
Scientia Iranica B (2022) 29(2), 502{533

Sharif University of Technology
Scientia Iranica

Transactions B: Mechanical Engineering
http://scientiairanica.sharif.edu

An analytical state-space solution for free vibration of
sandwich piezoelectric plate with a functionally graded
core

J. Rouzegara;�, N. Salmanpoura, F. Abada, and L. Lib

a. Department of Mechanical and Aerospace Engineering, Shiraz University of Technology, Shiraz, P.O. Box 71555-313, Iran.
b. State Key Lab of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong

University of Science and Technology, Wuhan 430074, China.

Received 25 July 2020; received in revised form 26 June 2021; accepted 14 November 2021

KEYWORDS
State-space approach;
Free vibration;
Piezoelectric layer;
Re�ned plate theory;
Levy solution.

Abstract. The main objective of this study is to develop an analytical solution for
free vibration analysis of smart Functionally Graded (FG) plates using Levy solution
in conjunction with state-space approach. The FG substrate is sandwiched between
two piezoelectric layers. The rectangular structure has two simply-supported opposite
edges while the boundary conditions of the other two edges are arbitrary. Based on
the simple, yet e�cient, four-variable re�ned plate theory, the governing equations are
extracted using Maxwell's equation and Hamilton's principle. The obtained fourth-order
partial di�erential equations are transformed into the �rst-order ordinary ones using the
Levy solution along with the state-space approach and then, they are solved through the
eigenvalue method. Meanwhile, an iterative algorithm is proposed to obtain the natural
frequencies of the structure under di�erent boundary conditions. A comparison is made
between the obtained results and those available in the literature which veri�es the accuracy
of the solution method and numerical algorithm proposed in this study. Finally, the e�ects
of several parameters such as the type of boundary conditions, aspect ratio, power-law
index, piezoelectric layer thickness, and thickness-to-side ratio on the obtained results are
examined.

© 2022 Sharif University of Technology. All rights reserved.

1. Introduction

Thin-walled structures such as beams, plates, and
shells have been widely used in numerous industrial
applications. This is one of the reasons why a wide
range of researches have been performed on their static,
dynamic, and vibration behavior [1{6]. Functionally
Graded Material (FGM) is a subset of composite
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materials with non-homogeneous mechanical properties
changing continuously in di�erent directions. One of
the typical classes of FGMs is made of ceramic and
metal. Ceramic enables them to resist and tolerate
high levels of heat and temperature due to their low
heat transfer coe�cient and high resistance to temper-
ature. On the other hand, metal provides the required
structural 
exibility. Of note, owing to continuous me-
chanical properties in these materials, the problems of
discontinuity in laminated composites are not observed
in FG structures. Several plate theories have been
employed to study di�erent behaviors of Functionally
Graded (FG) plate structures. Abrate [4] and Yin et



J. Rouzegar et al./Scientia Iranica, Transactions B: Mechanical Engineering 29 (2022) 502{533 503

al. [5] used Classical Plate Theory (CPT), the �rst and
simplest plate theory, for free vibration analysis of thin
FG plates. Despite the simplicity of this theory, it is
not desirable for analysis of thick plates since it neglects
the transverse shear stresses e�ects. In addition, in the
context of free vibration analysis, this theory is only
viable for �nding lower modes of natural frequencies
(even for thin plates), while it encounters errors in
unacceptable errors for higher modes. To overcome
these problems, most of the studies on the analysis of
thick FG plates have employed a type of First-order
Shear Deformation Theory (FSDT). Hosseini-Hashemi
et al. [7] employed the FSDT for free vibration analysis
of an FG plate resting on Winkler or Pasternak elastic
foundations. Thai and Choi [8] performed bending
and free vibration analysis of FG plates based on the
FSDT. Thai et al. [9] utilized a simple FSDT to present
analytical solutions for buckling, free vibration, and
bending analyses of FG sandwich plates in several
boundary conditions. Anamagh and Bediz [10] used
the FSDT and spectral-Chebyshev method for buckling
and free vibration analysis of an FG porous plate
reinforced with Graphene Platelets (GPLs). One of the
main problems of the FSDT used in these researches
is the violation of zero traction conditions on free
surfaces. In addition, to compensate for the e�ect of
excessive transverse shear energies, a shear correction
factor is required in the FSDT formulations; however,
determination of this factor is another challenge. Aim-
ing to overcome these 
aws, several researchers have
utilized Higher-order Shear Deformation plate Theories
(HSDTs) for di�erent analyses of FG plate structures.
Matsunaga [11] employed a two-dimensional theory
and presented an analytical solution based on the
Navier approach to free vibration and stability analyses
of simply-supported rectangular FG plates. Baferani
et al. [12] utilized the Third-order Shear Deformation
plate Theory (TSDT) to address the free vibration
analysis of rectangular FG plates under di�erent Levy-
type boundary conditions resting on a two-parameter
elastic foundation. Ebrahimi and Heidari [13] evalu-
ated the surface e�ect on the nonlinear vibration of
FG nanoplates on the Pasternak foundation using the
HSDT. To this end, they used Generalized Di�erential
Quadrature (GDQ) method for solving the governing
equation of the plate in di�erent boundary conditions.
Belkhodja et al. [14] studied the buckling, free vibra-
tion, and bending behavior of the simply-supported FG
plates using an exponential-trigonometric HSDT and
Navier method.

Due to a relatively large number of variables re-
quired in conventional HSDTs, several new and simple
Re�ned Plate Theories (RPTs) have been introduced
recently. Two-variable RPT was presented for the �rst
time by Shimpi [15] in 2002. This e�cient and simple
theory, with only two unknown variables called bending

and shear de
ections, is well formulated for di�erent
analyses of both thick and thin plates. It can predict
the quadratic distribution of transverse shear stresses
through the thickness of the plate. Hence, the zero
traction conditions are ful�lled on free surfaces and
unlike the FSDT, there is no need to use the shear cor-
rection factor. This theory can be upgraded to the four-
variable RPT by incorporating in-plane displacements
in the formulation. The four-variable theory with a
much simpler framework than that of the conventional
HSDTs like TSDT has been widely utilized in di�erent
analyses of plate problems. Benachour et al. [16]
considered this theory in the free vibration analysis
of FG plates with di�erent gradients. They used
the Navier and Ritz methods to obtain a solution to
the simply-supported and clamped plates, respectively.
Based on an RPT as well as the Levy method, free
vibration of an FG plate on an elastic foundation was
addressed by Thai and Choi [17]. Hadji et al. [18] and
Mechab et al. [19] concentrated on the free and forced
vibration analysis of simply-supported FG plates using
the RPT along with the Navier solution. Demirhan
and Taskin [20] employed the state-space method to
�nd an analytical solution based on the RPT for free
vibration and bending analyses of porous FG plates.
Tan et al. [21] carried out static and dynamic analyses
of cracked FG plates using the two-variable re�ned
theory and extended isogeometric analysis based on
the B�ezier extraction. Le et al. [22] measured the
free vibration of the FG sandwich plate resting on the
Pasternak foundation using the mentioned theory and
�nite element formulation. In all the above-mentioned
researches, the formulations were established based on
Equivalent Single Layer (ESL) theories. Abrate and
Di Sciuva [23] conducted a review on the application
of ESL theories for composite and sandwich structures.
Of note, a number of researches have used layer-wise
theories, such as zigzag theory, for di�erent analyses of
composite, FG, and sandwich structures [24{29].

Piezoelectric materials are a subset of smart
materials. When they are exposed to mechanical
deformation, an electric charge is produced on their
surface which is called the direct piezoelectric e�ect.
In addition, if an electric �eld is exerted on them,
a mechanical strain occurs in the structure which is
called the reverse piezoelectric e�ect. Piezoelectric
materials are extensively used as actuators and sensors
in di�erent engineering and industrial applications
owing to their electromechanical coupling properties,
high accuracy, wide bandwidth, and quick response.
Several studies have been carried out on the mechanical
behavior of FG beams, plates, and panels coupled with
piezoelectric layers or surface-integrated piezo-patches.
He et al. [30] conducted an early study and developed a
�nite element formulation based on the CPT for smart
FG plates. They focused on vibration and shape con-
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trol of the structure using a velocity feedback control
algorithm. Askari Farsangi and Saidi [31] and Askari
Farsangi et al. [32] presented analytical solutions based
on the Mindlin plate theory assumption for free vi-
bration investigation of rectangular plates attached to
piezoelectric layers. Alibeigloo [33] examined the free
vibration of simply-supported FG Carbon Nanotube-
Reinforced Composite (FG-CNTRC) cylindrical panels
with a piezoelectric actuator and sensor using a three-
dimensional piezo-elasticity approach. Bruant and
Proslier [34] investigated the active vibration control
of FGM beam with piezoelectric patches. Rouzegar
and Abad [35] employed the RPT and Navier methods
to measure the free vibration of FG plates bonded
with the piezoelectric layers. Abad and Rouzegar [36]
studied the free vibration of the Ley-type FG plates
bonded with the piezoelectric layers through the spec-
tral element method. They also used the FSDT to
obtain the governing equations and suggested a closed-
form solution in the frequency domain. El Harti et
al. [37] proposed a �nite element model for dynamic
analysis of the sandwich FG Timoshenko beam in-
tegrated with Piezoelectric layers that acted as both
sensor and actuator. Zhang et al. [38] focused on
the static and dynamic behaviors of CNT-reinforced
FG plates integrated with piezoelectric layers using a
nonlinear �nite element method and FSDT. Shahdadi
and Rahnama [39] conducted free vibration analysis
of a simply-supported FG annular sector with two
piezoelectric layers based on the FSDT. To this end,
they de�ned four functions to reformulate and decouple
the governing equations and applied the harmonic
motion supposition and Fourier expansion to solve
them. Rouzegar and Davoudi [40] developed a �nite
element formulation based on the four-variable RPT for
forced vibration analysis of viscoelastic composite lam-
inates integrated with a piezoelectric actuator layer.
Aghakhani et al. [41] and Motlagh et al. [42] presented
an electromechanical model to investigate the dynamic
behavior of FG panels and plates with multiple surface-
integrated piezo-patches. The formulations were based
on the Mindlin plate theory assumption, and the
spectral Tchebychev technique was employed to solve
the governing equations.

