
Scientia Iranica D (2022) 29(1), 135{149

Sharif University of Technology
Scientia Iranica

Transactions D: Computer Science & Engineering and Electrical Engineering
http://scientiairanica.sharif.edu

Reliability evaluation of software architectural styles
based on correlated component failure

S. Emadi�

Department of Computer Engineering, Yazd Branch, Islamic Azad University, Yazd, Iran.

Received 18 July 2020; received in revised form 3 July 2021; accepted 25 October 2021

KEYWORDS
Software architecture
styles;
Reliability evaluation;
Correlated component
failures;
Discrete-time Markov
chain;
Quality attributes;
Software architecture
design.

Abstract. This study aims to provide an e�cient and scalable approach to evaluate
the reliability of di�erent software architectural styles concerning correlated components
failures. To do so, a method based on the Discrete-Time Markov Chain (DTMC) model is
proposed. In the proposed method, software architectural styles are used for reliability
evaluation. The four main styles are transformed into Markov chain models and the
transfer matrix is established for them; then, by using the Bernoulli distribution, the
correlation between components is shown in the matrix and used in the evaluation process.
The proposed method is scalable so that it can be used for large software architectures
with heterogeneous and homogeneous styles. The evaluation results for the case study
demonstrate that this method enjoys greater accuracy than other methods for the prediction
of reliability of the software architectures. It is concluded that the proposed method is
viable enough for a preliminary estimation of the software architecture reliability and can
make a better comparison among various architectural styles to choose the most suitable
one from the available options.

© 2022 Sharif University of Technology. All rights reserved.

1. Introduction

Analysis, design, and implementation of software sys-
tems are intended for solving various problems and
data processing. Over time, the number of elements
and components of software systems has increased
and the structure of these elements and organizing
software has become more complex. In order to
control the complexity of software, software architec-
ture is needed [1]. After determining the priority
requirements, software architecture in the software
development life cycle encapsulates the fundamental
structures of a software system and the discipline of

*. Tel.: 035-31872707
E-mail address: emadi@iauyazd.ac.ir

doi: 10.24200/sci.2021.56444.4726

creating such structures and systems. This structure,
which shows the functional and non-functional require-
ments of the software, comprises components, relations
among them, and properties of both elements and
relations. Also, it provides an abstraction to manage
the system complexity and establish a communication
and coordination mechanism among components [2].

Since software architecture has a signi�cant role in
satisfying the quality attributes of a software system,
i.e. reliability, security, performance, availability, us-
ability, and maintainability, its analysis and evaluation
is essential to determining the level of satisfaction of
these quality attributes based on the structure of and
correlation between its components, because changing
a design aw, especially in large-scale software systems,
at the implementation and testing phase is more expen-
sive than that at the architectural design stage [3].

However, designing a software architecture is a

136 S. Emadi/Scientia Iranica, Transactions D: Computer Science & ... 29 (2022) 135{149

complex activity throughout the software development.
In the process of determining the components and
the relationships between them, the non-functional
requirements (quality attributes) of the software must
be considered and software architectures be established
based on quality attributes.

Architectural styles and patterns provide a way
to organize software components so that the designer
can easily build the software and satisfy customer
functional and non-functional requirements. Software
architectural styles at the highest level of granularity
show the layers and high-level modules of software
systems, relationships between them, and interaction
with each other.

Bachmann et al. [4] de�ned the software archi-
tectural style in this way: \a set of constraints you
put on your development to elicit desirable properties
from your software architecture. These constraints
may be topological, behavioral and communication-
oriented". Also, \A style is a specialization of element
and relationship types, together with constraints on
how they may be used. By identifying element and
relationship types, styles identify the architectural
structures that architects design to achieve the system's
quality and behavioral goals."

Moreover, styles address non-functional require-
ments, i.e., reliability, security, performance, avail-
ability, usability, and maintainability, and narrow the
solution space when creating an architecture, because
architectural styles de�ne the corresponding elements
and the rules of how they interact [5].

Therefore, choosing an appropriate architectural
style is one of the important decisions in software
architectural design [6]. In addition to the description
of the software and its decomposition into components,
software architectural styles have a major impact on
qualitative attributes of designed software (e.g., relia-
bility, performance, and security) [3], because architec-
tural styles in the software architecture design process
guarantee the satisfaction of their quality requirements.
The use of a method or a model for the evaluation of
qualitative attributes of styles enables software design-
ers to make design decisions more accurate and select
an appropriate style for implementation according to
the desirable qualitative attributes of the system [7].

Given the multiplicity of qualitative attributes,
reliability as one of the e�ective attributes in determin-
ing the quality of the software is de�ned as \the proba-
bility of the failure-free software operation in a speci�ed
environment and in a period of time" [8,9]. Empirical
studies indicate that because the components of a
software system are correlated, component failures are
often correlated [10]. On the other hand, a majority
of the software reliability assessment approaches as-
sume that component failures are independent, while
recent studies indicate that component failures are

often correlated with other components [10]. Since
the Correlated Component Failures (COCOF) may be
e�ective in estimating the reliability of the software,
they should be explicitly incorporated in the reliability
evaluation [11].

