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Abstract. Nowadays, machining of hard-to-machine alloys has become a challenge in
terms of coping with di�erent approaches that have been introduced so far, among which
Abrasive Water Jet Machining (AWJM) has become one of the most extensively used
ones owing to its advantages. The current study provided the required data for modeling,
statistical analysis, and optimization of AWJM process based on Taguchi Orthogonal Array
(OA) and D-optimal approaches. Regression modeling was also considered to relate the
process input variables (water pressure, abrasive ow rate, machining speed, and machining
gap) to the output characteristic namely Surface Roughness (SR). In this regard, three
sets of models were proposed using three experimental matrices namely OA-Taguchi, D-
optimal, and their combination, and their adequacy was checked using Analysis of Variance
(ANOVA). According to the �ndings, the most signi�cant variable a�ecting SR was the
machining speed with the contribution of 66%. Finally, to optimize the objective functions
of the proposed models and obtain the optimized (the least) characteristic (SR), the models
were embedded in Simulated Annealing (SA) algorithm. According to the computational
results, the mixture matrix (with less than 4% error) was superior to OA-Taguchi and
D-optimal, hence quite being e�cient in modeling and optimizing the process.

© 2022 Sharif University of Technology. All rights reserved.

1. Introduction

AISI M24 is one of the most widely used hard-to-
machine alloys in machining for which di�erent pro-
cesses have been introduced among which Abrasive Wa-
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ter Jet Machining (AWJM) process is considered the
most widely used one (Figure 1) owing to its advantages
including small forces of cutting and imposed stresses
as well as lack of thermal distortion [1,2]. Figure 2
illustrates the ow chart of AWJM process [2].

Proper selection of the process input variables is a
crucial factor that a�ects the quality of products [3,4].
There are several tuning variables in AWJM process
among which the abrasive ow rate, water pressure,
machining gap, and machining speed are the most
important ones which were to be modeled and opti-
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Figure 1. AWJM process schematic illustration.

Figure 2. Flow chart of AWJM process [2].

mized in this study [5,6]. By the same token, Surface
Roughness (SR) was considered as the process output
performance measure to evaluate the process.

In recent years, a majority of scholars have shifted
their academic focus on modeling and optimizing dif-

ferent processes to relate a set of process input-output
parameters to each other and optimize them to obtain
the required output characteristics [5{11].

In this regard, Kolahan and Khajavi [7] employed
the regression modeling based on the OA-Taguchi
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method to establish a relationship between AWJM
process input-output parameters. The adequacy of the
proposed model was checked using Analysis of Variance
(ANOVA). Next, they embedded the proposed model
into a heuristic algorithm (simulated annealing) to be
optimized to obtain the desired process output.

Xie and Rittel [8] proposed a method to model the
AWJM process. According to their obtained results,
the proposed model could authentically model the
process.

Srinivasan et al. [9] modeled and optimized the
SR of the products resulting from the AWJM process
using di�erent fuzzy logic regression equations based
on Response Surface Methodology (RSM). ANOVA
results revealed that the proposed procedure was in
good agreement with the experimental results (less
than 10% error).

In the current research, the RSM approach was
employed to design the experimental matrix necessary
for data gathering, modeling, and optimizing purposes
in the AWJM process. The relation of the process
input-output parameters was determined based on the
regression modeling method. The impact of the process
variables, i.e., traverse speed, water pressure, and
stando� distance, on the surface quality of the products
was also evaluated using ANOVA. Consideration of
the water pressure and stando� distance at low levels
and traverse speed at high levels resulted in notable
improvement in the surface quality [10].

PonSelvan et al. [11] utilized the Taguchi tech-
nique to design the matrix and conduct the required
experimental tests. They optimized the process using
Taguchi method and selected the process input vari-
ables such as water pressure, traverse speed, abrasive
mass ow rate, and stando� distance to increase the
depth of cut and decrease the SR. They found that the
proposed method was quite e�cient in modeling the
process.

Miron et al. [12] proposed a method to model and
predict the SR values in the AWJM process. They
reported 10% error between the predicted values and
experimental tests, thus con�rming the adequacy of
the proposed approach in modeling and predicting the
process.

Di�erent aspects of the AWJM process have been
investigated, as can be observed in the literature.
However, very few attempts have been made to model,
statistically analyze, and optimize the AWJM process
based on the Design Of Experiment (DOE) approach,
regression modeling, ANOVA, and heuristic (simulated
annealing) algorithm.

