Identifying Damage Location under Statistical Pattern Recognition by New Feature Extraction and Feature Analysis Methods

Yousef Ali Feizi¹, Mohammad Kazem Sharbatdar², Reza Mahjoub³, Mahdi Raftari⁴

¹Ph.D. Candidate, Department of Civil Engineering, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran (Email: enyousefali@yahoo.com) , Mobile: 09122318347
²Professor, Faculty of Civil Engineering, Semnan University, Semnan, Iran (Corresponding author, Email: msharbatdar@semnan.ac.ir), Mobile: 09122318347
³Assistant Professor, Department of Civil Engineering, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran (Email: r_mahjoob@yahoo.com)
⁴Assistant Professor, Department of Civil Engineering, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran (Email: Raftari_m@yahoo.com)

Abstract

The main objective of this article is to identify the location of damage by a new feature extraction technique and propose some efficient feature analysis tools as statistical distance measures. The proposed algorithm of feature extraction relies on a combination of the well-known Principal Component Analysis (PCA) and a convolution strategy. After extracting the features from raw vibration signals of undamaged and damaged conditions, those are applied to the proposed feature analysis approaches called coefficient of variation, Fisher criterion, Fano factor, and relative reliability index, all of which are formulated by using statistical moments of the features extracted from the PCA-convolution algorithm. To localize damage, the sensor location with the distance value exceeded from a threshold limit is identified as the damaged area. The main innovations of this research are to present a new hybrid technique of feature extraction suitable for SHM applications and four effective statistical measures for feature analysis and damage identification. The performance and reliability of the proposed methods are verified by a four-story shear-building model and a benchmark concrete beam. Results demonstrate that the approaches presented here can influentially identify the location of damage by using the features extracted from the proposed PCA-convolution algorithm.

Keywords: Structural; health monitoring; damage localization; pattern recognition; convolution; component analysis; statistical distance

1. Introduction

Evaluating the health of civil engineering structures has now received significant attention due to their importance in transportation systems, social life, economic, etc. Most of them are needed to be monitored and maintained in an effort to prevent catastrophic events caused by damage occurrence, natural disasters, aging, and material deterioration. For these reasons, structural health monitoring (SHM) has been emerged to assist civil engineers in assessing the health and safety of important civil structures and detecting any possible structural damage [1, 2]. On this basis, it is necessary to deploy civil structures by various kinds of sensors [3], measure raw vibration signals, construct finite element (FE) or numerical models, update the constructed numerical models, and apply model-based or data-based methods for SHM [4]. Damage can be defined as intentional or unintentional changes in geometry, boundary conditions, and material properties that leads to adverse alterations in the behavior and responses of a structure [2]. These changes appear as cracks in concrete elements and broken welds in the steel connections, failure, and fatigue. All of them may cause undesirable stresses, inappropriate vibrations, failure and collapse in the structure. To avoid such adverse events, the process of SHM is categorized into four main steps: (i) early damage detection, (ii) damage localization, (iii) damage type recognition, and (iv) damage severity estimation. The first step intends to initially alarms the occurrence of damage or safe condition. When the structure suffered from damage, one attempts to identify the damaged area of the structure. Once the location of damage was identified, it can be recognized the type of damage (e.g. cracks, failure, etc.). Finally, the severity of damage is estimated in order to either repair the damaged area or replace it. An important note is that as the mentioned steps increase, the complexity and difficulty of SHM methods increase as well.
The model-based methods need to have FE models of civil structures and their structural properties (i.e., mass, damping, and stiffness). Due to discrepancies between the numerical and real models of structures, model updating [5-7] is mandatory for the model-based strategy. The central idea of SHM via this strategy lies in the fact that the numerical (updated) and real models of the structure are considered as undamaged and current states. Hence, it is attempted to use information of both models to define a damage equation as an inverse problem and solve it via various mathematical and optimization techniques [8-11]. By contrast, the data-based methods only utilize measured vibration signals without any FE modeling or updating procedures, and any data transformation from raw time domain into frequency or modal domains. It needs to clarify that although these methods are highly suitable for early damage detection, damage localization, and sometimes damage type recognition, their main drawbacks are related to the damage severity estimation. For these steps, the model-based methods can play important roles in accurately estimating the severity of damage [2]. The other important note regarding the data-based methods for the first three steps of SHM is that the procedures of early damage detection and localization are further prevalent and there are a few researches on recognizing the type of damage.