The state-space method is an analytical and
e�cient way to solve ordinary di�erential equations
to convert higher-order di�erential equations into a
system of �rst-order ones. The �rst-order di�erential
equations can be easily solved by matrix methods in
terms of eigenvalues and eigenvectors. Several studies
have been conducted on how the state-space concept
could be used for di�erent analyses of smart plates.
Chen and Ding [43] also considered the state-space
technique for free vibration analysis of Functionally
Graded Piezoelectric (FGP) plates. Kapuria and
Achary [44] studied the steady-state response of a

simply-supported cross-ply hybrid plate with piezoelec-
tric layers based on a three-dimensional piezoelectricity
theory. They expanded the parameters of Fourier
series ful�lling the boundary conditions at the plate
edges. Then, by replacing them with the parameters
in the governing equations, the ordinary di�erential
equations were obtained and solved through the state-
space technique. Bian et al. [45] employed both state-
space approach and piezoelectric theory to address the
bending and free vibration of hybrid plates consisting
of an FG elastic core bonded with two homogeneous
piezoelectric layers acting as actuator and sensor. Yas
et al. [46], Jodaei et al. [47], and Yas and Moloudi [48]
extended a Di�erential Quadrature Method (DQM)
based on the state-space concept to investigate the free
vibration of annular FGP plates under di�erent bound-
ary conditions. A semi-analytical solution was pro-
posed by Xin and Hu [49] for free vibration examination
of multi-layer magneto-electro-elastic plates. They
employed a novel hybrid method that incorporated
the state-space concept as well as the discrete singular
convolution algorithm. Feri et al. [50] proposed a semi-
analytical solution to bending and free vibration of
a cross-ply laminated plate with piezoelectric layers
in arbitrary boundary conditions. They utilized the
DQM in two plane directions of the plate and employed
the state-space method across the thickness. Ezzin et
al. [51] applied the state-space approach to assess the
dynamic response and wave propagation in magneto-
electro-elastic plates. Safarpour et al. [52] carried out
free vibration and bending analyses of FG graphene
platelet-reinforced composite truncated conical shell,
cylindrical shell, and annular plate based on three-
dimensional elasticity theory, DQM, and state-space
approach.

According to a review of this subject, no attempt
has been made to o�er an analytical solution as well
as the state-space approach for free vibration anal-
ysis of the smart plates based on the four-variable
re�ned theory. The novelty of this research lies in
suggesting a Levy solution in conjunction with the
state-space technique for the FG plate bonded with
the piezoelectric layers. Of note, no study has been
reported on the application of the state-space method
to solve Levy-type plates based on the RPT. Unlike
most studies which were limited to simply-supported
plate structures, the present study carried out the
free vibration analysis of the smart FG plates under
di�erent Levy-type boundary conditions. Another
contribution of the current study is application of the
four-variable RPT in the present approach which is
a novel, simple, and e�ective HSDT that can predict
the parabolic distribution of transverse shear stresses
through the plate thickness. Hamilton's principle
and Maxwell's equation were also employed to obtain
the coupled electromechanical governing di�erential



J. Rouzegar et al./Scientia Iranica, Transactions B: Mechanical Engineering 29 (2022) 502{533 505

equations. The partial di�erential equations were
then converted to ordinary ones in the context of
the Levy solution approach. The state-space method
converts higher-order ordinary di�erential equations
into the �rst-order ones and then, the transfer matrix
and iterative algorithm are used to determine the
natural frequencies. Further, the design of an e�cient
iteration algorithm was proposed to obtain the natural
frequencies of the studied plate. In the case of very
thin plates, computer over
ow/under
ow may occur;
therefore, a solution to such a problem should be
presented. The accuracy of the proposed approach is
con�rmed by comparing the results with those reported
by other researchers. Finally, the e�ects of type of
boundary conditions, aspect ratio, power-law index,
piezoelectric layer thickness, and thickness-to-side ratio
on the natural frequencies were evaluated.

2. Theoretical formulation

2.1. Problem description and assumptions
Figure 1 shows a geometrical vision of the smart FG
structure made of an FG core plate integrated with two
piezoelectric layers at the bottom and top faces. In this
�gure, a and b indicate the plate length and width, and
hp and 2h are the piezoelectric layer and FG core plate
thicknesses, respectively.

Based on the four-variable RPT, the displacement
�eld is de�ned as:

u(x; y; z) = u0(x; y)� z @wb(x; y)
@x

� f(z)
@ws(x; y)

@x
;

v(x; y; z) = v0(x; y)� z @wb(x; y)
@y

� f(z)
@ws(x; y)

@y
;

w(x; y; z) = wb(x; y) + ws(x; y); (1)

where u0 and v0 represent the in-plane displacements
of the mid-surface along the x and y directions, re-
spectively. The transverse displacement is split into
two parts: the bending component wb and the shear
component ws. Here, f(z) is the shape function which
is a third-order polynomial function [53]:

f(z) = �z
4

+
5z3

3(2h+ 2hp)
2 : (2)

Figure 1. Geometry of a smart functionally graded plate.

As a result, the strain-displacement relationships are
de�ned as:8<: "x

"y

xy

9=; =

8><>:
@u0
@x
@v0
@y

@u0
@y + @v0

@x

9>=>;+ z

8><>: �@2wb
@x2

�@2wb
@y2

�2 @
2wb
@x@y

9>=>;
+f

8><>: �@2ws
@x2

�@2ws
@y2

� 2@2ws
@x@y

9>=>; ;

"z = 0;�

xz

yz

�
= g

� @ws
@x
@ws
@y

�
; (3)

where:

g = 1� df(z)
dz

=
5
4
� 5
�

z
2h+ 2hp

�2

: (4)

The coupled constitutive equations are expressed as
follows [54]:

f�g = [C] f"g � [e] f�g ;
fdg = [e]T f"g+ [�] f�g ; (5)

where C denotes the matrix of stress-reduced sti�ness;
d and � are the vectors of the electric displacement
and electric �eld intensity, respectively; � is the di-
electric constant matrix; e represents the piezoelectric
constants matrix; and � and " present the stress and
strain, respectively. Eq. (5) is expressed in Eq. (6),
shown in Box I, for a transversely isotropic piezoelectric
layer, where:

�C11 = C11 � C2
13

C33
; �C12 = C12 � C2

13
C33

;

�e31 = e31 � C13

C33
e33; �33 = �33 +

e2
33
C33

; (7)

where Cij denotes the components of the material
matrix of the piezoelectric layer. The constitutive
equation for the FG core is expressed as:8>>>><>>>>:

�xx
�yy
�xy
�yz
�xz

9>>>>=>>>>; =

266664
Q11 Q12 0 0 0
Q12 Q11 0 0 0

0 0 Q66 0 0
0 0 0 0 Q66
0 0 0 Q66 0

377775
266664
"xx
"yy

xy

yz

xz

377775 ; (8)

where:
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8>>>><>>>>:
�xx
�yy
�xy
�xz
�yz

9>>>>=>>>>; =

266664
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0 0 1
2 (C11 � C12) 0 0

0 0 0 C55 0
0 0 0 0 C55

377775
266664
"xx
"yy

xy

xz

yz

377775�
266664

0 0 e31
0 0 e31
0 0 0
�e51 0 0

0 �e51 0

377775
8<: �x

�y
�z

9=; ;

8<: dx
dy
dz

9=; =

24 0 0 0 e51 0
0 0 0 0 e51
e31 e31 0 0 0

35
8>>>><>>>>:

"xx
"yy

xy

xz

yz

9>>>>=>>>>;+

24 �11 0 0
0 �11 0
0 0 �33

358<: �x
�y
�z

9=; : (6)

Box I

Q11 =
E(z)
1�v2 ; Q12 =

�E(z)
(1�v2)

; Q66 =
E(z)

2(1+v)
; (9)

where v and E are Poisson's ratio and modulus of
elasticity, respectively. The e�ective properties of the
FG core change according to the rule of mixture, as
shown in the following relations:

�(z) = �m + (�c � �m)
�

1
2
� z

2h

�n
; (10)

E(z) = Em + (Ec � Em)
�

1
2
� z

2h

�n
; (11)

where � is the mass density; n represents the power-
law index; and c and m indicate the ceramic and metal
materials, respectively. The equation related to the
electric �eld � and electric potential � is introduced
as:

�i = ��;i i = 1; 2; 3: (12)

Suppose that each piezoelectric layer has a closed-
circuit condition; then, a quadratic function through
the thickness is considered for the electric potential �
[55].

�(x; y; z; t) =8>>>><>>>>:
'(x; y; t)

�
1���z�h�hp/2

hp=2

�2
�
; �h�hp�z��h

'(x; y; t)
�
1�� z�h�hp/2

hp=2

�2
�
; h�z�h+hp

(13)

2.2. Governing equations
Based on Hamilton's principle, the governing equations
for the free vibration problem can be achieved as
follows:Z t

0
�(U �K) = 0; (14)

where U and K are the strain and kinetic energies,
respectively, as de�ned in the following:

U =
1
2

Z
V
�ij"ijdV =

1
2

Z
V

(�x"x + �y"y + �xy
xy

+�yz
yz + �xz
xz)dV; (15)

K =
1
2

Z
V
�(z)

��
_u0 � z @ _wb

@x
� f @ _ws

@x

�2

+
�

_v0�z @ _wb
@y
�f @ _ws

@y

�2

+ ( _wb + _ws)
2
�
dV: (16)

These over dots indicate the derivation of the param-
eters with respect to time. By substituting Eqs. (15)
and (16) into Eq. (14), collecting the parameters of
�u0, �v0, �wb, and �ws and setting them to zero, we
can obtain the four following governing equations:

�u0 :
@Nx
@x

+
@Nxy
@y

=I0�u0�I1 @ �wb
@x
�I3 @ �ws

@x
; (17)

�v0 :
@Ny
@y

+
@Nxy
@x

=I0�v0�I1 @ �wb
@y
�I3 @ �ws

@y
; (18)

�wb :
@2M b

x
@x2 +

@2M b
y

@y2 + 2
@2M b

xy

@x@y
= I0( �wb + �ws)

+I1
�
@�u0

@x
+
@�v0

@y

�
� I2r2 �wb � I4r2 �ws;

(19)

�ws :
@2Ms

x
@x2 +

@2Ms
y

@y2 + 2
@2Ms

xy

@x@y
+
@Syz
@y

+
@Sxz
@x

= I0( �wb + �ws) + I3
�
@�u0

@x
+
@�v0

@y

�
� I4r2 �wb

�I5r2 �ws; (20)
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where Ii represents the mass moment of inertia and M ,
N , and S are the couple and stress resultants which are
described as follows:8<: Nx

Ny
Nxy

9=; =
Z h+hp

�h�hp

8<: �x
�y
�xy

9=; dz;

8<: M b
x

M b
y

M b
xy

9=; =
Z h+hp

�h�hp

8<: �x
�y
�xy

9=; z dz;

8<: Ms
x

Ms
y

Ms
xy

9=; =
Z h+hp

�h�hp

8<: �x
�y
�xy

9=; f dz;

�
Syz
Sxz

�
=
Z h+hp

�h�hp

�
�yz
�xz

�
g dz;8>>>>>><>>>>>>:

I0
I1
I2
I3
I4
I5

9>>>>>>=>>>>>>;
=
Z h+hp

�h�hp
�(z)

8>>>>>><>>>>>>:
1
z
z2

f
zf
f2

9>>>>>>=>>>>>>;
dz: (21)

By substituting the stress-strain relationships, strain-
displacement equations, and Eq. (21) into Eqs. (17){
(20), the governing equations of a plate can be written
as follows:

A11
@2u0

@x2 +A66
@2u0

@y2 + (A12 +A66)
@2v0

@x@y

�B11
@3wb
@x3 � (B12 + 2B66)

@3wb
@x@y2

�D11
@3ws
@x3 � (D12 + 2D66)