Fiondella et al. [10] claimed that the most con-
temporary analysis approaches were not scalable be-
cause they required a large number of parameters and
were computationally ine�cient and these approaches
required explicit characterization of the joint distribu-
tion of system components. Joint distribution is the
probability of combining all failure states of software
components, which is characterized by using two meth-
ods. In [12], the probability of joint distribution was
calculated based on the reliability knowledge of indi-
vidual components and the communication between
them. In [13], the probability of joint distribution
was estimated directly instead of computing compo-
nent parameters. Each of these methods requires
exponential computing for software consisting of n
components. The drawbacks of methods show that a
technique that requires fewer parameters and performs
e�cient computation is essential to analyzing the re-
liability of software based on a large scale that also
considers the correlated component failures. There-
fore, they presented an e�cient methodology based
on the Multivariate Bernoulli (MVB) distribution [14]
to analyze the reliability of a software application
considering the correlation between components. They
used fewer parameters in their proposed method, while
they eliminated many other computational methods
by selectively characterizing the probability of compo-
nents that contribute to system reliability. However,
the method proposed by Fiondella et al., despite
reducing software reliability calculations using MVB
distribution, could not use software architecture styles
to reduce the computing space.

Previous studies have not conducted the relia-
bility evaluation of architectural styles based on the
failure of correlated components nor have they not
employed software architectural styles in the process
of evaluating the reliability of software architecture
based on correlated components. In their research,
Franco [15] and Wang et al. [16] employed the Markov
model to evaluate the reliability of software archi-
tectural styles. They did not consider component
correlation in the reliability evaluation process; there-
fore, they require much computation to evaluate the
reliability of the software architecture. Franco [15]
exploited the formalism of Architectural Descriptive
Languages (ADLs) to automatically describe mathe-
matical models to express the reliability behavior of
a system. Then, by extending the concept of \auto-
mated evaluation", they conducted a detailed analysis
to identify the architectural weaknesses a�ecting the
system. This analysis aims to provide architects with

S. Emadi/Scientia Iranica, Transactions D: Computer Science & ... 29 (2022) 135{149 137

information about improving reliability and suggesting
other options. Wang et al. [16] calculated the reliability
of the software system upon transforming software
architectural styles to Markov models.

Moreover, Fiondella et al. [10] considered the
correlation between components in evaluating software
architecture and demonstrated that their proposed
method required less computational use of the MVB
distribution and was therefore scalable, but did not use
software architectural styles.

In this research, an e�cient method is presented
for evaluating the reliability of di�erent software archi-
tectural styles by considering the correlated component
failures to achieve a more accurate result so that the
architect would feel aided in selecting the appropriate
style.

Since there are di�erent types of architectural
styles with no general and public classi�cation in
a way that arranges styles into a single framework,
this study focuses on the general homogeneous styles
including batch-sequential style, parallel style, fault
tolerance style, and call-and-return style. The reason
for choosing these styles is their adaptation properties
with other styles, and numerous additional architec-
tural styles can be considered as the development
of these four types. For example, the hierarchically
heterogeneous style and the layered style are similar to
the serial and parallel styles, and the client-server style
is similar to the call-and-return Style [1].

In order to evaluate the software reliability in
this study, the Discrete-Time Markov Chain (DTMC)
model [14] is used; in other words, according to the
characteristics of software architecture and control
ow between architectural components, the Markov
model [17] is derived from the architecture styles and
�nally, the overall reliability concerning the correlated
component failures will be calculated.

Because the proposed method uses architectural
styles, MVB distribution, correlated components, and
fewer parameters to evaluate the reliability of the
software architecture, the scalability of the system is
enhanced because only the main components of the
system are evaluated and the low-level components are
not considered in the calculations.

The contributions of this paper are as follows:

{ Using software architectural styles for reliability
evaluation by considering correlations between com-
ponents;

{ Using Markov chains in the process of evaluating
the reliability of software architectural styles based
on correlated components;

{ Reducing calculational burden and enhancing the
scalability of software architecture by considering
the main components in architectural styles and

explicit characterization of the joint distribution of
system components.

The rest of this study is organized as follows. Section 2
reviews the previous studies related to the topic.
Section 3 presents a predictive method for reliability
evaluation of homogeneous and heterogeneous software
architectural styles with regard to correlated compo-
nent failures. Section 4 contains the case study and
�nally, Section 5 includes the conclusions and future
studies.

2. Literature review

Reliability models are used for predicting, monitoring,
and evaluating software reliability. Working on soft-
ware reliability models began in the 1970s and the
�rst model was introduced in 1972 [8]. Some studies
have focused on reliability modeling during the testing
phase [18]. One of these models is called the black box
model [19], which considers the software as a black box
and it models the interactions made only with the out-
side world, regardless of its internal structure. Recent
research e�orts have targeted developing methods for
predicting the reliability of a software application that
could be applied at the software architecture design
phase.

Cheung [20] applied the discrete-time Markov
chain model for the prediction of software reliability
without using software architectural styles. This model
calculates software reliability concerning components
reliability. Cheung's model assumes that the failures
of the components are independent and the reliability
of each component is determined by the probability of
proper functionality of the component.

Wang et al. [16] presented an analytical model
for estimating the reliability of software architectural
styles based on the discrete-time Markov chain model
regardless of the failure of the correlated components.
In this model, according to the reliability of each com-
ponent, operational features, and software architecture,
the system architecture view turns into a state view.
In fact, they used the Cheung model for the four basic
homogeneous and heterogeneous styles.