Most of the data-based techniques used in early damage detection and damage localization are implemented by statistical pattern recognition paradigm under four main steps: (i) operational evaluation, (ii) sensing and data acquisition, (iii) feature extraction, and (iv) feature analysis [2, 12]. Feature extraction aims to extract meaningful information from the measured vibration data that should be correlated with damage, known as a damage-sensitive feature (DSF) [13]. Time series analysis [14-16], time-frequency signal analysis [17-19], principal component analysis (PCA) [20-23] are widely-used and effective methods for feature extraction. Feature analysis is a decision-making procedure that utilizes the DSFs of undamaged and damaged conditions extracted from vibration signals in order to analyze them for early damage detection and damage localization. This process can be performed in two strategies: (i) a direct comparison of the DSFs and (ii) training a machine-learning model. In the first strategy, the DSFs of the undamaged and damaged states are directly compared via statistical metrics without learning any model. For this strategy, statistical distance measures are the most common approaches. Depending the type and size of the DSFs, there are some efficient distances for both early damage detection and damage localization such as Mahalanobis distance [24-26], Kullback-Leibler divergence [27-29], correlation distance measures [19, 30], classical and robust multidimensional scaling [31, 32], spectral distances [33, 34], etc.

The second strategy relies on training a machine-learning model via some DSFs of the undamaged state, which serve as training data. Once the machine-learning model has been trained, the remaining DSFs of the undamaged state (validation data) as well as all DSFs of the damaged condition, all of which are considered to generate test data, are fed into the trained model to make a decision in terms of early damage detection and damage localization [35]. In general, any machine-learning model can be developed by the concepts of supervised learning, which requires fully labeled data (i.e., the DSFs of both the undamaged and damaged states for training the model) [36, 37], or unsupervised learning, which can be established by the only partially labeled data (i.e., the DSFs of the only undamaged state are necessary to learn the model of interest and the labels of the DSFs of the damaged condition are unknown) [38]. Although both strategies are suitable for early damage detection and damage identification, the utilization of the direct statistical distance are benefited by simplicity and computational efficiency compared to the machine learning-based strategy, especially when the extracted features have proper sensitivity to damage.

On the other hand, most of the machine-learning methods undertake the process of early damage detection in order to understand whether damage is present throughout the whole structure (the first level of SHM), particularly in a long-term manner. Distance-based novelty detection [38-40], clustering [41-43], and artificial neural networks [44, 45] are the widely-used machine learning methods, based on the concept of unsupervised learning, for early damage detection. In contrast, the use of direct statistical measures is often suitable for damage identification, particularly in a short-term manner. However, the preliminary step of this process is to apply effective and efficient DSFs. The effective features mean that should be sensitive to damage and proper for damage identification. Moreover, the efficient features make sense to extract information from vibration signals that do not lead to a time-consuming process or rigorous parameter estimation. The other reason for having an appropriate result of damage identification is to use statistical distance measures with high rate of detection along with their simplicity and computational efficiency. Therefore, the main objective of this article is to propose effective methods for identifying damage on the basis of statistical pattern recognition. In this regard, a new approach as a combination of the well-known PCA and convolution technique, called PCA-convolution, is proposed to extract the DSFs. In this algorithm, one attempts to project the matrix of raw vibration signals onto principal components and utilize them in the algorithm of convolution instead of raw vibration data. Hence, the convolution of a pair of principal components regarding the undamaged and damaged conditions is computed as a new DSF. Additionally, this article presents some effective statistical distance measures, called coefficient of variation, Fisher criterion, Fano factor, and relative reliability index, for damage localization. Accordingly, the sensor location concerned with the largest distance quantity is identified as the damage area. To verify the accuracy and capability of the proposed methods, two numerical models including a four-story shear building and a benchmark concrete beam are considered and studies. Results show that the proposed distance measures with the aid of the DSFs extracted from the proposed PCA-convolution algorithm is accurately able to identify the damage location. Furthermore, it is seen that this algorithm can extract reliable and sensitive features from raw vibration signals through a simple but effective algorithm.
2. Mixture feature extraction