@3ws
@x@y2

= I0�u0 � I1 @ �wb
@x
� I3 @ �ws

@x
; (22)

A22
@2v0

@y2 +A66
@2v0

@x2 + (A12 +A66)
@2u0

@x@y
�B22

@3wb
@y3

�(B12 + 2B66)
@3wb
@x2@y

�D22
@3ws
@y3

�(D12 + 2D66)
@3ws
@x2@y

= I0�v0 � I1 @ �wb
@y

�I3 @ �ws
@y

; (23)

B11
@3u0

@x3 +(B12+2B66)
@3u0

@x@y2 +B22
@3v0

@y3

+(B12 + 2B66)
@3v0

@x2@y
�G11

@4wb
@x4

�(2G12 + 4G66)
@4wb
@x2@y2 �G22

@4wb
@y4

�F11
@4ws
@x4 � (2F12 + 4F66)

@4ws
@x2@y2

�F22
@4ws
@y4 ��1

�
@2'
@x2 +

@2'
@y2

�
=�I2r2 �wb

�I4r2 �ws+I1
�
@�u0

@x
+
@�v0

@y

�
+I0( �wb+ �ws); (24)

D11
@3u0

@x3 +D22
@3v0

@y3 + (D12 + 2D66)
@3u0

@x@y2

+(D12 + 2D66)
@3v0

@x2@y
� F11

@4wb
@x4

�(2F12 + 4F66)
@4wb
@x2@y2 � F22

@4wb
@y4

�H11
@4ws
@x4 � (2H12 + 4H66)

@4ws
@x2@y2

�H22
@4ws
@y4 +As11

�
@2ws
@x2 +

@2ws
@y2

�
+(�3 � �2)

�
@2'
@x2 +

@2'
@y2

�
= I0( �wb + �ws) + I3

�
@�u0

@x
+
@�v0

@y

�
�I4r2 �wb � I5r2 �ws; (25)

where:8>>>>>><>>>>>>:
A1i
B1i
D1i
G1i
F1i
H1i

9>>>>>>=>>>>>>;
=
Z �h
�h�hp

�C1i

8>>>>>><>>>>>>:
1
z
f
z2

zf
f2

9>>>>>>=>>>>>>;
dz

+
Z h

�h
�Q1i

8>>>>>><>>>>>>:
1
z
f
z2

zf
f2

9>>>>>>=>>>>>>;
dz

+
Z h+hp

h

�C1i

8>>>>>><>>>>>>:
1
z
f
z2

zf
f2

9>>>>>>=>>>>>>;
dz; i = 1; 2;
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8>>>>>><>>>>>>:
A66
B66
D66
G66
F66
H66

9>>>>>>=>>>>>>;
=
Z �h
�h�hp

1
2

( �C11 � �C12)

8>>>>>><>>>>>>:
1
z
f
z2

zf
f2

9>>>>>>=>>>>>>;
dz

+
Z h

�h
�Q66

8>>>>>><>>>>>>:
1
z
f
z2

zf
f2

9>>>>>>=>>>>>>;
dz +

Z h+hp

h

1
2

( �C11 � �C12)

8>>>>>><>>>>>>:
1
z
f
z2

zf
f2

9>>>>>>=>>>>>>;
dz; (26)

As11 =
Z �h
�h�hp

C55g2dz +
Z h

�h
�Q66g2dz

+
Z h+hp

h
C55g2dz;

�1 =
4
3
e31hp; �2 =

1
6
hp(8h2 + 6hhp + h2

p)
(h+ hp)

2 e31;

�3 = �1
6
h2
p(10h+ 7hp)
(h+ hp)

2 e51:

The following Maxwell's equation is satis�ed in piezo-
electric layers:Z h+hp

h

�!r: �!d dz +
Z �h
�h�hp

�!r: �!d dz = 0

)
Z h+hp

h

�
@dx
@x

+
@dy
@y

+
@dz
@z

�
dz

+
Z �h
�h�hp

�
@dx
@x

+
@dy
@y

+
@dz
@z

�
dz = 0: (27)

Substitution of the second relation of Eq. (6) into
Eq. (27) yields:

�1r2ws � �2r2'� �3r2wb + �4' = 0; (28)

where:

�1 = � ( e31�5e51
3 )h3

p � h(5e51�3e31)h2
p

2 + 2e31h2hp
(h+ hp)

2 ;

�2 =
4
3
�11hp; �3 = 2e31hp; �4 =

16 �33

hp
: (29)

2.3. Boundary conditions
The plate is electrically insulated at four edges and it
is characterized by simply-supported boundary condi-
tions at x = 0 and x = a, which results in:

v0 = ws = wb = M b
x = Ms

x = Nx = ' = 0: (30)

The boundary conditions for y = �b=2 and y = +b=2
can be arbitrarily chosen as follows:

� Simply-supported:

u0 = ws = wb = M b
y = Ms

y = Ny = ' = 0: (31)

� Clamped:

u0 = v0 =
@wb
@y

=
@ws
@y

= wb = ws = ' = 0: (32)

� Free:

M b
y = Ms

y = Ny = Nxy = ' = 0;

@Ms
y

@y
+ 2

@Ms
xy

@x
+ Syz � I3�v0 + I4

@ �wb
@y

+I5
@ �ws
@y

= 0;

@M b
y

@y
+

2@M b
xy

@x
�I1�v0+I2

@ �wb
@y

+I4
@ �ws
@y

=0: (33)

2.4. Levy solution procedure
According to Levy solution, the forms of the following
series for displacements and electrostatic potential
automatically ful�l the conditions of being electrically
insulated and simply supported at x = 0 and x = a:

'(x; y; t) =
1X
m=1

'm(y) ej!mt sin�x;

u0(x; y; t) =
1X
m=1

Um(y) ej!mt cos�x;

v0(x; y; t) =
1X
m=1

Vm(y) ej!mt sin�x;

ws(x; y; t) =
1X
m=1

Wsm(y) ej!mt sin�x;

wb(x; y; t) =
1X
m=1

Wbm(y) ej!mt sin�x; (34)

where � = m�
a , j =

p�1, !n the natural fre-
quency, and Um(y), Vm(y), Wbm(y), Wsm(y), and
'm(y) unknown functions. By substituting Eq. (34)
into Eqs. (22){(25) and (28), a system of ordinary
di�erential equations can be established as follows:
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�A11�2 Um(y) +A66U 00m(y) + (A12 +A66)�V 0m(y)

+B11�3Wbm(y)� (B12 + 2B66)�W 00bm(y)

+D11�3Wsm(y)� (D12 + 2D66)� W 00sm(y)

= �I0!m2Um(y) + I3!m2� Wsm(y)

+I1!m2� Wbm(y)+; (35)

A22 V 00m(y)�A66 �2 Vm(y)� (A12 +A66)�U 0m(y)

�B22W 000bm(y) + (B12 + 2B66)�2W 0bm(y)

�D22W 000sm(y) + (D12 + 2D66)�2W 0sm(y)

= �I0!m2 Vm(y) + I1!m2W 0bm(y)

+I3!m2W 0sm(y); (36)

B11�3Um(y)� (B12 + 2B66)�U 00m(y)

+B22 V 000m (y)� (B12 + 2B66)�2 V 0m(y)

�G11�4Wbm(y) + 2 (G12 + 2G66)�2W 00bm(y)

�F11�4Wsm(y) + 2 (F12 + 2F66)�2W 00sm(y)

�G22W 0000bm (y)� F22W 0000sm (y)

��1 ('00m(y)� �2'm(y)) = �I1!m2(��Um(y)

+V 0m(y)) + I2 !m2 (��2Wbm(y) +W 00bm(y))

�I0 !m2(Wbm(y) +Wsm(y))

+I4!m2(��2Wsm(y) +W 00sm(y)); (37)

D11�3Um(y)� (D12 + 2D66)�U 00m(y)

+D22V 000m (y)� (D12 + 2D66)�2 V 0m(y)

�F11�4Wbm(y) + 2 (F12 + 2F66)�2W 00bm(y)

�F22W 0000bm (y)�H11 �4Wsm(y)

+2 (H12 + 2H66)�2W 00sm(y)�H22W 0000sm (y)

+As11(W 00sm(y)� �2Wsm(y)) + (�3 � �2)

('00m(y)� �2 'm(y)) = I4!m2(��2Wbm(y)

+W 00bm(y))� I0 !m2(Wbm(y) +Wsm(y))

�I3!m2(��Um(y) + V 0m(y))

+I5 !m2(W 00sm(y)� �2Wsm(y)); (38)

�1(W 00sm(y)� �2Wsm(y))� �2('00m(y)� �2 'm(y))

��3(W 00bm(y)��2Wbm(y))+�4 'm(y)=0; (39)

where ()0 = d/dy. Eqs. (35){(39) can be rearranged as
follows:

U 00m = c1 Um + c2 V 0m + c3Wbm + c4W 00bm + c3sWsm

+c4sW 00sm; (40)

V 00m = c5 U 0m + c6 Vm + c7W 0bm + c8W 000bm + c7sW 0sm

+c8sW 000sm; (41)

W 0000bm = c9 Um + c10 V 0m + c11Wbm + c12W 00bm

+c13Wsm + c14W 00sm + c15 'm; (42)

W 0000sm = c9s Um + c10s V 0m + c11sWbm + c12sW 00bm

+c13sWsm + c14sW 00sm + c15s 'm; (43)

'00m = c11mWbm + c12mW 00bm + c13mWsm

+c14mW 00sm + c15m 'm: (44)

The coe�cients ci, cij , and cijm in Eqs. (40){(44) are
given in Appendix A. The boundary conditions at y =
�b=2 and y = +b=2 in terms of Um(y), Vm(y), Wbm(y),
Wsm(y), and 'm(y) can be written as follows:

� Simply-supported:

Um(y) = Wbm(y) = Wsm(y) = 'm(y) = 0;

�A12�Um(y) +B12�2Wbm(y) +D12�2Wsm(y)

+A22V 0m(y)�B22W 00bm(y)

�D22W 00sm(y) = 0; (45)

B22V 0m(y)�B12�Um(y) +G12�2Wbm(y)

�G22W 00bm(y) + F12�2Wsm(y)

�F22W 00sm(y)� �1 'm(y) = 0;

�D12�Um(y)+F12�2Wbm(y)�F22W 00bm(y)

+H12�2Wsm(y)�H22W 00sm(y)

+D22 V 0m(y)� �2 'm(y) = 0:

� Clamped:

Um(y) = Vm(y) = Wbm(y) = W 0bm(y) = Wsm(y)

= W 0sm(y) = 'm(y) = 0: (46)
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� Free:

'm = 0;

�A12�Um(y) +B12�2Wbm(y)�B22W 00bm(y)

+D12 �2Wsm(y)�D22W 00sm(y)

+A22V 0m(y) = 0;

�2D66�W 0sm(y) +A66(U 0m(y) + �Vm(y))

�2B66 �W 0bm(y) = 0; (47)

B22 V 0m(y)�B12�Um(y) +G12�2Wbm(y)

�G22W 00bm(y) + F12 �2Wsm(y)

�F22W 00sm(y)� �1 'm(y) = 0;

�D12�Um(y) + F12 �2Wbm(y) +H12�2Wsm(y)

+D22V 0m(y)� F22W 00bm(y)

�H22W 00sm(y) = 0:

2.5. State-space approach
Based on the state-space concept, Eqs. (40){(44) are
re-written as follows:

fZ0(y)g = [T] fZ(y)g ; (48)

where the state vector Z(y) and transfer matrix T are
de�ned as:

fZ(y)g = fUm U 0m Vm V 0m 'm '0m Wbm W 0bm

W 00bm W 000bm Wsm W 0sm W 00sm W 000smgT : (49)

Eq. (50) is shown in Box II. The solution of Eq. (48)
can be obtained as [56]:

fZ(y)g = eTy fkg ; (51)

where:

eTy = [X]

264 e�1y 0
. . .

