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Abstract 

The physician assignment and course timetabling problem at medical universities is a 

generalized version of the academic timetabling problem. This problem entails assigning 

courses, educational and clinical tasks to physician faculty members over a semester or 

academic year. The problem of timetabling academic courses and scheduling physicians in a 

hospital has been investigated independently in previous studies in this field. These two fields 

of research are brought together in this article through the presentation of a multi-objective 

mixed-integer linear programming (MILP) model. The proposed model is based on two 

optimization criteria: minimizing workload imbalance and maximizing physician preferences. 

The model is applied to a case study involving the assignment of physicians to courses, 

educational and clinical tasks at Kurdistan University of Medical Sciences' Department of 

Infectious Diseases. Pareto solutions are obtained using an enhanced version of the 

augmented epsilon constraint implemented in the GAMS optimization software; one is 

selected as the most desirable solution using the TOPSIS method. The proposed model is 

generic and could be adapted for use in other departments or medical schools. 

Keywords: Course Timetabling, Physician Assignment, Medical Universities, Multi-objective 

Optimization, Augmented Epsilon-Constraint Method 

 

1. Introduction 

Scheduling is a decision-making problem in which limited resources such as workers, 

equipment, and tools are allocated to tasks over time in order to optimize one or more 

objective functions. Scheduling has been researched and studied for many years as one of the 

well-known combinatorial optimization problems. Numerous studies have been conducted in 

this field of optimization in a variety of fields, including manufacturing [1], transportation 

[2,3], healthcare [4,5], sports [6], and education [7]. [8]. Inefficient scheduling of a system 

results in the irrational use of available resources and, as a result, an increase in costs. The 
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university course timetabling problem (UCTTP) is a critical area of scheduling that aims to 

allocate events (including students, teachers, and courses) to predefined timeslots and classes, 

as well as to create an appropriate schedule for students and professors while meeting 

technical constraints. UCTTP is an NP-hard problem [9], and numerous exact and heuristic 

algorithms have been developed to solve it. 

Schaerf [10] classified timetabling problems into three main categories. (1) School scheduling 

is the process of creating a weekly schedule for all classes in a school, ensuring that no 

teacher is assigned to more than one class at any given time. (2) Course scheduling, which 

sets up a weekly schedule for all course sessions, is designed to minimize for participating 

students the overlap of different courses taught by different professors. (3) Examination 

timetabling, which includes exam planning for a collection of university courses, aims to 

avoid concurrent examinations with similar students and distribute exams as evenly as 

possible. Babaei et al. (2015) classified approaches to UCTTP resolution into four categories. 

1) Graph coloring theory, linear or integer programming (LP/IP), and constraint satisfaction 

programming (CSP) as examples of OR methods, 2) Swarm intelligence and metaheuristic 

algorithms, 3) novel intelligent methods like hybrid algorithms, fuzzy algorithms, and 

clustering algorithms, and 4) multiagent systems 

Another scheduling area, on the other hand, was mentioned as being related to healthcare. 

Service staff scheduling is a well-known application of timetabling in which workers are 

assigned to timeslots. One such issue is shift scheduling in hospitals. Physicians and nurses 

are scheduled daily in three 8-hour shifts, with each ward assigned a specific number of 

doctors and nurses. Three types of physician scheduling problems exist: staffing, rostering, 

and re-planning. The staffing issue entails making strategic decisions about the workforce's 

size and composition, as well as the rotation of residents throughout the clinic. Rostering is 

the process of creating a rotational roster and assigning shifts for a specified time period. It 

typically lasts between a few weeks and several months at the tactical and operational offline 

levels. If the planning level is pre-operational, it is referred to as "offline planning." Treatment 

selection, nurse rostering, and appointment scheduling are all examples of offline operational 

planning. The problem of re-planning is done on a short-term time horizon at the online level, 

where decisions are made in response to unforeseen events such as employee absenteeism and 

demand fluctuations. Online operational planning records responses to unforeseen events and 

workflows, such as determining the severity of an illness and preparing for emergencies [11].  