Kristiansen et al. [21] considered the e�ect of
components dependencies in assessing the reliability of
the system and used the discrete-time Markov chain
model for software modeling. They used direct cal-
culation, Birnbaum measurement, and Principal Com-
ponent Analysis (PCA) techniques to select the most
important components and the dependencies among
them. This method is de�ned only for sequential
or parallel software. They demonstrated that the
proposed method had more accurate results than the
approach that assumes the components independently.

Fiondella [22] presented an e�cient algorithm

138 S. Emadi/Scientia Iranica, Transactions D: Computer Science & ... 29 (2022) 135{149

to analyze the reliability of a software application
according to the correlated component failures with-
out software architectural styles. The input of the
algorithm includes the component reliability and de-
pendency matrix; the output includes the probability
of joint distribution of software components using
Poisson's variables. The above researchers performed
this technique on four di�erent system architectures,
and the results were compared with those of traditional
methods that neglected correlation. They concluded
that system reliability with correlated component fail-
ures was higher than the software with independent
components. The aw of these methods is high and
ine�cient calculations; they are not scalable and are
not suitable for large software applications. Fiondella
et al. [10] reformed their previous methods to provide a
new approach that considers only the joint distribution
of components a�ecting software reliability. Conse-
quently, it is scalable and can be used in evaluating
large systems.

Brosch et al. [23] expressed the drawbacks of
existing methods that constrain the applicability and
accuracy of reliability evaluation as follows:

i. Many methods do not consider the e�ects of
software operational pro�le (sequence of compo-
nent calls and values of the input parameters)
on the control diagram and data ow of software
architecture;

ii. Many methods do not consider the e�ects of
software's execution environment on reliability.
Because even if the software is error-free, failure
occurs again for some reasons such as unavailabil-
ity of hardware sources;

iii. Many methods use the Markov model in the model-
ing software system, which does not include many
software engineering concepts (input parameters,
interface descriptions, connectors, etc.).

To overcome these limitations, a new technique is pro-
vided to evaluate the reliability of software architecture
using a Palladian Component Model (PCM), which is
similar to the UML diagram. It involves all e�ective
factors in the architecture such as the integration of all
architectural aspects, software operational pro�le, and
execution of the environment (taking into consideration
di�erent situations of hardware sources availability) to
increase the accuracy of reliability assessment.

Li et al. [24] provided an e�cient approach to
evaluating software reliability in regard to the failure
of the correlated components that estimates the exact
dependencies between components via the multivariate
Bernoulli distribution because most approaches use
hypothetical data instead of measuring detailed data
for coupling parameters of components. In this paper,
a uni�ed framework for measuring components corre-

lation in the software is formed based on a comprehen-
sive review of object-oriented and procedure-oriented
frameworks. Then, di�erent types of dependencies are
determined based on these two frameworks. Finally,
the software is modeled by DTMC.

Delac et al. [25] presented a method for improving
the reliability of SOA-based applications. Service-
Oriented Architecture (SOA) is an architectural style
that provides strategies for the development of loosely
coupled distributed systems. They provided a method
to enhance the reliability of services in designing the
most appropriate service composition with a focus on
the reliability of critical components. This method
includes reliability estimation, weak point recommen-
dation, and weak point strengthening based on the
Bayesian belief network.

Anjum and Mustafa [26] analyzed the failure
probability of software correlated components before
implementation and detected the factors that cause
software correlated failures in the Pakistan industry.

Aleti et al. [27] used Polynomial Chaos Expansion
(PCE) as an exact method for uncertainty propagation
and estimated the performance of a software system.
Experimental results of di�erent case studies from
di�erent phases of software development illustrate that
their method can estimate the robustness of various
performance indices accurately and rapidly.

Zhu and Pham [28] proposed a Non-Homogeneous
Poisson Process (NHPP) software reliability model
based on software fault dependency and imperfect fault
removal. They de�ned two types of software faults and
a two-phase debugging process for this model assuming
that only Type-2 (dependent) software faults exist at
Phase 2.

Li et al. [29] proposed an approach to evalu-
ate software architecture evolution. In this process,
they used sequential diagrams to model components
interaction, that is, an SPIN-based model checking
to model and verify software architecture evolution.
They �rst described the system as an automata model
to represent the desired properties for veri�cation.
The model was then veri�ed to see if it satis�ed the
properties in the state space. Cortellessa et al. [30]
proposed a model-driven approach to improving the
availability of their software systems through refactor-
ing actions. To evaluate the availability of software
systems, they mapped UML models onto Generalized
Stochastic Petri Nets (GSPN) analysis models, and vice
versa. They demonstrated that their proposed method
generated an analyzable availability model from the
software architecture descriptions and a valid software
architecture back model from the availability model.