0 e�14y

375 [X]�1; (52)

where �i and X denote the distinct eigenvalues and
eigenvector of the matrix T, respectively; further, X�1

is the reverse of X and k is a constant vector identi�ed
by applying conditions of y = �b=2 and y = +b=2.
To avoid facing an ill-conditioned problem, Eq. (51) is
rewritten as follows:

fZ(y)g = [X]

264 e�1y 0
. . .

0 e�14y

375 fPg ; (53)

where:

fPg = [X]�1 fkg : (54)

At edges y = �b=2 and y = +b=2, the boundary
conditions are written in terms of the state vector in
the following matrix form:

[â] fZg = f0g : (55)

This matrix equation under di�erent boundary condi-
tions can be expressed as follows:

� Simply-supported:

Eq. (56) is shown in Box III.
� Clamped:

[T] =

266666666666666666666664

0 1 0 0 0 0 0 0 0 0 0 0 0 0
c1 0 0 c2 0 0 c3 0 c4 0 c3s 0 c4s 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 c5 c6 0 0 0 0 c7 0 c8 0 c7s 0 c8s
0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 c15m 0 c11m 0 c12m 0 c13m 0 c14m 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0
c9 0 0 c10 c15 0 c11 0 c12 0 c13 0 c14 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1
c9s 0 0 c10s c15s 0 c11s 0 c12s 0 c13s 0 c14s 0

377777777777777777777775

(50)

Box II
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u0 = 0 :
wb = 0 :
ws = 0 :
' = 0 :
Ny = 0 :
M b
y = 0 :

Ms
y = 0 :

2666666664
1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0

�A12� 0 0 A22 0 0 B12�2 0 �B22 0 D12�2 0 �D22 0
�B12� 0 0 B22 ��1 0 G12�2 0 �G22 0 F12�2 0 �F22 0
�D12� 0 0 D22 ��2 0 F12�2 0 �F22 0 H12�2 0 �H22 0

3777777775 fZg = f0g :
(56)

Box III

u0 = 0 :
v0 = 0 :
wb = 0 :
ws = 0 :
@wb
@y = 0 :
@ws
@y = 0 :
' = 0 :

2666666664
1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0

3777777775 fZg = f0g : (57)

Box IV

Eq. (57) is shown in Box IV.
� Free:

Eq. (58) is shown in Box V. Coe�cients `i and `ij
are presented in Appendix B. If we substitute the
state vector Z from Eq. (53) into Eq. (55), the
following matrix equation can be obtained:

[l] fPg = f0g ; (59)

where:

[l] = [â] [X]

264 e�1y 0
. . .

0 e�14y

375 : (60)

In accordance with di�erent conditions at edges
y = �b=2 and y = +b=2, replacing â would yield
two matrix equations. By combining these two
equations, the following equation can be obtained:"

[l]y=�b=2
[l]y=+b=2

#
fPg = [L] fPg = f0g ; (61)

Ny = 0 :
Nxy = 0 :
M b
y = 0 :

Ms
y = 0 :

@Mb
y

@y + 2@M
b
xy

@x � I1�v + I2 @ �wb
@y + I4 @ �ws

@y = 0 :
@Ms

y
@y + 2@M

s
xy

@x + Syz � I3�v + I4 @ �wb
@y + I5 @ �ws

@y = 0 :
' = 0 :

2666666664
�A12� 0 0 A22 0

0 A66 A66� 0 0
�B12� 0 0 B22 ��1�D12� 0 0 D22 0

0 `1 `2 0 0
0 `8 `9 0 0
0 0 0 0 1

0 B12�2 0 �B22 0 D12�2 0 �D22 0
0 0 �2B66� 0 0 0 �2D66� 0 0
0 G12�2 0 �G22 0 F12�2 0 �F22 0
0 F12�2 0 �F22 0 H12�2 0 �H22 0
`7 0 `3 0 `5 0 `4 0 `6
`14 0 `10 0 `12 0 `11 0 `13
0 0 0 0 0 0 0 0 0

3777777775 fZg = f0g : (58)

Box V
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which is a homogeneous equation system. To obtain
a non-trivial solution with regard to natural frequency
!2
m associated with the nth mode, the determinant of

the coe�cient matrix L should be zero. However, since
matrix T contains an unknown parameter !2

m, such a
process will not directly result in the natural frequency
for the plate and a trial-and-error procedure should be
taken into consideration. In this study, the following
iterative algorithm was employed to �nd the natural
frequency:

1. Consider a small value for the natural frequency as
an initial value;

2. After inserting the corresponding value for the
natural frequency into matrix T, calculate the
eigenvalues �i and eigenvectors X of matrix T;

3. Generate matrix L according to the proper form of
the boundary conditions introduced in Eqs. (56){
(58);

4. Check the sign of the determinant:
a) If there is no change in the sign of the de-

terminant, add a certain amount to the value
of natural frequency and return to Step 2 and
repeat the next steps;

b) In the case of a change in the sign, reduce
the value of the frequency by a �nite level and
proceed to the next stage.

5. If the di�erence between the values of two consec-
utive iterations is less than a speci�ed amount, the
procedure is complete. Otherwise, return to Step 2.

The convergence criterion in this research is con-
sidered as: 
j!n+1 � !n
(!n+1+!n

2 )
j < 10�4

!
:

The number of iterations varies for problems, but for
the solved problems in this research, it changes between
170 and 3000. Example 3 reports the required number
of iterations for several cases.

The 
ow diagram of this algorithm is shown in
Figure 2. Of note, in the case of very thin plates, com-
puter over
ow/under
ow may occur when calculating
the elements of matrix L. Refer to Appendix C for more
details on how to solve this problem.

3. Results and discussion

Three numerical examples were solved to validate the
precision and e�ciency of the proposed technique. The
mechanical boundary conditions of the structure are
denoted by SXSY where S is the simply supported at
x = 0 and x = a and X and Y indicate conditions at
y = �b=2 and y = +b=2, respectively. For example,

Table 1. Material properties [31].

Piezoelectric layer Core plate

Property PZT-4 Al2O3 Al

E (GPa) { 380 70

� { 0.3 0.3

C11 (GPa) 132 { {

C12 (GPa) 71 { {

C33 (GPa) 115 { {

C13 (GPa) 73 { {

C55 (GPa) 26 { {

e31 (cm�2) {4.1 { {

e33 (cm�2) 14.1 { {

e15 (cm�2) 10.5 { {

�11 (nFm�1) 7.124 { {

�33 (nFm�1) 5.841 { {

� (kgm�3) 7500 3800 2707

SFSC condition is related to a plate with simply-
supported, free, simply-supported, and clamped edges.
The electrical boundary conditions of the surfaces of
the piezoelectric layer are assumed to be closed circuit.
Table 1 presents the material properties considered
in these examples [31]. The non-dimensional natural
frequency parameter is expressed as follows:

�! = !h
p
�m=Em: (62)

Example 1. Consider a square FG plate that is made
of `Al/Al2O3'. The non-dimensional fundamental nat-
ural frequency of the structure with di�erent thickness-
to-side ratios, boundary conditions, and power-law
indices was obtained and compared with the existing
three-dimensional (3D) exact solution [57] in Table 2.
In the fully simply-supported case, the results were
also compared with those of 2D HSDT and quasi-
3D HSDT [58]. As observed in the simply-supported
case, despite the more complexity of HSDT with �ve
unknown variables than the present four-variable RPT,
the current approach outperformed the exact solution
mainly because the error for the HSDT reached 2.28%
particularly for moderately thick and thick plates
(h=a = 0:1 and 0.2), while the maximum error in
the current theory was 0.53%. The results under the
other conditions are more acceptable than those of the
exact solution, even for the thick plate (h=a = 0:5).
Therefore, the present approach, in addition to its
simplicity, has good accuracy while analyzing both thin
and thick FG plates. Further, the good agreement
between the present analytical solution and results
from the exact solution is indicative of the accuracy
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Figure 2. Flow diagram for �nding the natural frequency value.

and e�ciency of the state-space Levy type solution as
well as the iteration algorithm.

Figure 3 indicates the variations in the non-
dimensional natural frequency parameter of an FG
plate in terms of the power-law index (n) with di�erent
aspect ratios (a=b). The plate is characterized by an
SFSC boundary condition and a=h = 10. According
to Figure 3, as the aspect ratio increases, the non-

dimensional natural frequency increases, as well. Given
that the plate length (a) is kept constant, upon increas-
ing a=b, the plate width (b) decreases. In addition, with
a decrease in the plate dimension, the plate sti�ness
increases, the plate mass decreases, and consequently,
the natural frequency increases. Moreover, since the
value of elastic modulus for `Al' is lower than that
of `Al2O3', with an increase in the power-law index
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Table 2. The fundamental frequency parameter (�!) of the square Functionally Graded (FG) plate.