The article is structured as follows: To begin, the following section conducts a review of the 

scheduling literature, with an emphasis on scheduling in health care, and conducts a research 

gap analysis. The third section discusses the mathematical model and the solution method in 

detail. Section 4 solves and analyzes the timetabling problem at Kurdistan University of 

Medical Sciences as a real-world application of the proposed model. The final section 

contains conclusions, managerial insights, and recommendations for future research. 
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2. Literature review 

The problem of teacher assignment to school courses was initially addressed by Tillett [12] 

using a mixed-integer linear programming (MILP) model. The proposed MILP model aims to 

maximize teachers' preferences for courses, given their merit in the principal's allocation. 

Preference has been treated as a soft constraint in this model. Selim (1982) proposed an 

algorithm for allocating teachers to courses that took into account teacher availability, 

inconvenient times for courses, and faculty requirements for courses. Tripathy [13] proposed 

a model for UCTTP with the goal of minimizing the total cost of overlapping courses over 

time. Since teachers tend to teach fewer distinct topics in their areas of expertise, Hultberg 

and Cardoso [14] presented a basic model for allocating teachers to courses to minimize the 

average number of distinct subjects taught. Dimpoulou and Miliotis [15] developed an integer 

programming model to allocate courses to time slots and classrooms. The solution obtained 

from the proposed model has been used as the input for the examination timetabling. In the 

proposed integrated course-examination timetabling, the availability of classrooms, students' 

flexibility in the choice of courses, and teachers' preferences have been considered. Socha et 

al. [16] considered an academic course timetabling problem with three hard and two soft 

constraints. The objective function of the problem is to minimize the violation of the soft 

constraints in feasible solutions. Yang and Jat [17] introduced a genetic algorithm with a 

guided search strategy and a local search technique for the university course timetabling 

problem presented by Socha et al. [16]. Daskalaki et al. [18] developed an integer 

programming model for the university scheduling problem. The objective function is to 

minimize two cost-terms; the first is the costs of allocating courses over timeslots and days, 

and the second is the assignment cost, addressing the preferences for teaching periods, days of 

the week, and classrooms assigned to courses. Rezaeipanah et al. [19] presented a hybrid 

method for course scheduling that is based on an improved parallel genetic algorithm and 

local search. While hard constraints such as class capacity and course overlapping are 

imposed in the constraints in this problem, the objective function attempts to maximize the 

number of satisfied soft constraints such as the number of courses per day. 

The majority of the research on course timetabling is single-objective in nature, with the 

objective being to minimize violations of soft constraints. However, some research has 

addressed contradicting criteria in multi-objective models. Multi-objective decision-making 

(MODM) is a subclass of multi-criteria decision-making (MCDM) that entails optimizing two 

or more conflicting objective functions concurrently while taking a variety of technical 

constraints into consideration. Due to the inconsistency or incompatibility of objectives, it is 

impossible to achieve an optimal solution in multi-objective optimization that optimizes all 

functions simultaneously because a solution that improves one objective may degrade the 

others. In this case, the most desired solutions are said to be non-dominated, efficient, non-

inferior, or Pareto optimal [20]. Domenech and Lusa [21] proposed a MILP model designed 
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to balance teachers' workloads and maximize their preferences for the problem of teacher-

course allocation, employed at the Barcelona School of Management and Engineering at the 

Polytechnic University of Catalonia. For UCTTP with a long horizon, Immonen and Putkonen 

[22] considered two criteria: teacher preferences and fair workload distribution. The proposed 

approach was used to optimize teaching planning in the Department of Mechanical 

Engineering at the University of Finland. Jamili et al. [23] developed a multi-objective 

mathematical model for allocating courses and time slots. They used the augmented epsilon-

constraint method to solve their model. Lindahl et al. [24] proposed three bi-objective mixed-

integer models using an epsilon constraint algorithm to solve them. Da Cunha et al. [25] 

developed a nonlinear integer programming model for the teacher assignment problem that 

takes full-time, part-time, or hourly teachers into account to maximize profit for private 

higher-education institutions. Yasari et al. [26] developed a two-stage stochastic programming 

model for the university course timetabling problem, in which registration occurs in two 

phases: preregistration and drop/add. 