In order to model, statistically analyze, and
optimize the AWJM process, this study introduced a
new approach. In this regard, the OA-Taguchi and D-
optimal methods were employed to design the matrix
required for the experimental tests, data gathering,

regression modeling and statistical analysis, determi-
nation of the percent contribution, and optimization
purposes. Based on the number of process input
variables and their predetermined intervals and levels,
di�erent experimental matrices were proposed using
the DOE approach. Of note, among the proposed
matrices, the OA-Taguchi and D-optimal are the most
extensively used ones, hence included in this study.
The main objectives of this study are as follows:

1. Comparing the performance of the OA-Taguchi
and D-optimal design matrices in terms of data
gathering and process modeling;

2. Establishing a relationship among three sets of
process input-output parameters using regression
modeling;

3. Performing ANOVA in order to determine the
adequacy of the proposed model and percent con-
tribution of the process variables on SR;

4. Considering the appropriate models as the authen-
tic representatives of the process (objective func-
tion) and optimizing them based on Simulated An-
nealing (SA) algorithm to identify the proper set of
process variables that yield the desired/optimized
value for SR.

2. Equipment used model development and
ANOVA

AISI M24 alloy belongs to the category of High-Speed
Steels (HSS) that enjoys several advantages including
its ability to be shaped in both soft and hard states
which, in turn, makes this alloy suitable for several ap-
plications such as drilling, reaming, tapping, forming,
broaching, and milling. Table 1 shows the chemical
composition of AISI M24 alloy [11]. In this study,
AISI M24 alloy was introduced as a material on which
the experimental tests were about to be conducted
using a waterjet machine (American Flow 60000 model)
equipped with a numerical control (Figure 3). Table 2
lists the most important speci�cations of the waterjet
machine.

Determination of the signi�cant input variables
of the process and their appropriate intervals and
levels is the key action prior to the experimental
tests. Conventionally, the intervals of the process
input variables and their applicable levels have been
determined based on experimental experiences. How-
ever, in this study, apart from reviewing the relevant
literature survey, some preliminary experiments based

Table 1. AISI M24 steel chemical composition.

C Si Mn Cr Mo V W Co

1.10 0.50 0.20 3.90 9.20 1.00 1.40 7.80
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Figure 3. Waterjet machine and used workpiece.

Table 2. Waterjet machine speci�cations.

Particle rate
(gr/min)

Desk speed
(mm/min)

Water pressure
(psi)

X, Y and Z axis movement
(mm)

70{140 0{4000 0{60000 400, 1500, and 2000

Table 3. AWJM process input variables and their
appropriate intervals.

Machining
variable

Symbol Unit Interval Pitch

Speed F mm/min 60{180 1

Water pressure P psi 20000{40000 500

Particle debi N gr/min 70{140 0.01

Machining gap H mm 1{3 0.5

on screening method were conducted in order to deter-
mine the process input variables and levels (Table 3).
Then, the most appropriate experimental matrices, i.e.,
OA-Taguchi, D-optimal, and their combination, were
determined. In the next step, the experiments were
conducted according to the proposed design matrices,
and the required data were evaluated. Afterwards,
the process characteristic equations were obtained by
developing the mathematical models and carrying out
test of signi�cance using ANOVA (F -test and P -test).
Finally, the most proper models among the linear,
curvilinear, and logarithmic ones were selected as the
representative of the process response based on the
ANOVA �ndings. In order to optimize the process
input variables in such a way as to achieve the desired
output characteristic (the least amount of SR), the SA
algorithm was employed [13].

In this study, the water pressure, abrasive ow
rate, machining speed, and machining gap were con-
sidered as the AWJM process input variables (Table 4)
and SR as the process response characteristic. The
experimental results required for regression-based mod-
eling and simulated annealing-based optimization pur-
poses were obtained using OA-Taguchi and D-optimal
experimental designs [14{16]. Of note, a combination

Table 4. AWJM process input variables and their
appropriate levels.