Power-law index

h=a B.Cs. Theory 0 1 2 5

0.1 SSSS Present 0.1133
[0:18]

0.0868
[0:23]

0.0788
[0:13]

0.0740
[0:13]

HSDT(2D) [58] 0.1134
[0:09]

0.0868
[0:23]

0.0788
[0:13]

0.0740
[0:13]

HSDT(quasi-3D) [58] 0.1137
[0:18]

0.0883
[1:49]

0.0807
[2:28]

0.0756
[2:02]

Exact [57] 0.1135 0.0870 0.0789 0.0741

SCSC Present 0.1616
[0:75]

0.1243
[0:57]

0.1126
[0:71]

0.1049
[1:06]

Exact [57] 0.1604 0.1236 0.1118 0.1038

SFSF Present 0.0563
[0:18]

0.0430
[0:00]

0.0391
[0:26]

0.0369
[0:27]

Exact [57] 0.0562 0.0430 0.0390 0.0368

SCSF Present 0.0737
[0:82]

0.0564
[0:89]

0.0512
[0:99]

0.0483
[1:26]

Exact [57] 0.0731 0.0559 0.0507 0.0477

SSSC Present 0.1343
[0:30]

0.1030
[0:10]

0.0934
[0:21]

0.0875
[0:46]

Exact [57] 0.1339 0.1029 0.0932 0.0871

SSSF Present 0.0680
[0:44]

0.0520
[0:39]

0.0472
[0:42]

0.0445
[0:45]

Exact [57] 0.0677 0.0518 0.0470 0.0443

0.2 SSSS Present 0.4150
[0:45]

0.3205
[0:53]

0.2892
[0:45]

0.2667
[0:34]

HSDT(2D) [58] 0.4151
[0:43]

0.3205
[0:53]

0.2892
[0:45]

0.2665
[0:41]

HSDT(quasi-3D) [58] 0.4178
[0:22]

0.3267
[1:40]

0.2968
[2:17]

0.2725
[1:83]

Exact [57] 0.4169 0.3222 0.2905 0.2676

SCSC Present 0.5588
[3:44]

0.4362
[2:97]

0.3923
[3:26]

0.3546
[3:92]

Exact [57] 0.5402 0.4236 0.3799 0.3412

SFSF Present 0.2148
[0:33]

0.1649
[0:24]

0.1493
[0:34]

0.1394
[0:43]

Exact [57] 0.2141 0.1645 0.1488 0.1388

SCSF Present 0.2772
[2:17]

0.2133
[1:96]

0.1929
[2:12]

0.1793
[2:52]

Exact [57] 0.2713 0.2092 0.1889 0.1749

SSSC Present 0.4807
[1:61]

0.3728
[1:28]

0.3359
[1:48]

0.3073
[1:96]

Exact [57] 0.4731 0.3681 0.3310 0.3014

SSSF Present 0.2576
[1:02]

0.1979
[0:87]

0.1791
[1:01]

0.1668
[1:15]

Exact [57] 0.2550 0.1962 0.1773 0.1649



J. Rouzegar et al./Scientia Iranica, Transactions B: Mechanical Engineering 29 (2022) 502{533 515

Table 2. The fundamental frequency parameter (�!) of the square Functionally Graded (FG) plate (continued).

Power-law index
h=a B.Cs. Theory 0 1 2 5

0.5 SSSS Present 1.8266
[1:10]

1.4452
[1:60]

1.2890
[1:56]

1.1317
[1:16]

HSDT(2D) [58] 1.8287
[0:99]

1.4467
[1:50]

1.2901
[1:48]

1.1310
[1:22]

HSDT(quasi-3D) [58] 1.8583
[0:61]

1.4830
[0:97]

1.3269
[1:33]

1.1576
[1:10]

Exact [57] 1.8470 1.4687 1.3095 1.1450

SCSC Present 1.9139
[0:00]

1.5922
[1:26]

1.4386
[2:57]

1.2429
[2:96]

Exact [57] 1.9139 1.5724 1.4026 1.2072

SFSF Present 1.0679
[0:25]

0.8347
[0:06]

0.7479
[0:20]

0.6715
[0:42]

Exact [57] 1.0652 0.8342 0.7464 0.6687

SCSF Present 0.9671
[1:05]

0.8139
[2:54]

0.7306
[2:20]

0.6357
[3:06]

Exact [57] 0.9570 0.7937 0.7149 0.6168

SSSC Present 1.9139
[0:00]

1.5922
[2:73]

1.4217
[3:05]

1.2323
[3:03]

Exact [57] 1.9139 1.5499 1.3796 1.1961

SSSF Present 0.9680
[1:15]

0.8156
[2:76]

0.7335
[2:60]

0.6370
[3:27]

Exact [57] 0.9570 0.7937 0.7149 0.6168

[%Error]=(Calculated value-Exact value)/Exact value�100

Figure 3. Non-dimensional natural frequency (�!) of
Functionally Graded (FG) plates versus power-law index
considering di�erent aspect ratios (SFSC, a=h = 10).

(n), the sti�ness and natural frequency of the plate
decrease. The decrease in the rate of natural frequency
slows down for n values larger than 2.

Example 2. A rectangular transversely isotropic core
plate sandwiched between two PZT-4 layers on the

upper and lower surfaces was taken into account. The
core plate is characterized by the following material
properties [32]:

C11 = 460:2 GPa; C12 = 174:7 GPa;

C33 = 509:5 GPa; C13 = 127:4 GPa;

C55 = 126:9 GPa; � = 4000 kg=m3: (63)

Table 3 compares the three consecutive natural
frequencies with those obtained by Askari Farsangi et
al. [32]. In all cases, the obtained natural frequencies
match properly with the FSDT results. It should
be noticed that the RPT contains only four variables
rather than �ve variables in the FSDT. In addition,
the present theory ful�ls the condition of zero shear
stress on free surfaces that, unlike the FSDT, does not
need the shear correction factor. It can be concluded
that the RPT is not only precise but also simple and
e�cient. According to this table, upon increasing the
b=a ratio, the natural frequency decreases.

Figure 4 depicts the variations in the �rst natural
frequency of the SSSS smart plate versus the piezo-
electric layer thickness, considering di�erent thickness-
to-side ratios. Given that the plate length is kept
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Table 3. Three consecutive natural frequencies (Hz) of the smart transversely isotropic plate (hp=2h = 0:1).
b
a

2h
a Theory Mode numbers

B.Cs. 1st 2nd 3rd

SSSF 1 0.05 Present 249.929
[0:44]

589.434
[0:84]

868.868
[0:40]

FSDT [32] 248.830 584.511 865.376

0.1 Present 489.709
[0:90]

1126.034
[1:67]

1626.920
[0:84]

FSDT [32] 485.305 1107.449 1613.274

2 0.05 Present 221.258
[0:18]

316.337
[0:34]

503.755
[0:45]

FSDT [32] 220.847 315.254 501.467

0.1 Present 434.434
[0:40]

616.521
[0:71]

967.966
[0:93]

FSDT [32] 432.688 612.130 958.963

SSSS 1 0.05 Present 423.125
[0:03]

1039.337
[0:08]

1635.182
[0:12]

FSDT [32] 422.966 1038.436 1633.073

0.1 Present 817.591
[0:12]

1923.402
[0:24]

2919.583
[0:31]

FSDT [32] 816.534 1918.659 2910.463

2 0.05 Present 265.656
[0:02]

423.125
[0:03]

682.479
[0:05]

FSDT [32] 265.592 422.966 682.077

0.1 Present 519.668
[0:08]

817.591
[0:12]

1293.837
[0:18]

FSDT [32] 519.218 816.537 1291.421

SCSC 1 0.05 Present 614.543
[0:80]

1147.541
[0:72]

1432.249
[1:16]

FSDT [32] 609.652 1139.314 1415.781

0.1 Present 1158.100
[2:65]

2101.099
[1:99]

2542.414
[3:51]

FSDT [32] 1128.191 2060.096 2456.099

2 0.05 Present 294.329
[0:20]

505.014
[0:39]

818.029
[0:49]

FSDT [32] 293.724 503.042 814.007

0.1 Present 573.770
[0:72]

966.450
[1:33]

1526.769
[1:60]

FSDT [32] 569.657 953.729 1502.638

SFSF 1 0.05 Present 206.636
[0:21]

342.283
[1:27]

774.409
[1:44]

FSDT [32] 206.189 337.986 763.342

0.1 Present 406.223
[0:45]

666.318
[2:54]

1461.310
[2:80]

FSDT [32] 404.375 649.789 1421.432

2 0.05 Present 209.330
[0:14]

249.929
[0:44]

377.110
[0:74]

FSDT [32] 209.027 248.830 374.330

0.1 Present 411.398
[0:32]

489.709
[0:90]

731.808
[1:49]

FSDT [32] 410.083 485.305 721.037
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Table 3. Three consecutive natural frequencies (Hz) of the smart transversely isotropic plate (hp=2h = 0:1) (continued).

B.Cs. b
a

2h
a Theory Mode numbers

1st 2nd 3rd

SFSC 1 0.05 Present 270.811
[0:70]

699.104
[1:26]

878.835
[0:50]

FSDT [32] 268.928 690.400 874.395

0.1 Present 529.350
[1:58]

1319.022
[3:05]

1644.097
[1:09]

FSDT [32] 521.069 1279.972 1626.329

2 0.05 Present 223.859
[0:22]

337.140
[0:49]

548.998
[0:64]

FSDT [32] 223.354 335.483 545.498

0.1 Present 439.417
[0:50]

655.533
[1:16]

1049.464
[1:54]

FSDT [32] 437.198 647.963 1033.508

SSSC 1 0.05 Present 505.014
[0:39]

1086.227
[0:33]

1224.056
[0:56]

FSDT [32] 503.042 1082.550 1217.137

0.1 Present 966.450
[1:33]

2001.302
[0:96]

2219.836
[1:74]

FSDT [32] 953.725 1982.268 2181.779

2 0.05 Present 278.035
[0:09]

460.833
[0:19]

746.978
[0:26]

FSDT [32] 277.770 459.928 744.988

0.1 Present 543.114
[0:33]

886.602
[0:67]

1405.818
[0:87]

FSDT [32] 541.275 880.650 1393.625

Figure 4. First natural frequency of the smart
transversely isotropic plate versus piezoelectric layer
thickness considering di�erent thickness-to-side ratios.

constant, upon increasing (2h=a), the plate thickness
increases. The plate sti�ness varies as the third power
of the plate thickness while the mass has a linear
relationship with the thickness. Hence, the increase in

the sti�ness is higher than that in the mass; therefore,
upon increasing (2h=a), the natural frequency would
increase. Such an increase in the thickness of the
piezoelectric layer a�ects both sti�ness and mass of
the plate as well as the electromechanical loading.
As observed in Figure 4, increasing the thickness of
the piezoelectric layer overlay decreases the natural
frequency of the structure; however, the decrease in
the frequency rate slows down after a speci�c value of
piezoelectric thickness, and the curve follows an almost
constant trend.

Figures 5 and 6 show the nine consecutive mode
shapes of the SSSS and SCSF smart transversely
isotropic plate, respectively. The value of the natural
frequency of each mode is given in the bracket. In
Figure 6, the mode shapes and natural frequencies of
the SCSF plate are compared with those in Ref. [59],
and the results are well matched.

Example 3. A square FG plate made of `Al/Al2O3'
with two piezoelectric (PZT-4) layers attached to
the faces was studied. Tables 4{9 present the �rst
three non-dimensional natural frequencies of the above-



518 J. Rouzegar et al./Scientia Iranica, Transactions B: Mechanical Engineering 29 (2022) 502{533

Figure 5. Nine consecutive mode shapes of SSSS smart plate.

Figure 6. Nine consecutive mode shapes of SFSC smart plate compared with spectral element method results based on
First-order Shear Deformation Theory (FSDT) [59].
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Table 4. Natural frequencies (Hz) of the SSSS smart Functionally Graded (FG) plate.