Due to the fact that scheduling decisions in the field of healthcare systems are multi-criteria in 

nature, the majority of research in this field has utilized multi-objective models. Again, 

among the few uni-objective studies in this field, several recent studies are discussed, 

followed by a discussion of multi-objective ones. Zaerpour et al. [27] developed a MIP model 

to assign time slots to departments with the goal of maximizing the minimum service level to 

address the doctor-clinic assignment problem at the tactical level. Due to the limited capacity 

of hospitals and the changing preferences of individuals to get services at home, several 

companies have chosen to provide medical services at home, a critical area of health care that 

is referred to as home health care. Castaño and Velasco [28] presented a mathematical 

programming model for the scheduling of medical students in a Colombian healthcare facility. 

The objective is to balance the number of students assigned to various services throughout the 

semester. 

Bard et al. [29] developed a mixed-integer programming (MIP) model for the problem of 

scheduling residents to perform different clinical tasks on the blocks. As a multi-objective 

model, theirs sought to minimize the imbalance in the number of clinic sessions attended by 

each resident over the course of the year, to minimize the number of times a resident receives 

a night float block immediately before or after an intensive care unit block, and to minimize 

the maximum deviation from the average number of patients seen in the clinic during a 

month. Ağralı et al. [30] developed a MIP model for a Belgian health care organization that 

considers employee-specific skills, minimum rest time, maximum overtime, flexible 

employment contracts, and employee equity. Outpatient clinics are organized into 

departments, each of which is staffed by a number of physicians. In some clinics, diagnostic 

tests are performed on patients to determine which clinics they should be assigned to. Hong et 

al. [31] addressed the problem of assigning medical residents to shifts with differing 
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characteristics, requirements, and capabilities. Rather than cost minimization or profit 

maximization, the proposed model's objective function is to optimize equity, including total 

shift, night shift, and covered optional shift equities. Entezari and Mahootchi [32] developed a 

MILP model to manage daily staff routing and service scheduling in home healthcare 

systems. Five objective functions are considered in this study: the total time traveled by all 

staff members, then total tardiness in providing services to patients, the total overtime worked 

by staff members, the total violation of continuity of care, and the violation of staff time 

windows. Hosseinpour et al. [33] presented a multi-objective mathematical model for 

assigning patients to nurses and determining how nurses are routed under uncertainty. In their 

model, they also took into account nurses' skills and patient preferences. Akbarzadeh and 

Manhut [34] examined the scheduling problem for medical students, in which students are 

assigned to multiple disciplines and hospitals in order to receive an adequate education. The 

proposed model aims to maximize students' preferences for the disciplines and hospitals they 

wish to study while also ensuring academic equality among students. 

Physicians at medical universities have a variety of educational and clinical responsibilities, 

including text review, morning rounds, clinic shifts, courses, and on-call shifts. Due to the 

breadth of services and the extent to which teachers contribute to their provision, the issue 

addressed in this paper is unique in comparison to previous research. Each ward in a teaching 

hospital is staffed by several physicians responsible for teaching and guiding courses and 

other tasks involving student groups. Historically, physicians have been assigned to these 

tasks manually, which may cause some people to be dissatisfied with the timetable provided 

and may also make providing a timetable more difficult in large-size problems. The purpose 

of this paper is to model the physician faculty scheduling problem in medical universities. We 

discuss scheduling in medical universities first and then present a bi-objective MILP model 

based on the assumptions and constraints. The case of the Department of Infectious Diseases 

at Kurdistan University of Medical Sciences is presented as an illustration of the proposed 

model. The model is solved using an improved version of the augmented epsilon-constraint 

method.  