Level P
(psi)

H
(mm)

N
(gr/min)

H
(mm)

Level 1 20000 1 70 1
Level 2 30000 2 140 2
Level 3 40000 3 | 3

of the proposed design matrices was also taken into
consideration. Tables 5 and 6 show the experimental
settings and their corresponding measured SR values
obtained from OA-Taguchi and D-optimal methods,
respectively. As shown earlier, these tables comprise
18 and 26 experiments, respectively, based on which
the statistical analysis and modeling were conducted.
Moreover, both matrices were incorporated into a
single matrix to study their combination and collect
authentic required data with regard to regression mod-
eling purposes.

To determine the relations between the process
input and output characteristics (SR), regression mod-
eling was employed [17{20]. Eq. (1) illustrates the
general form of a mathematical model:

Y1 = a0+a1H+a2F+a3P+a4N+a11HH+a22FF

+ a33PP + a44NN + a12HF + a13HP

+ a14HN + a23FP + a24FN + a34PN; (1)

where H, F , P , and N , are the process input variables
and Y1 is the output response (SR). In addition, a0,
a1, a2, a3, a4, a11, a22, a33, a44, a12, a13, a14, a23,
a24, and a34 are the regression constants which are
to be predicted [17]. In this study, the experiments
necessary to modeling purposes were selected based
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Table 5. OA-Taguchi design of the experiments and their corresponding measured output characteristics.

No. Input variables Output characteristic
(SR) No. Input variables Output characteristic

(SR)
F N P H Ra F N P H Ra

1 60 70 20000 1 5.40 10 60 140 20000 3 6.80
2 120 70 20000 2 8.30 11 120 140 20000 1 8.40
3 180 70 20000 3 11.50 12 180 140 20000 2 7.10
4 60 70 30000 1 3.80 13 60 140 30000 2 5.90
5 120 70 30000 2 7.40 14 120 140 30000 3 6.90
6 180 70 30000 3 11.10 15 180 140 30000 1 12.40
7 60 70 40000 2 4.20 16 60 140 40000 3 6.70
8 120 70 40000 3 7.70 17 120 140 40000 1 7.00
9 180 70 40000 1 10.40 18 180 140 40000 2 6.80

Table 6. D-optimal design of the experiments and their corresponding measured output characteristics.

No. Input variables Output characteristic
(SR) No. Input variables Output characteristic

(SR)
F N P H Ra F N P H Ra

1 120 70 20000 3 9.80 14 120 20000 70 3 9.80
2 180 70 40000 3 9.00 15 180 40000 70 3 9.00
3 60 140 30000 3 6.90 16 60 30000 140 3 6.90
4 120 70 30000 1 7.70 17 120 30000 70 1 7.70
5 180 70 30000 2 9.10 18 180 30000 70 2 9.10
6 180 140 20000 3 7.60 19 180 20000 140 3 7.60
7 180 140 20000 2 7.10 20 180 20000 140 2 7.10
8 180 140 20000 1 11.70 21 180 20000 140 1 11.70
9 60 70 20000 1 7.40 22 60 20000 70 1 7.40
10 60 70 20000 2 7.10 23 60 20000 70 2 7.10
11 180 70 20000 3 11.50 24 180 20000 70 3 11.50
12 180 70 40000 1 10.40 25 180 40000 70 1 10.40
13 60 140 30000 1 7.80 26 60 30000 140 1 7.80

Table 7. Results of ANOVA for the OA-Taguchi method.

Source DF Seq SS Adj SS Adj MS F P
Regression 6 98.0224 98.0224 16.3371 183.840� 0.0000000

F 1 56.4166 45.7625 45.7625 514.963� 0.0000000
PP 1 3.6261 10.9558 10.9558 123.285� 0.0000039
HH 1 0.0923 32.9741 32.9741 371.056� 0.0000001
NH 1 10.5844 24.0490 24.0490 270.622� 0.0000002
FH 1 21.1256 23.7658 23.7658 267.436� 0.0000002
NP 1 6.1774 6.1774 6.1774 69.515� 0.0000324

Error 8 0.7109 0.7109 0.0889 { {
Total 14 98.7333 { { {

Note: DF: Degree of Freedom; R-Sq(adj) = 90:74%; R-Sq(pred) = 84:08%
�: Signi�cant variable (F > F�;v1;v2), (F0:05;6;18 = 2:66)

on OA-Taguchi and D-optimal approaches. For each
approach as well as their combination, the linear,
nonlinear, and logarithmic models were developed and
based on the ANOVA results, the most �tted and
appropriate ones (Eqs. (2){(4)) were regarded as the

authentic representatives of the AWJM process which
were selected for optimization purposes considering the
SA algorithm. Based on the ANOVA results (Tables 7{
9 and Figures 4{6), the modi�ed nonlinear model
(nonlinear model devoid of trivial variables) derived
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Table 8. Results of ANOVA for the D-optimal method.