Power-law index (n) 2h
a

hp
2h Method Mode number

(1,1) (1,2) (2,2)

0 0.05 0.1 Present 426.817
[0:03]

1050.245
[0:08]

1655.019
[0:12]

RPT [35] 426.818
[0:04]

1050.253
[0:08]

1655.040
[0:13]

FSDT [31] 426.662 1049.356 1652.929

0.2 Present 408.824
[0:08]

1003.121
[0:19]

1576.686
[0:29]

RPT [35] 408.836
[0:09]

1003.195
[0:21]

1576.867
[0:31]

FSDT [31] 408.475 1001.133 1572.036

0.1 0.1 Present 827.509
[0:12]

1957.338
[0:24]

2983.744
[0:31]

RPT [35] 827.520
[0:13]

1957.398
[0:25]

2983.884
[0:32]

FSDT [31] 826.463 1952.530 2974.440

0.2 Present 788.343
[0:29]

1849.117
[0:57]

2801.184
[0:74]

RPT [35] 788.433
[0:31]

1849.607
[0:60]

2802.300
[0:78]

FSDT [31] 786.011 1838.475 2780.541

0.5 0.05 0.1 Present 369.196
[0:04]

908.966
[0:11]

1433.133
[0:17]

RPT [35] 369.195
[0:05]

908.939
[0:11]

1433.121
[0:17]

FSDT [31] 369.015 907.918 1430.642

0.2 Present 362.643
[0:10]

889.782
[0:24]

1398.517
[0:36]

RPT [35] 362.655
[0:11]

889.866
[0:25]

1398.681
[0:37]

FSDT [31] 362.269 887.637 1393.475

0.1 0.1 Present 716.566
[0:17]

1697.962
[0:35]

2592.126
[0:46]

RPT [35] 716.563
[0:17]

1697.781
[0:34]

2592.067
[0:46]

FSDT [31] 715.319 1691.992 2580.078

0.2 Present 699.259
[0:36]

1640.202
[0:72]

2484.989
[0:95]

RPT [35] 699.343
[0:37]

1640.759
[0:76]

2486.009
[0:99]

FSDT [31] 696.730 1628.388 2461.527
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Table 4. Natural frequencies (Hz) of the SSSS smart Functionally Graded (FG) plate (continued).

Power-law index (n) 2h
a

hp
2h Method Mode number

(1,1) (1,2) (2,2)

1 0.05 0.1 Present 340.004
[0:04]

836.857
[0:10]

1319.101
[0:15]

RPT [35] 340.006
[0:04]

836.868
[0:10]

1319.055
[0:15]

FSDT [31] 339.859 836.020 1317.115

0.2 Present 340.656
[0:10]

835.243
[0:23]

1311.964
[0:35]

RPT [35] 340.673
[0:11]

835.240
[0:24]

1312.112
[0:37]

FSDT [31] 340.311 833.266 1307.323

0.1 0.1 Present 659.550
[0:15]

1561.589
[0:30]

2382.582
[0:40]

RPT [35] 659.565
[0:15]

1561.668
[0:31]

2382.309
[0:39]

FSDT [31] 658.555 1556.838 2373.020

0.2 Present 655.982
[0:35]

1535.655
[0:71]

2323.376
[0:94]

RPT [35] 656.105
[0:37]

1535.659
[0:72]

2324.299
[0:98]

FSDT [31] 653.652 1524.747 2301.658

2 0.05 0.1 Present 317.164
[0:01]

779.475
[0:02]

1226.974
[0:02]

RPT [35] 317.232
[0:03]

779.552
[0:03]

1227.009
[0:03]

FSDT [31] 317.135 779.313 1226.615

0.2 Present 324.228
[0:07]

793.341
[0:17]

1243.871
[0:25]

RPT [35] 324.335
[0:11]

793.467
[0:19]

1244.177
[0:28]

FSDT [31] 323.992 791.993 1240.736

0.1 0.1 Present 613.487
[0:03]

1446.023
[0:04]

2198.798
[0:04]

RPT [35] 613.982
[0:11]

1446.529
[0:08]

2199.028
[0:05]

FSDT [31] 613.305 1445.353 2197.887

0.2 Present 621.935
[0:25]

1447.583
[0:50]

2181.080
[0:65]

RPT [35] 622.698
[0:38]

1448.398
[0:56]

2182.913
[0:74]

FSDT [31] 620.355 1440.316 2166.899
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Table 5. Natural frequencies (Hz) of the SCSC smart Functionally Graded (FG) plate.

Power-law index (n) 2h
a

hp
2h Method Mode number

(1,1) (1,2) (2,2)

0 0.05 0.1 Present 620.762
[0:70]

1160.326
[0:64]

1451.051
[1:02]

FSDT [31] 616.446 1152.942 1436.325

0.2 Present 594.149
[0:88]

1107.864
[0:84]

1384.012
[1:34]

FSDT [31] 588.944 1098.612 1365.634

0.1 0.1 Present 1177.584
[2:36]

2142.240
[1:82]

2606.281
[3:18]

FSDT [31] 1150.432 2103.790 2525.933

0.2 Present 1119.519
[2:93]

2022.358
[2:36]

2412.848
[2:23]

FSDT [31] 1087.556 1975.729 2360.037

0.5 0.05 0.1 Present 537.273
[0:69]

1004.511
[0:65]

1257.258
[1:03]

FSDT [31] 533.568 998.005 1244.321

0.2 Present 527.137
[0:92]

982.777
[0:89]

1228.102
[1:42]

FSDT [31] 522.330 974.076 1210.840

0.1 0.1 Present 1021.795
[2:36]

1859.970
[1:90]

2268.644
[3:26]

FSDT [31] 998.185 1825.231 2196.822

0.2 Present 993.756
[3:07]

1794.477
[2:53]

2146.517
[2:66]

FSDT [31] 964.112 1750.085 2090.820

1 0.05 0.1 Present 494.775
[0:67]

924.805
[0:63]

1157.447
[1:00]

FSDT [31] 491.442 919.009 1145.901

0.2 Present 495.003
[0:93]

922.389
[0:90]

1152.086
[1:44]

FSDT [31] 490.400 914.115 1135.644

0.1 0.1 Present 940.445
[2:31]

1710.592
[1:84]

2086.556
[3:18]

FSDT [31] 919.203 1679.663 2022.220

0.2 Present 931.263
[3:12]

1679.438
[2:55]

1986.789
[1:70]

FSDT [31] 903.034 1637.542 1953.479

2 0.05 0.1 Present 461.117
[0:64]

861.029
[0:56]

1076.241
[0:91]

FSDT [31] 458.149 856.189 1066.500

0.2 Present 470.494
[0:95]

875.575
[0:87]

1091.568
[1:42]

FSDT [31] 466.052 867.939 1076.265

0.1 0.1 Present 872.172
[2:18]

1582.126
[1:59]

1923.382
[2:86]

FSDT [31] 853.554 1557.277 1869.767

0.2 Present 879.162
[3:12]

1580.501
[2:40]

1910.371
[3:01]

FSDT [31] 852.529 1543.328 1854.401
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Table 6. Natural frequencies (Hz) of the SSSC smart Functionally Graded (FG) plate.

Power-law index (n) 2h
a

hp
2h Method Mode number

(1,1) (1,2) (2,2)

0 0.05 0.1 Present 509.680
[0:34]

1097.909
[0:30]

1238.412
[0:50]

FSDT [31] 507.936 1094.565 1232.191

0.2 Present 488.040
[0:45]

1048.476
[0:45]

1182.031
[0:71]

FSDT [31] 485.851 1043.735 1173.657

0.1 0.1 Present 979.890
[1:18]

2038.183
[0:88]

2267.081
[1:58]

FSDT [31] 968.399 2020.226 2231.715

0.2 Present 932.644
[1:53]

1924.835
[1:30]

2138.813
[2:17]

FSDT [31] 918.518 1900.109 2093.283

0.5 0.05 0.1 Present 440.965
[0:34]

950.320
[0:32]

1072.377
[0:52]

FSDT [31] 439.446 947.209 1066.737

0.2 Present 432.939
[0:47]

930.043
[0:50]

1048.657
[0:77]

FSDT [31] 430.892 925.412 1040.607

0.1 0.1 Present 849.157
[1:20]

1768.702
[0:98]

1969.885
[1:68]

FSDT [31] 839.040 1751.518 1937.295

0.2 Present 827.467
[1:62]

1707.585
[1:45]

1898.392
[2:37]

FSDT [31] 814.202 1683.037 1854.262

1 0.05 0.1 Present 406.091
[0:33]

874.921
[0:31]

987.271
[0:50]

FSDT [31] 404.735 872.211 982.304

0.2 Present 406.635
[0:48]

872.977
[0:50]

984.077
[0:78]

FSDT [31] 404.681 868.614 976.451

0.1 0.1 Present 781.561
[1:16]

1626.639
[0:92]

1811.684
[1:61]

FSDT [31] 772.528 1611.695 1782.902

0.2 Present 775.927
[1:65]

1598.479
[1:46]

1776.070
[2:40]

FSDT [31] 763.316 1575.457 1734.388

2 0.05 0.1 Present 378.682
[0:30]

814.789
[0:23]

918.833
[0:41]

FSDT [31] 377.523 812.863 915.005

0.2 Present 386.829
[0:47]

828.975
[0:45]

933.609
[0:73]

FSDT [31] 384.988 825.245 926.827

0.1 0.1 Present 726.143
[1:05]

1505.524
[0:67]

1673.865
[1:32]

FSDT [31] 718.539 1495.435 1651.948

0.2 Present 734.444
[1:61]

1505.783
[1:27]

1668.991
[2:22]

FSDT [31] 722.778 1486.802 1632.616
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Table 7. Natural frequencies (Hz) of the SFSF smart Functionally Graded (FG) plate.

Power-law index (n) 2h
a

hp
2h Method Mode number

(1,1) (1,2) (2,2)

0 0.05 0.1 Present 209.492
[0:17]

349.883
[1:14]

787.104
[1:38]

FSDT [31] 209.131 345.912 776.347

0.2 Present 200.922
[0:21]

335.361
[1:26]

751.990
[1:54]

FSDT [31] 200.497 331.173 740.546

0.1 0.1 Present 412.489
[0:37]

682.351
[2:31]

1490.501
[2:70]

FSDT [31] 410.965 666.942 1451.175

0.2 Present 394.481
[0:48]

650.523
[2:59]

1407.090
[3:09]

FSDT [31] 392.558 634.074 1364.877

0.5 0.05 0.1 Present 181.197
[0:17]

302.686
[1:12]

680.878
[1:36]

FSDT [31] 180.881 299.312 671.687

0.2 Present 178.264
[0:22]

297.596
[1:27]

666.981
[1:57]

FSDT [31] 177.869 293.841 656.662

0.1 0.1 Present 356.968
[0:38]

590.614
[2:28]

1290.139
[2:71]

FSDT [31] 355.590 577.414 1256.026

0.2 Present 349.988
[0:52]

577.101
[2:64]

1246.895
[3:18]

FSDT [31] 348.152 562.234 1208.408

1 0.05 0.1 Present 166.905
[0:17]

278.822
[1:11]

626.906
[1:35]

FSDT [31] 166.619 275.737 618.508

0.2 Present 167.526
[0:22]

279.673
[1:29]

626.359
[1:59]

FSDT [31] 167.147 276.086 616.527

0.1 0.1 Present 328.717
[0:37]

543.725
[2:26]

1186.202
[2:68]

FSDT [31] 327.486 531.672 1155.139

0.2 Present 328.676
[0:53]

541.727
[2:68]

1168.256
[3:22]

FSDT [31] 326.934 527.566 1131.725

2 0.05 0.1 Present 155.799
[0:16]

260.236
[1:13]

584.469
[1:35]

FSDT [31] 155.547 257.314 576.634

0.2 Present 159.596
[0:22]

266.389
[1:34]

595.775
[1:63]

FSDT [31] 159.237 262.842 586.195

0.1 0.1 Present 306.392
[0:32]

506.354
[2:25]

1101.129
[2:62]

FSDT [31] 305.394 495.169 1072.979

0.2 Present 312.493
[0:50]

514.515
[2:74]

1105.406
[3:24]

FSDT [31] 310.924 500.768 1070.684
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Table 8. Natural frequencies (Hz) of the SSSF smart Functionally Graded (FG) plate.