 

3. Problem definition and mathematical model 

Students attend four stages of education at universities of medical sciences. To begin, they 

enroll in foundational science courses offered by their faculty (for example, physiology, 

biochemistry, histology, and medical physics). This step focuses on developing an 

understanding of the body's structure, biological pathogens, and health fundamentals. Students 

next undergo a physiopathology period designed to educate them about physiological 

fundamentals, familiarize them with illness causes and contributing variables, and teach them 

how to identify diseases analytically. In the third step, students undertake a clinical training 
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phase during which they study diseases in a hospital setting and monitor the status of 

hospitalized patients. This stage aims to diagnose diseases from a clinical and laboratory 

standpoint, gain the ability to apply thought and independence, reach a quick conclusion to 

deal with the patient reasonably well, and plan prevention and treatment operations. The 

clinical internship is the fourth stage, to develop skills and strengthening decision-making, 

increasing self-confidence, supplementing development through the intern's encounter with 

health issues, and delegating responsibility to health care. Teachers teach students in the 

hospital during the third and fourth stages. 

Kurdistan University of Medical Sciences was established in 1986 as the educational and 

research complex of the Kurdistan Regional Health Organization. It was renamed Kurdistan 

University of Medical Sciences in 1992, and it now includes medical and paramedical 

disciplines. This study is based on a case study of timetabling for the Department of 

Infectious Diseases, one of the most important departments in the Faculty of Medicine, 

regarding the number of physicians, courses, and educational and clinical tasks. Prior to the 

start of the academic year, a monthly schedule of courses and educational and clinical 

responsibilities for the upcoming semester should be planned. The problem of assigning 

infectious medicine professors to courses and educational and clinical tasks is intended to 

balance physicians' workloads and preferences. 

Physician faculty members provide clinical education to students, conduct patient visits, and 

participate in other hospital-related activities, in addition to teaching in university classrooms. 

Each ward of a teaching hospital has a number of physicians responsible for teaching and 

guiding courses and other activities for student groups. In such hospitals, physicians are 

assigned to specific wards, and students rotate in groups for various training in the wards 

during their clinical internship. In some wards, training takes place on a monthly basis; in 

others, it takes two or three months. Here, each student's stay in a hospital ward lasts one 

month. The educational and clinical responsibilities of physicians are broadly classified into 

several categories, including text review, morning rounds, clinic shifts, courses, and on-call 

shifts. Physicians introduce the theory to students during the text review and ask them to 

present it in class. During the morning round, students report to the physician on their 

previous 24-hour shift and the patients' biographies. Each morning round has a predetermined 

number of physicians, and one day per week is designated as the common morning round for 

all physicians. Because the text review and morning round are held concurrently each day, 

each physician may attend only one of them. The following stage is the working round, which 

all physicians attend. Following that, students enter a training round where physicians explain 

the causes of various illnesses and how to diagnose and treat them. During the same time 

period, some physicians are also available in the hospital's specialized clinic for patient visits. 

Due to the synchronization of training rounds and clinic shifts, each physician can attend only 

one of them. In the current system, a physician provides only one course per day.  
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Each week consists of seven workdays in this type of full-time scheduling. Due to the fact 

that different tasks are performed on different days, each task is considered on a subset of 

workdays. For instance, there are subsets of workdays for courses, clinic shifts, and training 

rounds from Saturday to Wednesday. Tuesdays are reserved for all physicians' morning 

rounds, and thus the text review is not conducted on this day. Additionally, a physician must 

be on-call on all weekdays, so workdays encompass the entire week. Each physician is 

required to spend a minimum number of hours per week on educational and clinical tasks, 

which include the following: (1) clinic shifts, (2) training rounds, (3) morning rounds, and (4) 