Source DF Seq SS Adj SS Adj MS F P

Regression 7 118.224 118.224 16.8892 37.5938� 0.0000000

N 1 7.765 7.815 7.8145 17.3945� 0.0006410

P 1 7.058 11.820 11.8204 26.3112� 0.0000837

F 1 79.905 33.399 33.3993 74.3438� 0.0000001

HH 1 0.125 14.639 14.6392 32.5856� 0.0000256

NF 1 6.054 6.728 6.7279 14.9758� 0.0012296

NH 1 7.923 8.945 8.9448 19.9103� 0.0003424

FH 1 9.394 9.394 9.3945 20.9112� 0.0002702

Error 17 7.637 7.637 0.4493

Total 24 125.862

Note: DF: Degree of Freedom; R-Sq(adj) = 91:43%; R-Sq(pred) = 84:07%
�: Signi�cant variable (F > F�;v1;v2, F0:05;7;26 = 2:39)

Table 9. Results of ANOVA for the combined OA-Taguchi and D-optimal methods.

Source DF Seq SS Adj SS Adj MS F P

Regression 7 129.127 129.127 18.4467 97.615� 0.0000000
N 1 8.190 6.165 6.1652 32.624� 0.0000254
P 1 4.503 12.836 12.8356 67.923� 0.0000002
F 1 88.472 27.310 27.3098 144.516� 0.0000000

HH 1 0.034 17.709 17.7095 93.714� 0.0000000
NF 1 6.625 1.869 1.8686 9.888� 0.0059118
NH 1 11.498 15.911 15.9115 84.199� 0.0000001
FH 1 9.804 9.804 9.8042 51.881� 0.0000015

Error 17 3.213 3.213 0.1890
Total 24 132.340

Note: DF: Degree of Freedom; R-Sq(adj) = 96:57%; R-Sq(pred) = 94:83%
�: Signi�cant variable (F > F�;v1;v2), (F0:05;7;44 = 2:25)

Figure 4. Residual plot for surface roughness based on the OA-Taguchi method.
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Figure 5. Residual plot for surface roughness based on the D-optimal method.

Figure 6. Residual plot for surface roughness based on the combined OA-Taguchi and D-optimal methods.

from the third matrix (combination of OA-Taguchi
and D-optimal) was found to be superior to other
ones.

Ra = 0:501819 + 51:5809�N � 9:10038e� 005

� P + 0:0914637� F � 0:19745�N � F
� 28:2003�N �H � 0:0181511� F �H
+ 1:1959�H �H; (2)

Ra =� 0:391647 + 59:4385�N � 8:88813e� 005

� P + 0:0994871� F � 0:327245�N � F

� 20:6863�N �H � 0:015936� F �H
+ 0:884686�H �H; (3)

Ra = 1:29146 + 0:103476�N + 0:4560321

� P � 0:0348425� F � 3:86679e� 009�H
�H + 2:0473�N � F + 0:0012907�N
�H � 38:1608� F �H: (4)

Figures 4{6 depict the residual plots for SR in Taguchi,
D-optimal, and mixture matrices, respectively. Ac-
ceptable conformability of the developed model to
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the real process and a normal distribution of the
residuals were shown on the normal probability and
histogram plots, respectively [19]. Of note, the resid-
uals based on the residual-�tted value plot followed
no pattern. In addition, the order of observation
versus residuals exhibited accidental changes in the
residuals [20].

As shown in Tables 7{9, the capability and
adequacy of the proposed models (i.e., how well a
model can represent the authentic process under study
and �t the experimental data) were determined based
on ANOVA results (within 95% of the con�dence
limit) [20{22]. According to the required con�dence
limit (Pr), correlation factor (R2), and adjusted cor-
relation factor (R2-adj), the modi�ed second-order
model (with elimination of the trivial and unimportant
variables) was superior to other proposed models. As
a result, the superior model was considered the best
authentic representative of the AWJM process to be
optimized using SA algorithm.