Sedaghatbaf and Azgomi [31] introduced a
SANAM model as a formal method for modeling
software architectures and evaluating their quality
attributes based on Stochastic Activity Networks

S. Emadi/Scientia Iranica, Transactions D: Computer Science & ... 29 (2022) 135{149 139

(SANs). They used Hierarchical Colored Stochastic
Activity Networks (HCSANs) for architecture model-
ing and used activity-marking oriented reward struc-
tures for evaluation of quality attributes such as
security, dependability, and performance. In an-
other research, Sedaghatbaf and Azgomi [32] intro-
duced SQME as a framework for automatic evalua-
tion of software architecture models. The framework
uses evolutionary algorithms for architecture improve-
ment, evidence theory for uncertainty handling, and
EV/TOPSIS for making trade-o� decisions. In their
method, they considered attribute inter-dependency
and presented an algorithm to transform the software
architecture into a formal model; in addition, they
demonstrated how their model could be used to eval-
uate reliability and security. Their proposed frame-
work used standards such as UML to model software
architecture and MARTE to add performance and
time information to UML diagrams. Also, upon using
the multi-criteria evolutionary algorithms available in
SQME, the initial architectural model is iteratively
modi�ed and evaluated until Pareto-optimal models
are found and �nally, an EV/TOPSIS-based method
is proposed to select the best model from the Pareto
set. Also, in SQME, uncertainty in model parameters is
expressed through intervals of possible values. In this
study and the related previous research, the authors
considered the uncertainties in the model parameters.
In [33], DAM pro�les were used to determine the
reliability parameters in the UML diagram. The
resulting model was then transformed into a fault tree
to evaluate reliability. Similar to the case of [32],
evidence theory is used to model the uncertainties in
input parameters, propagate them through the fault
tree, and determine their impacts on the output mea-
sure. They used UML diagram for modeling software
architectures and the DAM pro�le for specifying relia-
bility parameters in the UML model. The constructed
model is transformed into a fault tree for reliability
evaluation. The experimental results show that the
estimated reliability bounds provide useful information
for objective decision-making.

Ouhbi [34] performed a systematic mapping study
to organize the existing software architecture evalu-
ation approaches according to six classi�cation cri-
teria: research types, empirical types, contribution
types, software quality models, quality attributes, and
software architecture models. She used 8 mapping
questions for this classi�cation.

Babar et al. [35] focused on achieving an evidence-
based understanding of various aspects of software
architecture evaluation activities, in particular improv-
ing the development of scenario pro�les to describe
desirable quality attributes. They presented a report
on the �ndings of an empirical study of software
architecture evaluation to evaluate the e�ectiveness of

scenario development meetings in terms of the quantity
of scenarios gained and lost in the evaluation process.

Bani Milhem [36] introduced the architectural
evaluation approach using implemented patterns and
tactics to consider values of satisfaction of quality
attributes (non-functional requirements). He extracted
the implemented architectural patterns and tactics
from a software architecture's source code by Archie
tools. Then, he used the Goal-oriented Requirements
Language (GRL) for documenting and modeling the
patterns/tactics implemented by software architecture
and their impact on quality attributes. Finally, the
author employed GRL/jUCMNav evaluation strategies
to get the satisfaction values of the quality attributes.

Zhang et al. [37] mapped the software architecture
model to the time-extended Petri net that uses a state
diagram to solve the problem and then, applies the
state transition probability matrix to calculate the re-
liability of the entire system. They divided transitions
into time transitions and instantaneous transitions in
the time-extended Petri net model and introduced
time-delay reliability and temporal reliability to time
transition.

These researches have the following drawbacks:

1. Some of them have only paid attention to the evalu-
ation of quality attributes at the architectural level.
To increase scalability, it is more appropriate to
consider an architectural design based on software
architectural styles or patterns;

2. In most researches, the correlation between com-
ponents is not used in the software architecture
evaluation process. However, in the process of
evaluating the reliability or security of software
architecture, the failure of one component a�ects
the other components;

3. Few studies have used the Markov model with
MVB distribution for evaluation. However, the
Markov model, like the Petri Net, shows well the
di�erent states between the components and the
dependencies between them.

3. Method of analysis

In this section, a scalable method for assessing the
reliability of homogeneous and heterogeneous software
architectural styles is proposed concerning the corre-
lated component failures. Figure 1 shows the processes
of the reliability evaluation method in homogeneous
styles.

The abbreviations used are described at the end
of this research.

Step 1: De�ning the architecture with a state
diagram. In the �rst step, the components of the
software and the transmission of ow control between

140 S. Emadi/Scientia Iranica, Transactions D: Computer Science & ... 29 (2022) 135{149

Figure 1. Processes of reliability evaluation method in
homogeneous styles.

them are described by the state diagram, which
de�nes the dynamic behavior of the components;

Step 2: Mapping the state diagram to the
Markov model. The state diagram is mapped to
Markov's model. This mapping can be either one-
to-one or many-to-one. In other words, the states
of several components may be interdependent while
being executed; thus, they are mapped to one state
in the Markov model (many-to-one mapping) and
there is a possibility that the component states of
the software are independent of each other in which
case they are mapped in separate states (one-to-one
mapping);

Step 3: Creating a transition probability ma-
trix of P and a transition matrix of M . In the
Markov model [17], the system is placed in a speci�c
state in each time period and the transition from one
state to another state changes randomly. To analyze
this model, the probability of transition between
di�erent states must be calculated. If the Markov
model has m state, a pm�m matrix is considered
where each pij shows the probability of transfer from
state i to state j. It is worth mentioning that the
probability of transfer between the two states follows
a Markov feature, that is, a transfer from Si to
Sj is merely dependent on the current state. The

probability of transition between di�erent states can
be obtained in two ways [16]:
1. The operational pro�le may be used if available;
2. If it is assumed that the Markov model has m

states and if there are more than one transfer to
other states in one state of this model, then to
�nd the probability of transition from the state
Si to the state Sj , two states will be considered
according to Eq. (1) as follows:

pij =

8>><>>:
t(i; j)=

mP
n=1

t(i; j) Si reach to Sj

for i � 1, j � m
0 otherwise

(1)

i. If a transition between the two states exists, the
ratio of the number of transfers from state i to
state j to the total number of transfers that
may occur from state i to other states should be
calculated;

ii. If there is no transfer from the state Si to state
Sj , then pij is measured as zero in the matrix.