2.1. Principal component analysis

PCA is a multivariate statistical process that is used to convert a set of correlated variables to a set of values of linearly uncorrelated variables called principal components. Mathematically, PCA is defined as an orthogonal linear transformation that transforms data into a new coordinate system [20, 22]. Assume that $X \in \mathbb{R}^{n \times m}$ is an original data matrix containing information from m variables (sensors) and n measured vibration data points. Before applying PCA, it is necessary to carry out a standardization process on the data matrix to remove the differences between the ranges of variables. Once the variables are standardized, the matrix of covariance related to the vibration measurements is defined as follows:

$$C_x = \frac{1}{m-1} X^T X$$ \hspace{1cm} (1)

$$C_x \tilde{P} = \tilde{P} \Lambda$$ \hspace{1cm} (2)

In these equations, $C_x \in \mathbb{R}^{n \times m}$ is a square symmetric that represents the matrix of covariance of the original matrix X. The covariance matrix measures the linear relationship degree within the original data set among all possible pairs of variables. Meanwhile, the eigenvectors of C_x are the columns of \tilde{P} and the eigenvalues are the diagonal terms of $\Lambda = \text{diag}(\lambda_1, \lambda_2, \ldots, \lambda_m)$. It is worthwhile remarking that the eigenvalue with the highest eigenvalue takes into account as the first principal component of the data set; therefore, the eigenvectors correspond to the columns of matrix \tilde{P} are arranged on the basis of the eigenvalues in descending order. In such way, a new matrix P (i.e. \tilde{P} sorted and reduced) can be established as the PCA model. In fact, $P \in \mathbb{R}^{m \times k}$ is a linear transformation matrix, which is used to convert the correlated data matrix X into an uncorrelated matrix $\tilde{X} \in \mathbb{R}^{m \times k}$ in the following form:

$$T = XP$$ \hspace{1cm} (3)

With a view to obtain the uncorrelated matrix, it is important to choose a matrix of transformation named as P such that the covariance of the new data matrix T is diagonal, that is:

$$C_T = \frac{1}{n-1} T^T T$$ \hspace{1cm} (4)

Substituting Eq. (3) into Eq. (4) one can write:

$$C_T = \frac{1}{n-1} P^T X^T X P = P^T C_x P$$ \hspace{1cm} (5)

The variance of each column vector in matrix T can be expressed in the form:

$$\sigma_{t_i}^2 = \frac{1}{n-1} t_i^T t_i = \frac{1}{n-1} \left(X p_i \right)^T \left(X p_i \right) = p_i^T C_x p_i = \lambda_i$$ \hspace{1cm} (6)

where t_i and p_i are the jth vectors of matrices T and P, respectively. Furthermore, the covariance is:

$$\sigma_{t_j, t_k}^2 = \frac{1}{n-1} t_j^T t_k = \frac{1}{n-1} \left(X p_j \right)^T \left(X p_k \right) = p_j^T C_x p_k = \lambda_j p_j^T p_k = 0$$ \hspace{1cm} (7)

As a result, each vector of the transformed data matrix T is uncorrelated and its variances is given by the covariance matrix eigenvalues C_x of the original matrix. In the full dimension case, the transformation process is invertible since $PP^T = I$, where I is the unity matrix; thus, the original data matrix can be recovered as $X = TP^T$. By considering T, it is not possible to recover the original matrix in a complete manner; however, this matrix can be projected back onto the original m-dimensional domain and obtain another matrix in the following form:

$$\tilde{X} = TP^T$$ \hspace{1cm} (8)

in which

$$\tilde{X} = X - E$$ \hspace{1cm} (9)

$$E = X (I - PP^T)$$ \hspace{1cm} (10)

In this equation, \tilde{X} denotes the projection of the matrix X onto the selected k principal components and E is the projection onto the residual left components.
2.2. Convolution