F -test (F -value) is a factor that shows the signif-
icance of the process input variables. To be speci�c, a
large F -value for a process variable is indicative of its
signi�cant e�ect on the process performance (Ra) [22].
To evaluate the signi�cance of the variables in this
study, a con�dence level of 95% was taken into account.
Then, the F -values of the AWJM process variables
were compared with the appropriate values from the
con�dence table (F�;v1;v2) where v1, v2, and � are
the degrees of freedom associated with the numerator,
denominator, and risk given in Tables 7, 8, and 9,
respectively. In addition, the P -test (P -value) was
employed to determine the signi�cance of the process
input variables. As mentioned earlier, the con�dence
level of 95% was considered in this study; therefore,
it can be concluded that each variable with the P -
value< 0:05 is signi�cant.

ANOVA results were employed to determine the
signi�cance of the AWJM process input variables (per-
cent contributions) using Eq. (5). In this equation, SSi
and DOFi are the sums of the square and degree of
freedom of the ith factor, respectively, and MSerror is
the sum of mean squared errors [22].

Pi(%) =
SSi � (DOFi �MSerror)

Total sum of square
: (5)

Figure 7 depicts the percent contributions of the
AWJM process variables according to which the ma-
chining speed is the major variable a�ecting SR at
66% contribution. It can be concluded that due to
the presence of the uncontrollable parameters and error
based on the nature of the process as well as the used
equipment, 5% of error is acceptable.

Figure 8 shows the e�ect of two AWJM process
variables, i.e., machining gap and speed, on the SR via

Figure 7. Percent contribution of the AWJM process
variables on the surface roughness.

Figure 8. 3D plot of the surface roughness versus
machining gap and speed.

3D response surfaces, thus demonstrating the interac-
tion e�ect of the machining speed (the most important
variable) and gap (the trivial factor) on the measured
SR.

3. Optimization procedure

The most �tted mathematical model suggests a proper
relationship between the AWJM process variables and
their corresponding achieved SR. This model is appli-
cable for two reasons:

1. In can predict the AWJM process characteristics
(SR) for any given set of process input variables;

2. It can determine values for a set of process input
variables for a desired/optimized value of SR.

While optimizing the manufacturing processes, the
process input variables should be set to obtain the
maximum, minimum, and desired output character-
istics (in this case, the least amount of SR). Given
that �nding an optimal set of process input variables
to achieve the optimized/desired process characteristic
is challenging, di�erent methods were proposed among
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which the evolutionary algorithms were utilized as an
optimizing procedure [22]. Among the most signi�cant
advantages of SA algorithm are easy programing and
few parameters to be set that make it a widely
used evolutionary algorithm for di�erent optimization
purposes. For this reason, the current study used SA
algorithm for model optimization [22].

Generally, heuristic algorithms are the reminis-
cent of natural or physical phenomena. In addition,
the methodology of SA algorithm is reminiscent of heat
treatment (annealing) process used for cooling down
the molten metal, which was proposed by Kirkpatrick
et al. [21]. Molten metal temperature acts as a key
factor in determining the movement of atoms. Since
the temperature at the �rst steps of the annealing
process is high, the movement of molten metal atoms
with respect to each other is freer and more intense.
Consequently, upon proceeding the annealing process,
temperature was reduced slowly at a certain reduction
rate and movement became slower and more restricted.
As a result, the atoms were rearranged, thus forming a
crystal structure with a minimum level of energy. Such
a reduction in the temperature acts as a key factor in
determining the polycrystalline state and energy level
by increasing through which a higher energy level can
be achieved. More details about the procedure and
algorithm are documented in [21,22].

3.1. The mechanism of SA algorithm
Finding an initial solution to the objective function
(C0) (the proposed model in this study), proper answer
space, and random solution generation in the proper
answer space (C1) is the �rst and crucial step in the
SA algorithm. Next, the new and current values of
the objective function are compared with each other
(�C). The movement towards the new solution was
made feasible under two conditions: either the new
solution is improved (in comparison with the current
one) or the probability function (Eq. (6)) is higher than
a randomly generated number, which is between 0 and
1 [22]:

Pr = exp
�
��C
Tk

�
: (6)

As the algorithm proceeds, the temperature is reduced
using Eq. (7). In this equation, Tk and Tk+1 are
the current and new temperatures, respectively, which
play a similar role to the temperatures in the physical
annealing process. The cooling rate is represented by
parameter � [22].