on-call shifts. The amount of time a physician works on a weekly basis is determined by his 

or her academic rank and organizational position at the university. When a physician is 

assigned to a task during a specified time slot, the physician's working time is reduced by the 

amount of time spent on that task. Each teacher has a portfolio of courses to teach, which 

means that each teacher is capable of teaching only a limited number of courses. Additionally, 

physicians can schedule their time (the hours and days of the week during which they may be 

present or prefer to be present) according to their preferences, allowing them to engage in 

other personal and occupational activities. Physicians have three academic levels in the 

proposed case study: assistant professor, associate professor, and professor (full professor). 

Each month, the ward's workload exceeds what all physicians are required to do, necessitating 

the provision of additional services and, of course, overtime compensation. This section 

presents the mathematical model of the problem based on the explanations provided. To this 

end, notations are introduced first. 

Input Elements 

I  Set of physicians ( i  is the index for physicians) 

J  Set of courses (  j  is the index for courses) 

K  Set of text reviews ( k  is the index for text reviews) 

L  Set of clinical tasks ( l  is the index for clinical tasks) 

D  Set of workdays ( d  is the index for workdays) 

CST  Subset of workdays including clinic shifts, courses, and training rounds 

MT  Subset of workdays including morning rounds and texts reviews 

iMax  Array for maximum monthly working hours for physician i   

iO  Array for working times of physician i  

ijS  Array which set to 1 if physician i  can teach course j  and to 0 otherwise 

jC  Array for the number of teaching hours for course j  

kB  Array for the number of teaching hours for text review k  
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lA  Array for the duration of task l  

iG  Array for the preference coefficient of physician i   

idlP  Array for the preference of physician i  for task l  on day d  

ikdP  Array for the preference of physician i  for text review k  on day d  

ijdP  Array for the preference of physician i  for course j  on day d  

Decision variables 

ijdX  A binary variable that is set to 1 if physician i  teaches course j  on day d  and to 0 

otherwise 

ikdZ  A binary variable that is set to 1 if physician i  holds text review k  on day d  and 

to 0 otherwise 

idlY  A binary variable that is set to 1 if physician i  is assigned to task l  on day d  and 

to 0 otherwise 

i  The overtime for physician i  

To obtain a more concise form of the model, index l  is defined. It takes values 1 to 4, 

respectively, for clinic visits (1), training rounds (2), morning rounds (3), and on-call shifts 

(4). Based on the assumptions made and the notations introduced, the problem is modeled as 

follows.  

1min i

i I i

Z
O





  (1) 

'

2

 ,  2  , 3 4

''

max   i idl idl i idl idl i ikd ikd

l L l i I d CST l L l i I d MT i I k K d MT

i ijd ijd

i I j J d CST

Z G P Y G P Y G P Z

G P X

           

  

  



     

 
 (2) 
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Z k K
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i I k K
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    (5) 
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     (6) 
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i I d CST

X j J
 

     (7) 



9 

1     ,  ijd

i I j J
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      (13) 
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       (14) 
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      (15) 
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The proposed model incorporates two optimization criteria presented as two objective 

functions: workload balance and physician preference maximization. Equation (1) is related to 

the first criterion and seeks to minimize the total ratio of physicians' overtime hours to their 

work hours. The higher the academic rank of the physician, the fewer working hours the 

physician has, and thus the greater the value of this ratio. Additionally, because the pay rate is 

directly related to the academic rank of the physician, this objective function considers the 

cost of tuition fees indirectly. For the second criterion, physicians' preferences for task 

assignments are maximized according to their academic rank using Equation (2). Physician 

preferences for (1) clinic shifts and training rounds, (2) morning rounds and on-call shifts, (3) 

text reviews, and (4) courses are represented by four segments of this objective function. 