In signal processing, the convolution of two signals, \(u \) and \(v \), measures their similarity under the points as \(u \) slides across \(v \) [46]. From a mathematical viewpoint, the convolution is a mathematical operation on two functions, producing a third function. In the time-domain signals, the convolution of two signals involves integrating for the continuous signals and summing for the discrete signals, where one of them is shifted [47]. On this basis, the general form of convolution of two signals, \(u \in \mathbb{R}^r \) and \(v \in \mathbb{R}^s \) is given by:

\[
c = \sum_{j} u(j) \cdot v(q - j + 1)
\]

where \(j = 1, 2, \ldots, r; \ r \) and \(s \) are the sizes of the signal vectors \(u \) and \(v \), respectively. In this equation, \(c \) is the vector of convolution with the length of \(q \), where \(q = r + s - 1 \). Suppose that \(u \) and \(v \) are two vectors (e.g. two signals) from two different conditions. According to the convolution theory, if there is no difference between the two conditions, the convolution of these vectors indicates a full similarity between them; otherwise, a clear dissimilarity can be observed from the convolution vector \(c \). Even though one can directly apply the convolution method to detect and/or locate damage by finding the dissimilarity between the two vibration signals in the two different structural states, the success significantly depends on the quality of the vibration signals. This means that the presence of any non-relevant information in the signals to damage (e.g. noise, signal variability caused by environmental changes etc.) cause erroneous results of damage detection and localization. In such cases, the probability of the occurrence of false alarm and/or false detection errors increases seriously. Accordingly, the direct use of the convolution algorithm on the raw vibration signal is not sufficiently applicable to either feature extraction or feature analysis. For these reasons, this article proposes to capability of this algorithm (i.e. as a non-parametric approach) with the aid of the PCA (i.e. a parametric approach) to develop a more effective method for feature extraction.

2.3. PCA-convolution algorithm

Assume that \(X \) and \(Y \in \mathbb{R}^{p \times m} \) are the vibration data matrices in the undamaged and damaged conditions. Based on the fundamental principle of the PCA technique, one can transform these matrices into two uncorrelated data matrices, \(T_x \) and \(T_y \), by using the linear transformation matrices, \(P_x \) and \(P_y \), as follows:

\[
T_x = XP_x
\]
\[
T_y = YP_y
\]

In the following, two new data matrices in the original coordinate can be obtained as:

\[
\tilde{X} = T_xP_x^c
\]
\[
\tilde{Y} = T_yP_y^c
\]

where \(\tilde{X} \) and \(\tilde{Y} \) are obtained by projecting the original data matrices \(X \) and \(Y \) onto the principal components. Now, the matrices \(\tilde{X} \) and \(\tilde{Y} \) are applied to compute the convolution between their column vectors. In order to locate damage via the proposed statistical measures, one needs to calculate a convolution vector between the undamaged state and itself, \(c_x \), as well as another convolution vector between the undamaged and damaged conditions, \(c_y \). These vectors are formulated in the following forms:

\[
c_x = \sum_{j} \tilde{x}(j) \cdot \tilde{x}(q - j + 1)
\]
\[
c_y = \sum_{j} \tilde{x}(j) \cdot \tilde{y}(q - j + 1)
\]

where \(i = 1, 2, \ldots, m; \ \tilde{x} \) and \(\tilde{y} \) are the \(i \)-th vector (sensor) of \(\tilde{X} \) and \(\tilde{Y} \) respectively. Note that the vectors \(c_x \) and \(c_y \) serve here as the new DSFs regarding the undamaged-only and undamaged and damaged conditions. Although these are the convolution vectors, there are some advantages that make the proposed feature extraction method more suitable for damage identification. First, the noise in measured vibration signals is filtered out by the PCA method. Therefore, one can handle the drawback of directly using the convolution technique for the raw data. Second, as the convolution technique indicates the overlap between two signals (i.e. vectors), the convolution vectors obtained from \(\tilde{X} \) and \(\tilde{Y} \) can increase the rate of detectability and localizability.

4
3. Statistical distance measures

Once the DSFs have been extracted from the proposed mixture approach, those should be applied to some distance metrics, i.e. coefficient of variation, Fisher criterion, Fano factor, and relative reliability index for damage localization. In the following, these measures are briefly described and formulated.