TK+1 =��TK k=0; 1; � � � and 0:96�61:
(7)

In the �rst step of the SA algorithm, a temperature
takes a value that decreases at each iteration based on

Figure 9. Illustration of the SA algorithm procedure
schematic [22].

the pre-determined temperature reduction procedure.
Based on the mechanism of the SA algorithm, the
temperatures at the �rst iterations are high and a
majority of the movement occurrences including im-
proving and worsening ones can be accepted. Ac-
cepting the worsening movement lessens the chance
of getting trapped in local minima. As the algorithm
proceeds, followed by decreasing the temperature, only
improving solutions are likely to be accepted to move
towards. There are di�erent methods that can act as
algorithm terminations among the most important and
extensively used ones are the pre-determined number
of iterations or run time as well as the number of
iterations where no development or improvement is
detected [21]. Figure 9 depicts the owchart of the SA
algorithm used for optimizing the AWJM process [22].
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Table 10. Results of SA algorithm optimization.

Experimental
matrix used

Process input variables Process output Ra (um)
P

(psi)
F

(mm/min)
N

(gr/min)
H

(mm)
Predicted Experimental Error

(%)
Combined OA-Taguchi
and D-optimal

39000 178 140 2.4 5.6 5.8 3.5

OA-Taguchi 38000 174 130 3.0 5.7 6.4 12.5
D-optimal 39000 170 135 2.9 5.6 6.3 12.5

Figure 10. SA algorithm convergence.

At the �rst step of any process optimization,
de�ning the objective/�tness function (in this study,
the proper SR model) is a key feature whose opti-
mization comprises setting the process variables at
proper levels to obtain the desired/optimum value for
SR. Table 10 shows the results of the SA algorithm
optimization based on which the least amount of
optimization error (less than 4%) is attributed to the
mixture matrix (OA-Taguchi and D-optimal). Appli-
cation of OA-Taguchi and D-optimal method yielded
the same results. Figure 10 illustrates the SA algorithm
convergence.

4. Conclusion

The current research study evaluated, modeled, and
optimized the e�ects of the settings of the Abrasive
Water Jet Machining (AWJM) process input variables
on the Surface Roughness (SR) of AISI 24M alloy.
To this end, a set of experimental data based on
the OA-Taguchi method, D-optimal approach, and
their corresponding combination was used for data
collection, model development, statistical analysis,
and optimization purposes. Followed by conducting
several experiments based on the proposed matrixes,
regression modeling was taken into account to develop
mathematical models that related these process vari-
ables namely the water pressure, abrasive ow rate,
machining speed, and machining gap to the SR. In this

study, di�erent models such as linear, curvilinear, mod-
i�ed curvilinear (with elimination of trivial variables),
and logarithmic ones were studied among which the
modi�ed curvilinear model was selected as the most
�tted authentic representative of the AWJM process
based on the Analysis of Variance (ANOVA) �ndings.
The ANOVA results revealed that the most important
process variable a�ecting SR was the machining speed
(at 66% contribution). In addition, machining gap was
regarded as a trivial variable which was eliminated from
the model. Next, the most proper model was identi�ed
as an authentic representative of the process optimiza-
tion based on Simulated Annealing (SA) algorithm to
predict the values for the best process input variables
and obtain the desired (the least) value for SR. The
computational results con�rmed that the proposed
modeling and optimization method (regression-SA)
could e�ciently and accurately determine the cutting
variables to obtain the optimum SR. The optimization
results of both OA-Taguchi and D-optimal methods
yielded the same results. However, the best result was
reported while using the mixture matrix (with less than
4% error).

Nomenclature

AWJM Abrasive Water Jet Machining
ANOVA Analysis of Variance
R2-adj Adjusted correlation factor
R2 Correlation factor
Pr Con�dence limit
Tk+1 Current temperatures
C0 Current objective function
DOF Degree Of Freedom
v2 Denominator degrees of freedom
DOE Design Of Experiments
F -value F test's value
Tk Former temperatures
HSS High-Speed Steels
MSerror Mean sum of square of error
v1 Numerator degrees of freedom
OA-Taguchi Orthogonal array Taguchi method
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C1 Objective function
P -value P -test's value
SA Simulated Annealing algorithm
SR Surface Roughness
SS Sum of Square
Tk Temperature parameter
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