Transfer matrix of M in homogeneous styles based on
Wang's model [16] is described in the following, where
M(i; j) is the probability of successful transition of
reaching the state Sj from Si.

Batch Sequential Style. Since only one compo-
nent is running in this style at any moment, the
control ow is transferred to only one of its successors
upon the completion of a component [1]. Assuming
that the architecture is composed of K components
with K states in a Markov chain, the transfer matrix
of M can be obtained as follows:

M(i; j)=

(
RiPij Si can reach Sj for i�1, j�k
0 Si can reach Sj for i�1, j�k (2)

where Ri represents the reliability of component Ci.

Parallel style. This style includes multiple compo-
nents that are run concurrently. This will, therefore,
reduce the service time required [1]. For k com-
ponents, the transition matrix can be obtained as
follows:

M(i; j) =

8><>:RiPij Si =2 SpQ
RnPnj Si 2 Sp

0 Si cannot reach Sj

(3)

Fault tolerance style. This style is usually used
to improve the availability of software systems. In
addition, this style includes fault components that
represent a set of backup components and primary
components. The primary and backup components

S. Emadi/Scientia Iranica, Transactions D: Computer Science & ... 29 (2022) 135{149 141

are placed in parallel. Therefore, if one of these
components fails, the backup components are still
able to provide the services and thus, overcome the
primary component failure. Moreover, if the new
primary component fails, the replacement of the new
primary component will be done by another backup
component. This will be executed as long as a backup
component is available to take over its responsibilities
for the failure of the primary component [1]. As-
suming that there are k components, the transition
matrix can be constructed as follows:

M(i; j)=

8>>>>>>>>>><>>>>>>>>>>:

RiPij Si =2 Sb

Ra1 +
arP
q=a2

� q�1Q
m=a1

(1�Rm)Rn
�

Si2Sb and Si include Ca1 to Car

0 otherwise

(4)

Call-and-return style. This style has been ex-
tensively used in the design of distributed systems.
In the call-and-return style, the execution of one
component usually requires the services provided by
other components. Accordingly, a called component
can be invoked by a calling component several times.
Therefore, the execution of the called component
may occur many times. Assuming that there are
k components, the transition matrix M can be
constructed as follows:

M(i; j)=

8>>><>>>:
RiPij Si can reach Sj
pij Si can reach Sj and Sj is callee

for i � 1, j � k
0 otherwise

(5)

Heterogeneous styles. For an architecture com-
posed of heterogeneous styles, the transition matrix
M can be computed through Eq. (6).

M(i; j) =

8><>:0 Si cannot reach Sj
pij Si is caller and Sj is callee
�ipij otherwise

(6)

The calculation of �i is done according to the type of
style and the number of running components.
Step 4: Determining MVB parameters and
MVB encoding. In this step, MVB [10] is carried
out for software component parameters (such as the
reliability of components and dependency between
them). Assume that the s-expected reliability of
component i (E(Ri)) is determined by a random
variable of �i:
�i = RiPij from matrix M: (7)

Correlations between the two components can be

demonstrated by the correlation matrix of
P

where
each element pij shows the correlation between the
components i and j. Finally, MVB distribution is
presented by MVB (�;

P
). Component's reliability

in MVB distribution ranges between [0, 1] and the
correlations between the two components are in the
range of [-1, 1] [38]. These values can be derived from
operational pro�les [10]. Then, MVB components
encode parameters as a function of independent
Poisson variable Y . Encoding algorithm is as follows:
i. In the �rst iteration (K = 1), �ij is calcu-

lated according to Eq. (8) and is shown as a
matrix �1 [10]. �ij is the parameter of the
correlation encryption rate between i and j. In
fact, elements of the matrix, including Poisson
rates of �ij , are calculated as a function of the
MVB parameters (�i; �j ; �ij) in which �ij is the
correlation between the components i and j [10]:

�ij = ln

1 + �ij

s
(1� �i)(1� �j)

�i�j

!
: (8)

Since �ji = �ij , matrix � is a symmetric matrix.

�n�n =

2664�11 �12 � � � �1n
0 �22 � � � �21� � � � � � � � � � � �
0 0 � � � �nn

3775 :
In this step, the minimum value of the element
�kij is selected from the matrix �k and is con-
sidered as the rate of the Poisson variable YK .
Poisson variable YK determines the correlation
between the components i and j. If the value is
equal to 1, the components i and j fail. Then, the
components i and j are added to set Sk, which
consists of a set of correlation components;

ii. If the minimum value of �kij in the matrix �k
is subtracted from the other �ij values in the
matrix, where i; j 2 Sk and i � j, those
components are added to the Sk set;

iii. Matrix �k+1 is obtained by subtracting the min-
imum element of �ki;j from the matrix elements
of �k [22] where i; j 2 Sk and i � j, according
to Eq. (9):

�k+1
ij = �kij � �kmin: (9)

iv. If all matrix elements are equal to zero, go to
Step 6. Otherwise, K = k+1 and the encryption
algorithm is repeated from Step 2. Finally, this
process continues until all the elements of the
matrix � are reduced to zero;

v. The result of the encryption algorithm includes
K Poisson variables (in which zero represents

142 S. Emadi/Scientia Iranica, Transactions D: Computer Science & ... 29 (2022) 135{149

the non-occurrence of the event (zero events)
and lack of component failure) and Sk set to be
displayed in a table format.