- **Coefficient of variation**

In statistics and probability theory, the coefficient of variation (CV), which indicates the ratio of the standard deviation to the mean, is a statistical measure of the dispersion of a probability distribution or a random variable around the mean. In this article, this criterion is employed as a distance measure to identify the damage location based on the DSFs obtained from the proposed PCA-convolution algorithm. Given the convolution vector c_i, the CV is expressed as:

$$CV_i = \left(\frac{\sigma_i}{\mu_i} \right)$$ \hspace{1cm} (18)

where $i=1,2,\ldots,m$; σ_i and μ_i denote the standard deviation and mean values of c_i, respectively.

- **Fisher criterion**

The Fisher criterion or Fisher's linear discriminant is a classification method that projects high-dimensional data onto a line. This projection maximizes the dissimilarity between the means of the two classes while minimizing the variance within each class. Considering c_i and c_j as the DSFs of the training and testing data sets, Fisher criterion (J) for identifying damage location is formulated as:

$$J_i = \left(\frac{\mu_i - \mu_j}{\sigma_i^2 + \sigma_j^2} \right)^2$$ \hspace{1cm} (19)

where σ_i and μ_i are the standard deviation and mean values of the convolution vector c_i, respectively.

- **Fano factor**

In statistics, the Fano factor is a value of the dispersion of a probability distribution or a random variable at a specific time window. This measure highly resembles the CV with the difference of using the variance of data samples instead of their standard deviation considered in the CV. Hence, it is possible to extend the general formulation of the Fano factor based on the convolution vectors for identifying the damage location. Considering the vectors c_i and c_j, a developed Fano factor for these sets can simply be written using their variance and mean values. To achieve meaningful results regarding the damage localization problem, a direct difference between the Fano factors of the vectors c_i and c_j is computed as $\left(\sigma_i^2 - \sigma_j^2 \right)$, which can be rewritten as follows:

$$F_i = \left(\frac{\sigma_i^2 - \mu_i, \sigma_j^2}{\mu_i, \mu_j} \right)$$ \hspace{1cm} (20)

- **Relative reliability index**

The reliability index is a useful indicator to compute the failure probability in the structural reliability analysis. This measure is based on a ratio of the mean value to the standard deviation, in which case one can understand that the reliability index is the inverse of the CV. However, this index cannot directly be applied to the problem of damage localization due to its reverse situation with respect to the CV, which has been proposed to locate damage. To deal with the limitation of applying this index for the problem of interest, a relative error between the reliability index between the vectors c_i and c_j is computed and designated as a new statistical measure R as follows:

$$R_i = \left(\frac{\mu_i, \sigma_j - \mu_j, \sigma_i}{\sigma_i, \mu_i} \right)$$ \hspace{1cm} (21)

Regarding this equation, since it is possible to determine negative value of R, one should utilize the absolute operator. An important property of the proposed statistical measures is that each of them gives a positive scalar value at each sensor location. Having considered m sensors optimally installed on the structure, it can be derived four m-dimensional vectors of the statistical measures. In each of these vectors, the sensor location with the largest amount of that statistical measure is identified as the location of damage.
4. Numerical examples

4.1. A four-story shear building frame

In order to demonstrate the accuracy and ability of the proposed methods, a simple four-story shear-building model is constructed as depicted in Fig. 1. It is a discrete dynamic system with four degrees of freedom (DOFs) so that each floor includes one DOF in the horizontal coordinate. Suppose that four accelerometers (S1-S4) are mounted on the model to measure the acceleration time history at each DOF. The structural characteristics of the model including mass and stiffness are represented in Table 1. The classical damping is an appropriate idealization. Furthermore, Rayleigh damping model is utilized to construct the damage matrix using 5% damping ratio for all modes. The state-space method is employed to implement dynamic time-domain analysis and measure the acceleration time histories from the simulated sensors. In order to excite the model, four different Gaussian white noise signals are applied to the points across the sensors for simulating ambient vibration. As a sample, Fig. 2 shows the excitation and acceleration response signals at the location of Sensor 4 in the undamaged condition.