Power-law index (n) 2h
a

hp
2h Method Mode number

(1,1) (1,2) (2,2)

0 0.05 0.1 Present 253.893
[0:37]

597.759
[0:79]

880.804
[0:33]

FSDT [31] 252.947 593.029 877.903

0.2 Present 243.463
[0:43]

571.973
[0:91]

842.037
[0:44]

FSDT [31] 242.419 566.812 838.279

0.1 0.1 Present 498.358
[0:77]

1146.013
[1:60]

1658.715
[0:71]

FSDT [31] 494.517 1127.902 1646.927

0.2 Present 476.193
[0:93]

1087.444
[1:90]

1570.244
[1:05]

FSDT [31] 471.776 1067.098 1553.911

0.5 0.05 0.1 Present 219.616
[0:37]

517.113
[0:79]

762.250
[0:34]

FSDT [31] 218.802 513.044 759.598

0.2 Present 216.018
[0:44]

507.385
[0:93]

746.999
[0:48]

FSDT [31] 215.068 502.694 743.390

0.1 0.1 Present 431.332
[0:78]

992.348
[1:62]

1438.222
[0:79]

FSDT [31] 427.966 976.439 1426.860

0.2 Present 422.483
[0:97]

964.264
[1:98]

1392.937
[1:17]

FSDT [31] 418.392 945.459 1376.707

1 0.05 0.1 Present 202.295
[0:36]

476.200
[0:78]

701.879
[0:33]

FSDT [31] 201.555 472.495 699.527

0.2 Present 203.003
[0:44]

476.579
[0:94]

701.421
[0:48]

FSDT [31] 202.095 472.115 698.014

0.1 0.1 Present 397.169
[0:77]

912.993
[1:60]

1323.019
[0:75]

FSDT [31] 394.126 898.589 1313.092

0.2 Present 396.695
[0:98]

904.080
[2:01]

1304.938
[1:18]

FSDT [31] 392.810 886.259 1289.712

2 0.05 0.1 Present 188.822
[0:36]

444.107
[0:77]

654.086
[0:27]

FSDT [31] 188.142 440.713 652.260

0.2 Present 193.375
[0:45]

453.467
[0:95]

666.707
[0:45]

FSDT [31] 192.497 449.172 663.718

0.1 0.1 Present 370.071
[0:72]

848.383
[1:51]

1226.672
[0:55]

FSDT [31] 367.407 835.753 1219.942

0.2 Present 376.997
[0:97]

856.245
[1:97]

1232.182
[1:02]

FSDT [31] 373.363 839.662 1219.643
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Table 9. Natural frequencies (Hz) of the SFSC smart Functionally Graded (FG) plate.

Power-law index (n) 2h
a

hp
2h Method Mode number

(1,1) (1,2) (2,2)

0 0.05 0.1 Present 275.486
[0:60]

708.972
[1:16]

891.314
[0:42]

FSDT [31] 273.825 700.789 887.562

0.2 Present 264.155
[0:69]

677.982
[1:34]

852.062
[0:55]

FSDT [31] 262.343 668.959 847.386

0.1 0.1 Present 539.564
[1:39]

1344.310
[2:82]

1677.080
[0:94]

FSDT [31] 532.143 1307.322 1661.425

0.2 Present 515.401
[1:62]

1273.542
[3:33]

1587.470
[1:30]

FSDT [31] 507.137 1232.470 1567.069

0.5 0.05 0.1 Present 238.311
[0:59]

613.455
[1:15]

771.367
[0:43]

FSDT [31] 236.898 606.470 767.999

0.2 Present 234.391
[0:70]

601.439
[1:37]

755.907
[0:58]

FSDT [31] 232.753 593.255 751.474

0.1 0.1 Present 467.082
[1:38]

1164.968
[2:82]

1454.244
[1:01]

FSDT [31] 460.698 1132.986 1439.591

0.2 Present 457.305
[1:67]

1129.490
[3:44]

1408.263
[1:43]

FSDT [31] 449.761 1091.882 1388.371

1 0.05 0.1 Present 219.519
[0:59]

564.887
[1:13]

710.277
[0:42]

FSDT [31] 218.230 558.530 707.271

0.2 Present 220.268
[0:71]

564.807
[1:40]

709.784
[0:59]

FSDT [31] 218.700 556.991 705.586

0.1 0.1 Present 430.084
[1:36]

1071.660
[2:78]

1337.756
[0:97]

FSDT [31] 424.284 1042.656 1324.821

0.2 Present 429.354
[1:70]

1058.382
[3:49]

1319.261
[1:43]

FSDT [31] 422.158 1022.599 1300.541

2 0.05 0.1 Present 204.888
[0:59]

526.575
[1:12]

661.895
[0:37]

FSDT [31] 203.681 520.694 659.443

0.2 Present 209.804
[0:74]

537.065
[1:44]

674.632
[0:56]

FSDT [31] 208.259 529.439 670.847

0.1 0.1 Present 400.635
[1:33]

994.400
[2:70]

1240.222
[0:77]

FSDT [31] 395.346 968.255 1230.661

0.2 Present 407.881
[1:73]

1000.418
[3:53]

1245.555
[1:29]

FSDT [31] 400.942 966.283 1229.592
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mentioned plate under di�erent boundary conditions.
In addition, the accuracies of the proposed approach
and the used plate theory were evaluated by comparing
the results with the FSDT-Levy solution reported by
Askari Farsangi and Saidi [31] and the RPT-Navier
solution reported by Rouzegar and Abad [35].

As observed, the results were in excellent agree-
ment, indicating the accuracy of the solution method
and proper performance of the iterative algorithm.
Table 4 corresponds to the fully and simply supported
plates where the Navier solution is applicable under
this type of boundary condition. The current results
and Navier solution based on the four-variable RPT
[35] were compared with a Levy solution based on the
FSDT [31]. The current results and those reported
in [35] are very close to each other and they exhibit
a negligible error in comparison to the FSDT-Levy
solution [31]. The Navier method is not applicable
in other types of boundary conditions. Tables 5{9
compare the obtained results with only the FSDT-Levy
solution [31], and the percentage errors for all cases
are in acceptable ranges. The number of iterations
required to achieve a converged result for the mode
(1,1) of the smart FG plate (n = 0:5, 2h=a = 0:05,
hp=2h = 0:1) is 375, 545, 447, 246, 225, and 188 cycles
for the SSSS, SCSC, SSSC, SFSC, SSSF, and SFSF
plates, respectively.

Figure 7 shows the variation in the fundamental
frequency of fully and simply supported smart FG
plates versus the piezoelectric thickness for several
power-law indices. To better understand the impact
of the piezoelectric layer on the vibrational behavior
of the FG plate, parameter � is de�ned by Eq. (64)
as shown in Box VI. Figure 8 illustrates the variations
in parameter � against the piezoelectric thickness for
several power-law indices. Addition of the piezoelectric
layer can a�ect the frequency of the plate in three
ways: increasing the structural sti�ness, increasing the
mass, and creating a load related to electromechanical
coupling in the piezoelectric layer. An increase in the
structural sti�ness increases the natural frequency. On
the contrary, an increase in mass decreases the natural
frequency. Further, the induced electromechanical
loading has a signi�cant e�ect on natural frequency.
Therefore, adding the piezoelectric layer may �nally
lead to either increase or decrease in the natural
frequency.

Depending on the value of the power index that

Figure 7. Fundamental frequency of the SSSS smart
Functionally Graded (FG) plate versus the piezoelectric
layer thickness considering di�erent power-law index
values (2h=a = 0:1).

Figure 8. Parameter � of the SSSS smart Functionally
Graded (FG) plate versus piezoelectric layer thickness
considering di�erent power-law index values (2h=a = 0:1).

in
uences the sti�ness and mass of the FG core plate,
the e�ect of the piezoelectric layer on the natural
frequency and parameter varies. As seen in Figure 7,
for low power-law indices, increasing the thickness
of the piezoelectric layer causes a decrease in the
natural frequency in the �rst part of the diagram
and then, induces an increase in it. As a result,
parameter � is initially negative and then, it tends to
become positive, followed by increasing the thickness

� =
!structure with piezoelectric layer � !structure without piezoelectric layer

!structure without piezoelectric layer
� 100: (64)

Box VI
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Figure 9. Fundamental frequency (!) of the smart
Functionally Graded (FG) plate versus the
thickness-to-side ratio considering di�erent Levy-type
boundary conditions (n = 1 and hp=2h = 0:2).

of the piezoelectric layer. For higher power-law indices,
increasing the value hp=2h leads to an increase in the
natural frequency with a steeper slope. To be speci�c,
upon increasing the mentioned thickness, when the core
plate is pure `Al', the natural frequency always follows
an ascending trend; therefore, parameter � is always
positive. According to Figure 7, for a speci�c value
of piezoelectric layer thickness, while increasing the
power-law index (moving from pure `Al2O3' to pure
`Al'), the frequency of the smart FG plate decreases
due to the lower value of elastic modulus of `Al' than
that of `Al2O3'. According to Figures 7 and 8, there is
an optimum value for the piezoelectric layer thickness
that results in a minimum natural frequency, which can
be used for designing smart FG plates and determining
proper piezoelectric thickness. Finally, the e�ect of
Levy-type boundary conditions on the variations in
the fundamental natural frequency of the smart FG
plate (with n = 1 and hp=2h = 0:2) versus the
2h=a is investigated in Figure 9. For all types of
boundary conditions, increasing the thickness-to-side
ratio intensi�es the plate sti�ness and consequently,
increases the natural frequency. The slope of the curves
depends on the type of boundary condition where the
curve related to the SFSF boundary condition with the
lowest constraint possesses the lowest slope and the
SCSC has the highest slope. As expected, at a speci�c
value of the thickness-to-side ratio, natural frequency
follows an upward trend by moving from the SFSF
boundary condition with the lowest constraint to the
SCSC case with the highest constraint.