Then, based on the Poisson variable rate (Y k) ob-
tained from the encryption algorithm, zero event
probability of Yi Poisson variables [22] is calculated
according to Eq. (10):

xi = PrfYi = 0g = e�yi : (10)

Step 5: Estimating architecture reliability. In
this step, an e�cient algorithm is utilized for software
reliability evaluation that considers the component's
correlation. This algorithm calculates only the prob-
abilities of those combinations of components that
are e�ective in reliability according to the structure
and architecture of the system as they assess the
reliability of the system.

The algorithm begins while assuming that all
Poisson variables are zero events. The algorithm
input is minimal cut-set that is determined based
on system architecture and the output is its tree
structure. The purpose of this step is to �nd those
combinations of Poisson variables that are e�ective
in the reliability of the software. They should be
considered in estimating the reliability of the system.
The algorithm is given as follows:
i. The algorithm starts with a state in which all

Poisson variables Y are zero. This state forms
the root node at the zero level of the tree;

ii. In the �rst iteration, the root node is produced
m1 = n(n+1)=2 (n is the number of components)
as child. In each of these m1 child nodes, a single
distinct Poisson variable Yi is set to 1 (1 � i �
m). Then, for each node, the algorithm speci�es
a set of components that have failed due to Yi =
1. If this set contains one or more components of
the cutset, the node is considered as a leaf of the
tree;

iii. In the second iteration, after evaluatingm1 nodes
in a tree, subsets of nodes that do not lead to
system failure are determined. For each of these

nodes, child nodes are created. A child node is
a combination of zero and one along with Yi and
Yj , where i < j, Yi = 1, and Yj = 1 specify
the failed components set. Each of the nodes
(failed components per node) is compared with
the cutset. If it leads to system failure, the
node will be removed from further consideration.
Condition i < j ensures that each leaf is a
distinct combination of the Poisson variables;

iv. The algorithm terminates if it fails to produce
further nodes. The above steps ensure that the
algorithm produces and checks all e�ective com-
binations that contribute to system reliability;

v. At the end of the algorithm, nodes or combi-
nations of Poisson variables that a�ect system
reliability will be detected and mapped to the
joint distribution of components.

Finally, the possibility of the joint distribution of
components (PrfRg) is calculated. Total calculated
probabilities of one or more Poisson variable com-
binations, which are mapped to a component joint
distribution, are employed to calculate the possibility
of the component joint distribution. The probability
of Poisson variables Yi with zero events is denoted by
xi and the non-zero probability is denoted by xi = 1�
xi. Since the Poisson variables are independent, the
Poisson probability of each combination of variables
can be calculated by xi and xi. Finally, Eq. (11) is
used to estimate the reliability of the system:

E bAcorrc =
X

(E bAc jR)� prfRg;
P rfRg = X1 �X2 � � � � �Xn�(n+1)=2; (11)

where PrfRg is the possibility of component joint
distribution and (E[A]jR) is the conditional software
reliability estimate for each possible combination of
operational and failed components.

Figure 2 shows the state diagrams of the batch
sequential, the parallel, the fault-tolerance, and the
call-and-return styles and their Markov models. Also,
Eq. (3) is used to assess the reliability of each style,
and Table 1 shows the values of their parameters.

Table 1. Reliability calculation of each style.

Style's name Output (E[A]jR) Prfrg (E[A]jR)� PrfRg
Sequential style 1111 1.0000 0.7969 0.7969

Parallel 111 1.0000 0.7926 0.7926

Fault tolerant 111 1.0000 0.8732 0.8732

Call and return

1001 0.4000 0.0010 0.00040
1011 0.4000 0.0456 0.01824
1101 0.5263 0.0184 0.00968
1111 1.0000 0.7969 0.79690

S. Emadi/Scientia Iranica, Transactions D: Computer Science & ... 29 (2022) 135{149 143

Figure 2. Architectural styles and their Markov models.

Figure 3 shows the model steps for reliabil-
ity evaluation of heterogeneous styles [16] in sum-
mary. As the �gure shows, in the �rst step, the
heterogeneous architecture of the system needs to
be de�ned by a state diagram. In the second
step, available styles in the software architecture are
detected. Moreover, in heterogeneous architecture,
architectural styles may have shared commonalities,
i.e., a component(s) may belong to several di�erent
styles. At this stage, based on the number of architec-
tural styles, separate sets are considered that include
components related to that style. If a software (G)
has x components and indicate each architectural
component with Ca, the following sets to separate the
components of each style are de�ned as follows [16]:

� Set B is created for the batch-sequential style;
� Set P is created for the parallel style;
� Set F is created for the fault tolerance style;

� Set C consists of the caller components that
may call one or more components during their
implementation;

� Set S is considered for the callee components in
the heterogeneous architecture.