To simulate damage, it is assumed that an additional concentrated mass is inserted in the third story. Several mass increasing factors including 10, 30, and 50% are allocated to the mass of the third story to simulate the damage pattern. In the same manner, the structural dynamic analysis in time-domain is carried out on the damaged cases to measure their acceleration time histories. Based on the statistical pattern recognition paradigm, the measured vibration responses in the undamaged condition (without adding the mass) generate the data matrix \(\mathbf{X} \) and the measurements in the three damaged conditions produce the data matrix \(\mathbf{Y} \). After simulating and measuring the acceleration time-domain responses, the PCA method is applied to convert the original data matrices into the new spaces, \(\mathbf{X} \) and \(\mathbf{Y} \). The proposed feature extraction technique is employed to compute the PCA-convolution vectors \(\mathbf{e}_1 \) and \(\mathbf{e}_n \). Fig. 3 illustrates the Euclidean norm of these vectors at all sensors of the undamaged and damaged conditions.

As Fig. 3 appears, the Euclidean norms of the PCA-convolution vectors reduce with increasing the level of damage from the undamaged condition to the highest level of damage (50% mass increasing). It is obvious that the undamaged state has the largest norm, whereas the highest damage scenario gives the smallest norm value. This observation confirms that the proposed feature extraction technique provides the reliable and accurate DSFs due to the sensitivity of the PCA-convolution vectors to damage. Despite this advantage, it cannot properly detect the damage or identify the location of damage. Thus, it is a necessity to apply the proposed distance measures for locating damage. For further investigations, Fig. 4 shows the PCA-convolution vectors \(\mathbf{e}_1 \) and \(\mathbf{e}_n \) at Sensor 3 (the location of damage).

As can be observed from Fig. 4, the amounts of PCA-convolution vectors decrease by increasing the level of damage. By comparing the PCA-convolution vectors in the damage cases, it can be suggested that damage leads to the reduction in their amounts. In such circumstances, the highest level of damage (50% mass increasing) shows the smallest values of the PCA-convolution. To identify the damage location, the statistical moments of the vectors \(\mathbf{e}_1 \) and \(\mathbf{e}_n \) are calculated and used in the proposed statistical distance measures. In this regard, Figs. 5-7 display the results of damage localization in Cases 1-3, respectively. In these figures, “UDL” refers to the undamaged location of the model, whereas “DL” means the damaged location. All of the results obtained from these figures demonstrate that Sensor 3 is the location of damage in the shear-building model since the values of the four statistical distance measures at this sensor are larger than the other ones. These observations not only confirm that the PCA-convolution vectors are sensitive to damage but also prove that all of the statistical measures can successfully identify the location of damage.

4.2. A numerical benchmark concrete beam

To provide further evidence for verifying the proposed methods, a numerical benchmark model [48] is applied. This model is a realistic simulation of the concrete beam as can be seen in Fig. 8. The dimension of the beam is length 5 m, height 0.5 m, and width 0.01 m. It was constructed with four-node linear two-dimensional elements with reduced integration. Furthermore, the numerical model of the beam was constructed based on the Euler-Bernoulli theory by presuming that the planes at the ends of the beam remain planes. The total number of sensors are 30 identically spread out at the top and bottom of the beam. The top sensors can be observed in Fig. 8. At each sensor location, the acceleration time history was measured in the vertical coordinate.