4. Conclusion

The present study investigated the problem of free
vibration of an Functionally Graded (FG) core plate

with a pair of piezoelectric layers attached to its top
and bottom surfaces. To this end, a simple yet e�cient
four-variable re�ned plate theory was utilized that
yielded accurate results for both thin and thick plates.
Two opposite edges of the pale were simply supported
and two other edges were exposed to arbitrary bound-
ary conditions. The state-space approach and Levy so-
lution were employed to solve the governing equations.
To the best of the authors' knowledge, this is the �rst
time that this approach is proposed for free vibration
analysis of the mentioned smart FG plates in di�erent
Levy-type boundary conditions. An assessment of the
obtained results and their counterparts in the literature
revealed that the proposed theory and its correspond-
ing solution exhibited acceptable accuracy. This study
also evaluated the e�ects of di�erent parameters, the
results of which are summarized below:

� With an increase in the thickness-to-side ratio,
the plate thickness and consequently the mass and
sti�ness of the structure increased. Of note, the
increase in the sti�ness was more intensive than
that in the mass, hence an increase in the natural
frequency;

� Adding the piezoelectric layer to the main structure
or changing its thickness had considerable e�ects on
the sti�ness and mass of the structure as well as the
induced loading due to electromechanical coupling.
Depending on the value of each of the three above-
mentioned factors, the thicker piezoelectric layer
might result in an increase or decrease in the natural
frequency;

� For the given power-law index, an optimum value of
the piezoelectric layer thickness was found wherein
the natural frequency of the smart FG plate was
minimum. Determining this value could help design
the structure and determine the piezoelectric layer
thickness;

� More constraints at the edges would result in an
increase in the structural sti�ness and natural fre-
quency;

� As the aspect ratio of the plate (a=b) increased
(considering a constant value for a), the natural
frequency also increased due to the increase in the
plate sti�ness;

� Since the modulus of elasticity of `Al' was lower than
that of `Al2O3', increasing the power-law index led
to a reduction in the plate sti�ness and structural
natural frequency.

Nomenclature

Aij ; As11 Sti�ness coe�cient matrices
Bij ; Dij Sti�ness coe�cient matrices
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Gij ; Fij ;Hij Sti�ness coe�cient matrices
a; b Plate length and width
â Matrix de�ned for evaluation of the

boundary conditions
C; Q Matrix of elastic constant for the

piezoelectric layer and FG core plate
ci; qi Coe�cients in the transfer matrix
d Electric displacement vector
E Young's modulus of elasticity
e Piezoelectric constant matrix
f Distribution function of the in-plane

displacements
g De�ned function in strain tensor
h; hp Half-thickness of the FG plate and

Piezoelectric layer thickness
I0 to I5 Mass moment of inertia
j Imaginary unit (

p�1)
K Kinetic energy
k;P Constant vectors in the state-space

equation
L; l Matrices de�ned in the eigenvalue

equation
M;N; S Stress resultants
n Power-law index
�Pi Constant vector components in the

eigenvalue equation
Rij Matrix components in the eigenvalue

equation
T Transfer matrix
t Time
U Strain energy
Um; Vm Unknown parameters in Levy series

expansion
Wbm; wsm Unknown parameters in Levy series

expansion
u; v In-plane displacements in the x and y

directions
ui; vi Real and imaginary part of eigenvalues
V Volume of the plate
w Transverse displacement
wb; ws Bending and shear component of

transverse displacement
X Eigenvector
x; y; z Cartesian coordinates
Z State vector
� The angle of the sinus and cosine in

Levy solution
� Non-dimensional parameter

 Shear strain

�;  ; ��; ~; � Coe�cients in transfer matrix
" Normal strain
� Dielectric constant matrix
�i Eigenvalues
�i Parameters de�ned in the weak form

of the governing equation
�i Parameters de�ned in Maxwell's

equation
� Mass density
� Stress
� Poisson's ratio
' Parameter de�ned in the electrostatic

potential equation
'm Unknown parameter in Levy series

expansion
!m Natural frequency
�! Non-dimensional frequency
� Electric �eld intensity vector
� Electrostatic potential
`i and `ij Coe�cients in the free boundary

condition
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Appendix A

The coe�cients ci, cij , and cijm in Eqs. (40){(44) are
expressed as:

c1 =
A11 �2 � I0!2

m
A66

; (A.1)

c2 =
�(A12 +A66)�

A66
; (A.2)
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c3 =
�B11�3 + I1!2

m�
A66

; (A.3)

c4 =
(B12 + 2B66)�

A66
; (A.4)

c3s =
�D11�3 + I3!2

m�
A66

; (A.5)

c4s =
(D12 + 2D66)�

A66
; (A.6)

c5 =
(A12 +A66)�

A22
; (A.7)

c6 =
(A66�2 � I0!2

m)
A22

; (A.8)

c7 =
�(B12 + 2B66)�2 + I1!2

m
A22

; (A.9)

c7s =
�(D12 + 2D66)�2 + I3!2

m
A22

; (A.10)

c8 =
B22

A22
; (A.11)

c8s =
D22

A22
; (A.12)

c11m =
�3�2

�2
; (A.13)

c12m =
��3
�2

; (A.14)

c13m =
��1�2

�2
; (A.15)

c14m =
�1
�2
; (A.16)

c15m =
(�2�2 + �4)

�2
; (A.17)

c9s =
(D11�3 + c1� + q1~� I3!2

m�)
��

; (A.18)

c10s =

(D22c6 + c2� � (D12 + 2D66)�2 + q2~+ I3!2
m)

��
;

(A.19)

Eqs. (A.20){(A.23) are shown in Box A.I.

c15s =
((c15m � �2) (�3 � �2) + q7~)

��
; (A.24)

c9 = (q1 + c9sq8); (A.25)

c10 = (q2 + c10sq8); (A.26)

c11 = (q3 + c11sq8); (A.27)

c12 = (q4 + c12sq8); (A.28)

c13 = (q5 + c13sq8); (A.29)

c14 = (q6 + c14sq8); (A.30)

c15 = (q7 + c15sq8); (A.31)

where:

 = (B22c5 � (B12 + 2B66)�); (A.32)

� = G22 � c8B22; (A.33)

q1 =
(B11�3 + c1 � I1 !2

m�)
�

; (A.34)

q2 =
(B22c6+c2 �(B12+2B66)�2+I1!2

m)
�

; (A.35)

c11s =
(c3� � F11�4 + c11m(�3 � �2) + q3~+ I0!2

m + I4!2
m�2)

��
; (A.20)

c12s =
(D22c7 + c4 � + 2(F12 + 2F66)�2 + c12m(�3 � �2) + q4 ~� I4!2

m)
��

; (A.21)

c13s =
(c3s� �H11�4 �As11�2 + c13m(�3 � �2) + q5~+ I0 !2

m + I5 !2
m�2)

��
; (A.22)

c14s =
(D22c7s + c4s� + 2(H12 + 2H66)�2 +As11 + c14m(�3 � �2) + q6~� I5!2

m)
��

: (A.23)

Box A.I
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q3 =
(c3 �G11�4 � �1 c11m + I0!2

m + I2 !2
m �2)

�
;

(A.36)

q4 =

(B22c7 + c4 + 2(G12 + 2G66)�2 � �1c12m � I2!2
m)

�
;

(A.37)

q5 =
(c3s � F11�4 � �1 c13m + I0!2

m + I4!2
m�2)

�
;

(A.38)

q6 =

(B22c7s+c4s +2 (F12 + 2F66)�2��1 c14m�I4!2
m)

�
;

(A.39)

q7 =
(�1�2 � �1c15m)

�
; (A.40)

q8 =
(c8sB22 � F22)

�
; (A.41)

� = (D22 c5 � (D12 + 2D66)�); (A.42)

�� = H22 �D22 c8s � q8(D22 c8 � F22); (A.43)

~ = D22 c8 � F22: (A.44)

Appendix B

The factors `i and `ij in Eq. (58) are expressed as:

`1 = (B22c5 �B12�� 2B66�); (B.1)

`2 = (B22c6 + I1!2
m � 2B66�2); (B.2)

`3 = (B22c7 +G12�2 � I2 !2
m + 4G66�2); (B.3)

`4 = (B22c7s + F12�2 � I4!2
m + 4F66�2); (B.4)

`5 = (B22c8 �G22); (B.5)

`6 = (B22c8s � F22); (B.6)

`7 = ��1; (B.7)

`8 = (D22c5 �D12�� 2D66�); (B.8)

`9 = (D22c6 + I3!2
m � 2D66�2); (B.9)

`10 = (D22c7 + F12�2 � I4!2
m + 4F66�2); (B.10)

`11 = (D22c7s +H12�2 � I5!2
m +As11 + 4H66�2);

(B.11)

`12 = (D22c8 � F22); (B.12)

`13 = (D22c8s �H22); (B.13)

`14 = �3; (B.14)

Appendix C

For very thin plates, some of the elements of matrix I
in Eq. (61) may become extremely large or small. As
observed, followed by calculating the eigenvalues of the
transfer matrix, the real part of some eigenvalues ui in
(�i = ui + jvi ; j =

p�1) has relatively large positive
or negative values. This leads to computer under
ow or
over
ow due to the presence of an exponential function
in the coe�cient matrix. The eigenvalue equation is
given below:

[R]

264 e�1y 0
. . .

0 e�14y

375 fPg = f0g; (C.1)

[R] = [â] [X] : (C.2)

Eq. (C.3) is shown in Box C.I. If it is assumed that
eu1b=2 has a large positive value, then we continue as
follows. If parameter �P1 is de�ned as:

�P1 = eu1b=2P1; (C.4)

then, the following relationships will be derived:

Ri1e��1b=2P1 = Ri1(e�jv1b=2=eu1b) �P1 �= 0 � �P1;

i = 1; :::; 8; (C.5)

Ri1e�1b=2P1 = Ri1ejv1b=2 �P1; i = 8; :::; 14: (C.6)

Therefore, the �rst column of the coe�cient matrix is:�
0 0 � � � 0 R81ejv1b=2 R91ejv1b=2 � � �

R141ejv1b=2
�T

: (C.7)

Then, replace P1 by �P1. Therefore, if eu2b=2 has a large
negative value, the second column of the coe�cient
matrix is replaced by:�

R12e�jv2b=2 R22e�jv2b=2 : : : R72e�jv2b=2

0 0 : : : 0
�T

; (C.8)

and P2 is replaced by eu2b=2 �P2. The same procedure
should be applied to other columns of the coe�cient
matrix.
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2666666666666666664

R11e��1b=2 R12e��2b=2 � � � R114e��14b=2

R21e��1b=2 R22e��2b=2 � � � R214e��14b=2

...
...

...
R61e��1b=2 R62e��2b=2 � � � R614e��14b=2

R71e��1b=2 R72e��2b=2 � � � R714e��14b=2

R81e�1b=2 R82e�2b=2 � � � R814e�14b=2

R91e�1b=2 R92e�2b=2 � � � R914e�14b=2

...
...

...
R131e�1b=2 R132e�2b=2 � � � R1314e�14b=2

R141e�1b=2 R142e�2b=2 � � � R1414e�14b=2

3777777777777777775

8>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>:

P1
P2
...

...

...

...
P14

9>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>;

=

8>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>:

0
0
...

...

...

...
0

9>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>;

: (C.3)

Box C.I
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