According to similar research, there is a limit to the number of teachers assigned to each 

course, which has been established for each text review based on Constraint (3). Each day is 

allotted a maximum of one text review under constraint (4). Constraint (5) ensures proper 

physician-morning assignment, with two physicians assigned to each morning round due to 

the requirement of two physicians per morning round. Constraint (6) establishes the 

assignment of physicians to training and morning rounds, with each round requiring only one 

physician. Constraint (7) ensures physician-course assignment by stating that only one 

physician should be assigned to each course. Constraint (8) ensures that only one course is 

assigned to each day. The on-call physician is a physician who can be contacted and 

summoned to the medical center during waiting hours (after office hours, weekends, and 

holidays) based on his or her roster. Clearly, the time period during which an on-call 
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physician will be available for consultation should be planned. Constraint (9) ensures that 

appropriate physician-on-call shift assignments are made to ensure that each day has exactly 

one physician on call. Constraints (10) and (11) specify that a physician's total monthly hours 

must fall between his or her normal working hours and the maximum monthly working hours. 

Each physician is required to devote a minimum number of hours per week to educational and 

clinical activities, and his or her weekly work schedule is determined by his or her academic 

rank and organizational position at the university. Constraint (12) establishes the amount of 

overtime paid to each physician. Due to the fact that the number of working hours and the 

number of duties assigned to teachers are not exactly equal, each teacher is required to pay 

more than his or her obligation to provide services. As a result, a cap on each teacher's 

overtime must be established. 13) Ensures that physicians are assigned to courses that are 

included in their portfolios. Constraint (14) requires each physician to perform either text 

review or morning rounds on a daily basis. Constraint (15) similarly ensures that each 

physician is assigned either a training round or a clinic shift each day. Constraints (16) and 

(17) determine the domains of the decision variables. 

The proposed model is composed of  id j l k   decision variables and 

 5 2k d j i d j     constraints, yielding a bi-objective mixed-integer linear programming 

problem (MILP). The presence of binary decision variables in the proposed model results in a 

discrete solution space and NP-hard problem. However, due to the small number of variables 

in each set in real-world situations, it is possible to solve the model precisely in order to 

obtain all efficient solutions in an acceptable amount of time. The following section describes 

the method for solving the proposed model using the augmented epsilon constraint method. 

After obtaining a complete set of efficient solutions, the TOPSIS method is used to select the 

most desirable solution. 

 

4. Solution method  

Several approaches to solving multi-objective mathematical models have been proposed, the 

most well-known of which is the epsilon-constraint method, which produces an exact set of 

efficient solutions under some simple conditions. The structure of this method is briefly 

explained below. Consider a model with two objective functions as follows. 

Program (1) 

 1min f X  &  2max f X  

Subject to: X S  



11 

where X  is the vector of decision variables and S  is the feasible region. The first step in the 

epsilon constraint method is to create a pay-off table. The pay-off table in bi-objective models 

has two rows and two columns, as illustrated in Table (1).  

Program (2) is solved to obtain the values for the first row.  

Program (2) 

 1min f X  

Subject to: X S  

If 1X  denotes the optimal solution to this program, then  *

1 1 1f f X  and  12 2 1f f X . 

Program (3) is solved in a similar manner to obtain the values for the second row of the pay-

off table.  

Program (3) 

 2min f X  

Subject to: X S  

If 2X  denotes the optimal solution to this program, then  21 1 2f f X  and  *

2 2 2f f X . 

Each row of the pay-off table represents one of the efficient frontier's extreme points. The 

efficient frontier in bi-objective models is a (not necessarily straight) line segment connecting 

the two points in the pay-off table. The following steps of the epsilon constraint method 

involve a repetitive procedure in which other efficient solutions are obtained by moving from 

one of the two endpoints of the efficient frontier to the other. The epsilon-constraint method 

has some weaknesses, one of which is the possibility of producing weakly efficient solutions. 

Mavrotas [35] developed an improved version of the augmented epsilon-constraint method 

(Mavrotas [36]), dubbed AUGMECON2, to obtain the complete set of Pareto solutions. 