It should be noted that if components belong to
more than one particular style, it should be added
to both sets that create a commonality between sets.
In the next steps, state diagrams are mapped to
the Markov model and they are combined with the
method developed by Wang [16] to become a global
Markov model.

In the next step, the probability matrix P and
the transfer matrixM based on the correlated compo-
nent failures are created. In order to build transition
matrix M in the heterogeneous software architecture,
Eq. (6) is used. �i is measured according to the
styles and number of components used in the state

144 S. Emadi/Scientia Iranica, Transactions D: Computer Science & ... 29 (2022) 135{149

�i =

8>>><>>>:
�� only c� is in si
1�Q

�
(1���) 8 c�i in si and multiple fault tolerance component are executedQ

�
�� 8 c�i in si and multiple parallel component are executed

(12)

Box I

Figure 3. The model steps to evaluate the reliability in
heterogeneous styles.

(Si) based on Eq. (12) as shown in Box I. The two
�nal steps are similar to homogeneous styles.

Also, Table 2 shows the reliability value of the
proposed method for di�erent architecture styles in
comparison to the Wang's [16] method.

4. Case study

In this section, a case study using the proposed method
is evaluated. Assume that the software architecture
consists of eight components of C1; C2; � � � ; C8 [39].

Table 2. The reliability value of the proposed method
and Wang's method.

Name of
styles

Proposed
method

Wang
method

Batch sequential 0.7969 0.7669

Parallel 0.7926 0.7668

Fault tolerance 0.8732 0.8536

Call and return 0.8252 0.7261

The software comprised 3 styles: batch sequential
architectural, call-and-return, and fault tolerance. All
the required information about the architecture of the
system is summarized in Table 3 [39].

The state diagram is depicted in Figure 4(a). The
components that are inside the dotted oval (C1 and C2)
are fault tolerance style components. Components of
C3, C4, and C5 are characterized by call-and-return
relationships. Component C3 is the caller component,
which may call C4 and C5 during their execution.
Finally, Cstart, C3, and C6 are batch sequential style
components.

According to the above description, some com-
ponents belong to more than one particular style.
These components should be entered into set styles.
For example, C3 as a caller component calls other
components and it is executed sequentially. Therefore,
it should be considered in both sets B and C. Thus,
set G is created for architecture and the components of
each style are given below:

G = fC�jcomponent C� 2 B [F [C [Sg;
B = fCstartg [fC3g [fC6g = fCstart; C3; C6g;
F = fC1; C2g C = fC3g S = fC4; C5g:

Then, the state diagram is mapped to the Markov
model. To create Markov models in the heterogeneous
architecture, Markov models derived from the styles
are combined. The integration between modes is done
in the many-to-one mapping of the shared Markov
models. The Markov system models are depicted in
Figure 4(b).

In the following, the transition probability of
matrix P for the Markov model is created. Also,

S. Emadi/Scientia Iranica, Transactions D: Computer Science & ... 29 (2022) 135{149 145

Table 3. Operating behavior of the system [39].

Component Reliability Transition
probability

cstart 0.955 pstart1 = 0:5, pstart2 = 0:5
c1 0.827 p13 = 1:00
c2 0.781 p23 = 1:00
c3 0.886 p31 = 0:11, p32 = 0:11, p34 = 0:11, p35 = 0:22, p36 = 0:45
c4 0.918 p43 = 1:00
c5 0.787 p53 = 1:00
c6 0.944 p6end = 1:00
cend 1.0

Figure 4. Description of system architecture.

to calculate the transition matrix M , the Markov
model and Eq. (6) are used. Since some fault-tolerant
components are running in state S2, the calculation of
�i is performed using Eq. (12) as follows.

�2 =1� [(1� �1)� (1� �2)]

=1� [(1� 0:827)� (1� 0:781)] = 0:962;

p12 = pstart 1 = pstart 2 = 1:00;

p23 = p13 = 1:00;

P =

2666666664
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0:22 0 0:11 0:22 0:45 0
0 0 1 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0

3777777775 ;

M=

2666666664
0 0:955 0 0 0 0 0
0 0 0:962 0 0 0 0
0 0:195 0 0:11 0:22 0:399 0
0 0 0:918 0 0 0 0
0 0 0:787 0 0 0 0
0 0 0 0 0 0 0:944
0 0 0 0 0 0 0

3777777775 :
The MVB parameters, including the reliability of the
components and the correlation between components,
are as follows:

R =h�1 =0:955; �2 =0:962; �3 =0:886;

�4 =0:918; �5 =0:787; �6 =0:944; �7 =1:000i;

X
=

0BBBBBB@
1:0 0:289 0:191 0:123 0:042 0:055

1:0 0:331 0:067 0:101 0:102
1:0 0:100 0:179 0:025

1:0 0:078 0:149
1:0 0:070

1:0

1CCCCCCA :

146 S. Emadi/Scientia Iranica, Transactions D: Computer Science & ... 29 (2022) 135{149

Table 4. Results of the encryption process of the MVB system.