A uniform transverse random load was applied to the top surface for the excitation of the beam. The load histories were low-pass filtered below 1000 Hz, leading to five active modes of the structure. Furthermore, the acceleration time histories are sampled at two seconds with 4001 data points. To simulate damage, a vertical crack was modeled at the bottom of the beam at the location of Sensor 8 as depicted in Fig. 8. Such damage pattern simulates the breathing crack as a more realistic damaged case in many concrete structures leading to a nonlinear behavior. Several damage patterns along with an undamaged condition (Case 1) were introduced in the numerical beam. These cases consist of different crack lengths including 10, 20, 30, 50, 100, and 150 mm at the middle-span of the beam. In this study, the second (20 mm), third (30 mm) and fourth (50 mm) damage scenarios (i.e. Cases 2-4) are applied to examine the proposed methods for identifying the location of damage.
The main reason for choosing these cases among the above-mentioned scenarios is related to the similarity of the results of damage localization. It should be mentioned that, in all cases, the results of damage identification are reasonable and accurate. However, in order to avoid presenting similar and repetitive outputs, the cases with the crack sizes of 20, 30, and 50 mm are used. Unlike the reference [48], the first two measurements of the acceleration responses in the undamaged (measurements 1-2) and damaged (measurements 11-12) cases are chosen to make the data matrices \mathbf{X} and \mathbf{Y}. Accordingly, both matrices consist of 8002 samples (rows) and 15 variables (columns). Note that the data matrix \mathbf{X} belongs to the undamaged condition (Case 1) and there are three types of the matrix \mathbf{Y} for Cases 2-4. Based on the PCA technique, the new data matrices $\overline{\mathbf{X}}$ and $\overline{\mathbf{Y}}$, are initially obtained by transforming and returning the original matrices \mathbf{X} and \mathbf{Y}. Using the column vectors of $\overline{\mathbf{X}}$ and $\overline{\mathbf{Y}}$, one can determine the PCA-convolution vectors ϵ and ϵ, at each sensor location.

Fig. 9 shows Euclidean norms of the PCA-convolution vectors at all sensors. From this figure, it can be observed that the norm of the proposed DSF decrease by the occurrence of damage in the beam. Furthermore, the increase in the damage severity (the crack size) results in a considerable reduction in the norm of the PCA-convolutions. In this regard, the highest level of damage (i.e. the 50 mm breathing crack) has the smallest norm. In contrast, the undamaged condition of the beam gives the largest norm value. All of the obtained results lead to the conclusion that the PCA-convolution values are sensitive to damage and their reduction is indicative of the damage occurrence.

In another result, Fig. 10 illustrates the vectors of the PCA-convolution vectors between the undamaged and damaged conditions at the location of Sensor 8 (the damage area in the numerical beam [48]). This figure clearly indicates the reduction of the PCA-convolution values resulting from the damage. As can be observed, the damaged case with the crack size of 50 mm (Case 4) has the smallest PCA-convolution values. The results of the damage localization procedure using the proposed statistical distance measures are shown in Figs. 11-13. As can be observed in these figures, the amounts of the distance measures at Sensor 8 (DL) are larger than the other locations (UDL). Hence, the location of this sensor is identified as the damage area of the beam. The obtained results confirm that both of the PCA-convolution algorithm and the proposed statistical distance measures are influentially capable of identifying the location of damage.

5. Conclusions

A new feature extraction technique and some efficient statistical distance measures were proposed in this study to identify the damage location. The proposed feature extraction technique was based on the combination of the PCA and convolution techniques to extract a new DSF by computing the convolution of projecting the measurement data in the undamaged and damaged conditions onto the principal components. The proposed distance measures were the coefficient of variation, Fisher criterion, Fano factor, and relative reliability index. All of them applied the features extracted from the proposed PCA-convolution algorithm to identify the damage location. To verify the accuracy and capability of the proposed methods, two numerical models including a four-story shear building and a benchmark concrete beam were used. In both models, the numerical results showed that all of the proposed distance measures are able to identify the location of damage using the DSF extracted from the PCA-convolution algorithm. Accordingly, the sensor location concerned with the maximum distance value was identified as the location of damage. Furthermore, the obtained results demonstrated that the proposed DSF is sensitive to damage. For this conclusion, it was observed that the values of the PCA-convolution reduced by increasing the severity of damage. To sum up, it can be concluded that the proposed methods in this study are applicable tools for using in the context of SHM. In particular, the proposed feature extraction technique can extract a reliable and sensitive feature from the raw vibration signals through simple but effective algorithms.

Despite the good innovations and results, this study has a few limitations that can be investigated for further studies. In the first limitation, it would be interested in evaluating the presented methods at least by an experimental example and other types of buildings and civil structures. For the second one, it is desirable in the SHM community to show how the proposed methods, particularly the proposed feature extraction technique, perform well under operational and environmental variability. Finally, it is important to define a threshold boundary for increasing the reliability of damage identification.