AUGMECON2 converts all constraints to equalities via the use of slack or surplus variables. 

These variables are all treated as new terms in the objective function (with a lower priority in 

the lexicographic method), compelling the model to generate efficient solutions.  

None of the solutions obtained using the AUGMECON2 method are dominant over the 

others. Numerous multi-attribute decision-making (MADM) techniques can be used to 

determine the most desirable solution to implement. This article makes use of the TOPSIS 

(Technique for Order Preference by Similarity to Ideal Solution) method, which will be 

described briefly below: The TOPSIS method, developed by Yoon and Hwang [37], is used to 

rank and compare efficient solutions and select one of them by taking into account quality 

indicators that cannot be entered into the model. That is, the decision-makers are presented 

with the values of the objective functions obtained for the efficient solutions, they perform the 

necessary weighting and scoring using the specified indicators, and finally, one of the 

efficient points is chosen for implementation. The TOPSIS method employs a decision matrix 
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with columns for alternatives (efficient solutions) and rows for criteria. The higher-ranking 

alternative should be the one that is the closest to the positive ideal solution and the furthest 

from the negative ideal solution. The TOPSIS method is comprised of the following six steps: 

Step 1- Quantify and scale the decision matrix [ ]ijA A  based on n criteria and m alternatives. 

Step 2- Utilize the following relationship to standardize the decision matrix: 

2

1

,   1, ,  ,  1,..,
ij

ij
m

iji

x
r i m j n

x


   


 

Step 3 - Determine the positive ideal solution and the negative ideal solution as follows:  

      max | , min | ,   1, ,j ij ij
ii

V V j j V j j j n        

      min  | , max | ,   1, ,j ij ij
i i

V V j j V j j j n        

Step 4- Calculate the distance from the positive ideal and negative ideal solution: 

 
2

1

n

i ij j

j

d V V 



   

 
2

1

n

i ij j

j

d V V 



   

Step 5 – Determine the relative closeness ( *CL ) coefficient of each alternative to the ideal 

solution: 

i
i

i i

d
CL

d d



 



 

Step 6- Ranking the alternatives: any alternative with a larger CL   is better. 

 

5. Implementation and sensitive analysis 

The MILP model developed in Section 3 is used here for course timetabling at Kurdistan 

University of Medical Sciences' Department of Infectious Diseases. The department has seven 

doctors, including five assistant professors and two associate professors. According to 

educational regulations, the weekly work hours for assistant professors, associate professors, 

and professors are 16, 14, and 12 hours, respectively, and the preference coefficient is 1/6, 

1/3, and 1/2, respectively. Each day of on-call and each round of basics is considered one 

working hour, and each morning round, training round, course teaching, or clinic shift is 

considered two working hours. If the physician is unavailable, the value of an assignment 

preference is set to 0, 1 if the physician is available, and 3 if the physician prefers the 
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assignment. The pay-off table is obtained using the parameters listed above and is shown in 

Table (2). 

Figure (1) depicts the entire set of Pareto solutions obtained by solving the proposed model 

with the CPLEX solver from the GAMS software. A PC with a 2.9 GB Core i7 CPU and 8GB 

of RAM was used to run the software.  

Figures (2) and (3) depict each physician's overtime hours (the first objective function), and 

preference met (the second objective function) for all Pareto solutions. As can be seen, one 

physician's preference is greater than the others. This is because she has a strong preference 

for a set of educational and clinical tasks that other physicians despise, which results in her 

working the most overtime. The decision-makers must strike a balance between the workloads 

of physicians and their preferences. The opinions of professors and the head of the infectious 

disease department were solicited in order to arrive at the most desirable efficient solution. 

These comments are analyzed using the TOPSIS method, and the best weights for the 

objective functions are 0.33 and 0.67, respectively. According to these weights, the most 

efficient solution has first and second objective function values of 470 and 9429, respectively.  

