In such
circumstances, the highest level of damage (50% mass
increasing) shows the smallest values of the PCA-
convolution. To identify the damage location, the sta-
tistical moments of the vectors c, and c, are calculated
and used in the proposed statistical distance measures.
In this regard, Figures 5-7 display the results of
damage localization in Cases 1-3, respectively. In these
figures, “UDL” refers to the undamaged location of the
model, whereas “DL” means the damaged location. All
of the results obtained from these figures demonstrate
that Sensor 3 is the location of damage in the shear-
building model since the values of the four statistical

distance measures in this sensor are larger than the
other ones. These observations not only confirm that
the PCA-convolution vectors are sensitive to damage,
but also prove that all of the statistical measures can
successfully identify the location of damage.

4.2. A numerical benchmark concrete beam

To provide further evidence for verifying the proposed
methods, a numerical benchmark model [48] is applied.
This model is a realistic simulation of the concrete
beam, as can be seen in Figure 8 The dimension
of the beam features length 5 m, height 0.5 m, and
width 0.01 m. It was constructed with four-node linear
two-dimensional elements with reduced integration.
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Figure 6. The damage localization in the second damaged case: 30% mass increase.
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Figure 7. The damage localization in the third damage case: 50% mass increase.

Furthermore, the numerical model of the beam was beam. The top sensors can be observed in Figure 8.
constructed based on the Euler-Bernoulli theory by At each sensor location, the acceleration time history
presuming that the planes at the ends of the beam was measured in the vertical coordinate.

remain planes. The total number of sensors is 30 A uniform transverse random load was applied to

identically spread out at the top and bottom of the the top surface for the excitation of the beam. The load
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Figure 8. The numerical benchmark model of the concrete beam [48].
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Figure 9. Euclidean norms of the PCA convolution of the training and testing data sets.

histories were lowpass filtered below 1000 Hz, leading
to five active modes of the structure. Furthermore,
the acceleration time histories were sampled in two
seconds with 4001 data points. To simulate damage, a
vertical crack was modeled at the bottom of the beam
at the location of Sensor 8, as depicted in Figure 8.
Such a damage pattern simulates the breathing crack
as a more realistic damaged case in many concrete
structures, leading to a nonlinear behavior. Several
damage patterns along with an undamaged condition
(Case 1) were introduced in the numerical beam. These
cases consist of different crack lengths including 10, 20,
30, 50, 100, and 150 mm at the middle-span of the
beam. In this study, the second (20 mm), third (30
mm) and fourth (50 mm) damage scenarios, i.e., Cases
2-4, are applied to examine the proposed methods for
identifying the location of damage.

The main reason for choosing these cases among
the above-mentioned scenarios is related to the simi-
larity of the results of damage localization. It should
be mentioned that in all cases, the results of damage
identification are reasonable and accurate. However, in
order avoid presenting similar and repetitive outputs,
the cases with the crack sizes of 20, 30, and 50 mm
are used. Unlike Ref. [48], the first two measure-
ments of the acceleration responses in the undamaged
(measurements 1-2) and damaged (measurements 11-
12) cases are chosen to make the data matrices X and
Y. Accordingly, both matrices consist of 8002 samples

(rows) and 15 variables (columns). Note that the data
matrix X belongs to the undamaged condition (Case 1)
and there are three types of the matrix Y for Cases 2—4.
Based on the PCA technique, the new data matrices,
X and Y, are initially obtained by transforming and
returning the original matrices X and Y. Using the col-
umn vectors of X and Y, one can determine the PCA-
convolution vectors ¢, and ¢, at each sensor location.

Figure 9 shows Euclidean norms of the PCA-
convolution vectors at all sensors. From this figure, it
can be observed that the norm of the proposed DSF is
reduced through the occurrence of damage in the beam.
Furthermore, increase in the damage severity (the crack
size) results in a considerable reduction in the norm of
the PCA convolutions. In this regard, the highest level
of damage (i.e., the 50 mm breathing crack) has the
smallest norm. In contrast, the undamaged condition
of the beam gives the largest norm value. All of the
obtained results lead to the conclusion that the PCA-
convolution values are sensitive to damage and their
reduction is indicative of the damage occurrence.

In another result, Figure 10 illustrates the vec-
tors of the PCA convolution vectors between the
undamaged and damaged conditions at the location
of Sensor 8 (the damage area in the numerical beam
[48]). This figure clearly indicates the reduction of the
PCAconvolution values resulting from the damage. As
can be observed, the damaged case with a crack size of
50 mm (Case 4) has the smallest PCA convolution val-
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Figure 11. The process of damage localization in the second damage pattern: crack length 20 mm.

ues. The results of the damage localization procedure
using the proposed statistical distance measures are
shown in Figures 11-13. As can be observed in these
figures, the amounts of the distance measures at Sensor
8 (DL) are larger than the other locations (UDL).
Hence, the location of this sensor is identified as the
damage area of the beam. The obtained results confirm
that both of the PCA convolution algorithm and the
proposed statistical distance measures are influentially
capable of identifying the location of damage.

5. Conclusions

A new feature extraction technique and some effi-
cient statistical distance measures were proposed in

this study to identify the damage location. The
proposed feature extraction technique was based on
the combination of the Principal Component Analysis
(PCA) and convolution techniques to extract a new
Damage-Sensitive Feature (DSF) by computing the
convolution of projecting the measurement data in the
undamaged and damaged conditions onto the principal
components. The proposed distance measures were the
coeflicient of variation, Fisher criterion, Fano factor,
and relative reliability index. All of them applied the
features extracted from the proposed PCA convolution
algorithm to identify the damage location. To verify
the accuracy and capability of the proposed methods,
two numerical models including a four-story shear
building and a benchmark concrete beam were used. In
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Figure 13. The process of damage localization in the fourth damage pattern: crack length 50 mm.

both models, the numerical results demonstrated that
all of the proposed distance measures could identify the
location of damage using the DSF extracted from the
PCA convolution algorithm. Accordingly, the sensor
location concerned with the maximum distance value
was identified as the location of damage. Furthermore,
the obtained results demonstrated that the proposed
DSF was sensitive to damage. For this conclusion, it

was observed that the values of the PCA convolution
were reduced by increasing the severity of damage. To
sum up, it can be concluded that the proposed methods
in this study are applicable tools for use in the context
of Structural Health Monitoring (SHM). In particular,
the proposed feature extraction technique can extract
a reliable and sensitive feature from the raw vibration
signals through simple but effective algorithms.
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Despite the good innovations and results, this
study has a few limitations that can be investigated
for further studies. In the first limitation, it would
be interesting to evaluate the presented methods at
least by an experimental example and other types of
buildings and civil structures. For the second one, it
is desirable in the SHM community to show how the
proposed methods, particularly the proposed feature
extraction technique, perform well under operational
and environmental variability. Finally, it is important
to define a threshold boundary for increasing the
reliability of damage identification.
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