Acknowledgement

The authors are fully grateful to Dr. Kulla for accessing the numerical benchmark concrete beam.

References

Biographies

Yousef Ali Feizi obtained his MS degree from Semnan University, Semnan, Iran, and his is currently PhD Candidate at Department of Civil Engineering, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran. He has authored 8 Journal and conference papers. He has also supervised MS degree theses. His research interests include Structural health monitoring, Structural damage detection, Data mining.

Mohammad Kazem Sharbatdar obtained his MS degree from Amirkabir University, Tehran, Iran, and his PhD degree from Ottawa University in Canada. He is currently Professor in the Faculty of Civil Engineering at Semnan University, Semnan, Iran. He has authored 6 books, more than 110 ISI and ISC journal papers and more than 150 conference papers. He has 5 patents. He has also supervised numerous MS and PhD degree theses.

Reza Mahjoub obtained his PhD degree at the University Technology in Malaysia. He is currently Assistant Professor at the Faculty of Engineering, Islamic Azad University(IAU), Khorramabad branch. He has produced more than 50 papers in index and non-index journals including conference papers. He has also supervised numerous MS and PhD degree theses.

Mahdi Raftari obtained his PhD degree at the University Technology in Malaysia. He is currently Assistant Professor at the Faculty of Engineering, Islamic Azad University(IAU), Khorramabad branch, Iran and He is the Dean of Engineering faculty. He is an active person in research where he has produced more than 50 papers in index and non-index journals including conference papers. He is also a member of several national and international organizations and professional bodies.

Table List:

Table 1. The structural properties of the shear-building model

<table>
<thead>
<tr>
<th>Story No.</th>
<th>Mass (Kg)</th>
<th>Stiffness (KN/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4000</td>
<td>1600</td>
</tr>
<tr>
<td>2</td>
<td>3000</td>
<td>1400</td>
</tr>
<tr>
<td>3</td>
<td>2000</td>
<td>1200</td>
</tr>
<tr>
<td>4</td>
<td>1000</td>
<td>1000</td>
</tr>
</tbody>
</table>
Figures List:

Fig. 1. The four-story shear-building model

Fig. 2. The simulation process at the sensor 4: (a) ambient vibration, (b) acceleration response

Fig. 3. Euclidean norms of the PCA-convolution vectors of the training and testing data sets

Fig. 4. The PCA-convolutions of training and testing sets at the sensor 3 (the location of damage)

Fig. 5. The damage localization in the first damaged case: 10% mass increasing

Fig. 6. The damage localization in the second damaged case: 30% mass increasing

Fig. 7. The damage localization in the third damage case: 50% mass increasing

Fig. 8. The numerical benchmark model of the concrete beam [48]

Fig. 9. Euclidean norms of the PCA-convolution of the training and testing data sets

Fig. 10. The PCA-convolution of training and testing sets at the sensor 8

Fig. 11. The process of damage localization in the second damage pattern: crack length 20 mm

Fig. 12. The process of damage localization in the third damage pattern: crack length 30 mm

Fig. 13. The process of damage localization in the fourth damage pattern: crack length 50 mm
Fig. 14. The four-story shear-building model

Fig. 15. The simulation process at the sensor 4: (a) ambient vibration, (b) acceleration response
Fig. 16. Euclidean norms of the PCA-convolution vectors of the training and testing data sets

Fig. 17. The PCA-convolutions of training and testing sets at the sensor 3 (the location of damage)
Fig. 18. The damage localization in the first damaged case: 10% mass increasing

Fig. 19. The damage localization in the second damaged case: 30% mass increasing
Fig. 20. The damage localization in the third damage case: 50% mass increasing

Fig. 21. The numerical benchmark model of the concrete beam [48]
Fig. 22. Euclidean norms of the PCA-convolution of the training and testing data sets

Fig. 23. The PCA-convolution of training and testing sets at the sensor 8
Fig. 24. The process of damage localization in the second damage pattern: crack length 20 mm

Fig. 25. The process of damage localization in the third damage pattern: crack length 30 mm
Fig. 26. The process of damage localization in the fourth damage pattern: crack length 50 mm