 

5.1. Sensitivity analysis 

To conduct a sensitivity analysis of the model, two parameters are considered: physicians' 

maximum monthly working hours and the physician's preference coefficient. Each parameter 

is altered and examined independently within a permissible range while the other parameters 

remain constant. The Pareto solutions for four distinct scenarios of maximum monthly 

working hours (based case, +10%, +20%, +30%, and +40%) have been determined, and the 

resulting Pareto frontier is depicted in Figure (4). According to this figure, increasing the 

maximum monthly working hours results in a more equitable distribution of workload and an 

improvement in the first objective function. Because a 10% reduction in maximum monthly 

working hours does not result in an optimal solution for the model, reduction cases for this 

parameter are not considered. 

Two scenarios are considered in addition to the base scenario in order to determine the 

sensitivity of the Pareto frontier to changes in the physician's preference coefficient. As 

previously stated, the preference coefficients for assistant professors, associate professors, and 

professors were 0.17, 0.33, and 0.50, respectively, with a difference of 0.17 between the 

coefficients of consecutive ranks. In the first scenario, the difference and variance of the 

preference coefficient parameter are reduced, and values of 0.24, 0.33, and 0.42 with 

differences of 0.09 are considered. In the second scenario, as the parameter's variance 

increases, values of 0.08, 0.33, and 0.58 with consecutive differences of 0.25 are considered. 

By comparing the Pareto frontiers in Figure (5) for these two scenarios to the original 
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scenario, it is concluded that decreasing the difference in preference coefficients for academic 

degrees results in an increase in the amount of preferences satisfied. 

 

 

 

 

 

6. Conclusions and directions for future research 

In this paper, a multi-objective MILP model was proposed for solving the problem of 

timetabling courses and educational and clinical tasks in medical universities. The proposed 

model balanced physicians' workloads and takes into account their preferences for assignment 

to courses, clinic shifts, training rounds, morning rounds, on-call shifts, and text reviews. This 

was done given constraints on the problem sets, including the normal working time and the 

maximum allowed overtime hours of the physicians, their ranks, their course portfolios, and 

the number of physicians in each task. Besides, a case study was performed for timetabling 

for the Department of Infectious Diseases of Kurdistan University of Medical Sciences, an 

important department of this university, regarding the number of physicians, courses, and 

educational and clinical tasks. The proposed model was solved using AUGMECON2 in the 

GAMS optimization software. Two parameters are used to conduct a sensitivity analysis on 

the model: physicians' maximum monthly working hours and the physician's preference 

coefficient. 

According to the results of the paper, the following can be considered as appealing areas for 

future research. In this study, physicians were considered full-time, while part-time physicians 

and teachers can also be employed. This research attempted to distribute overtime among full-

time physicians equitably, but it is unpleasant in the real world for overtime practitioners to be 

obliged beyond their normal working time. Thus, if the part-time workforce is considered, 

physicians' satisfaction is likely to increase. This has economic benefits as well as the more 

favorable results it obtains for physicians. Moreover, a specific day in each week (Tuesdays) 

was considered in our work as the common morning throughout the hospital, with all faculty 

members in the hospital wards having a predetermined date. However, some groups may 

prefer to have mornings on other days and therefore different timetables, so all the wards can 

plan together to make the best decision in that regard. 
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Table (1) General structure for pay-off table in bi-objective models 

   1min f X    2max f X  

  1f X   
1

*
f   12f  

  2f X   21f   
2

*
f  

 

Table 2: Pay-off table for the case study 

   1min f X    2max f X  

  1f X  470 6713 

  2f X  497 9429 

 

 

Figure 1: Pareto solution set derived using AUGMECON2 
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Figure 3: Physicians' fulfilled preferences in efficient solutions 

 

 

Figure 4: Pareto solutions with different values of the maximum monthly working hours 
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Figure 5: Pareto solutions with different values of the preference coefficient of a physician according to 

her/his academic rank 
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