Repetition (k) �kmin Set sk Repetition (k) �kmin Set sk

1 0.0022 f1,2,3,4,5,6g 12 0.0009 f1,2g
2 0.0007 f1,2,4,5,6g 13 0.0079 f4,5g
3 0.0011 f1,2,3,4,5g 14 0.0088 f2,3g
4 0.0007 f1,2,3,5g 15 0.0118 f2g
5 0.0010 f3,4,5g 16 0.0242 f3,5g
6 0.0020 f2,5,6g 17 0.0296 f1g
7 0.0037 f2,3,5g 18 0.0488 f6g
8 0.0039 f5,6g 19 0.0661 f3g
9 0.0040 f1,3,4g 20 0.0663 f4g
10 0.0024 f3,4g 21 0.1921 f5g
11 0.0068 f1,2,3g

Table 5. The probability of zero events for Poisson
variables.

Yk xk Yk xk
Y1 0.9978 Y12 0.9991
Y2 0.9993 Y13 0.9921
Y3 0.9989 Y14 0.9912
Y4 0.9993 Y15 0.9883
Y5 0.9990 Y16 0.9761
Y6 0.9980 Y17 0.9708
Y7 0.9963 Y18 0.9524
Y8 0.9961 Y19 0.9360
Y9 0.9960 Y20 0.9359
Y10 0.9976 Y21 0.8252
Y11 0.9932

In the following, the �rst repetition of the encryption
algorithm is done and the matrix �1 is created:

�1 =26666664
0:0460 0:0124 0:0148 0:0079 0:0047 0:0029

0:0387 0:0233 0:0040 0:0104 0:0049
0:1210 0:0107 0:0329 0:0022

0:0856 0:0120 0:0108
0:2395 0:0088

0:0576

37777775 :
The number of non-zero elements of the matrix �1 is
21; thus, 21 matrices of � must be produced by the
encryption algorithm until all elements become zero.
The results of the encryption process are shown in
Table 4, briey. Each row represents an iteration; the
minimum value in each iteration matrix is considered
as a Poisson variable rate of Yk and set Sk. Table 5
indicates the probability of zero events for Poisson
variables Yi, which is calculated according to �kmin rate
in Table 4 and Eq. (9).

Table 6. The �rst tree level study system.

Poisson variables
combinations

Joint
distribution

of component
Reliability

100000000000000000000 000000 No
010000000000000000000 001000 No
001000000000000000000 000001 No
000100000000000000000 000101 No
000010000000000000000 110001 No
000001000000000000000 101100 No
000000100000000000000 100101 No
000000010000000000000 111100 No
000000001000000000000 010011 No
000000000100000000000 110011 No
000000000010000000000 000111 No
000000000001000000000 001111 No
000000000000100000000 111001 Yes
000000000000010000000 100111 No
000000000000001000000 101111 No
000000000000000100000 110101 No
000000000000000010000 011111 No
000000000000000001000 111110 No
000000000000000000100 110111 No
000000000000000000010 111011 Yes
000000000000000000001 111101 Yes

In the proposed reliability assessment method,
based on the correlated component failure, minimal
cutset in Figure 4(b) is C = ffs1g; fs2g; fs3g; fs6gg.
To create the system tree, the root node is Y =
000000000000000000000 and then, 21 child nodes for
each Poisson variable of Yi are created. Table 6 shows
the calculation of Poisson variables at the �rst level of
the tree with respect to cutset and considering Table 4.

S. Emadi/Scientia Iranica, Transactions D: Computer Science & ... 29 (2022) 135{149 147

Table 7. Calculation of software reliability.

Output (E[A]jR) Prfrg (E[A]jR)� PrfRg
111001 0.5769 0.00632 0.00365
111011 0.8036 0.04220 0.03391
111101 0.6716 0.13040 0.08758
111111 1.0000 0.61711 0.61711

Table 8. Reliability values of the software in a variety of
methods.

Method System reliability

Cheung [20] 0.4787
Fiondella [10] 0.6191
Wang [16] 0.6428
Proposed method 0.7422

According to Eqs. (11), the calculation of the
reliability of the system regarding the failure of the
correlated components is given in Table 7. As a result
of the calculations, E[Acorr] = 0:7422 is obtained.

Table 8 shows the reliability values of the pro-
posed method in comparison to some existing methods.
According to the results in the table, the proposed
method is more accurate than other methods. In
Cheung's [20] and Wang's methods [16], the com-
ponents are assumed independent. On the other
hand, in the case of Wang's method [16], software
architectural styles are used. In the case of Fiondella's
method [10], the evaluation takes place according to the
correlation between the components regardless of the
styles used in the architecture. The proposed method
is a combination of these three methods that evaluates
the reliability of software architecture by taking into
account the correlation between the components on the
architectural styles.

5. Conclusion

Since software architecture styles play an important
role in satisfying quality attributes, in this research,
they were transformed into a mathematical model
based on the Markov model to evaluate reliability.
Also, to increase the scalability and accuracy of the
evaluation results, the correlation of the components
was considered using the Multivariate Bernoulli (MVB)
distribution. Since only the components correlation
matrix was created in the MVB distribution, only the
components that a�ect the reliability of the software
in the calculations were considered and, therefore, the
proposed method could be used for large architectures,
as well. The evaluation results point to the greater
accuracy of the proposed method than other methods.

The evaluation of quality attributes such as per-
formance and security in architectural styles can be

raised for the future works. Also, the e�ect of quality
attributes on each other should be applied to software
architecture styles to achieve more accurate results.
In the continuation of this research, the correlation
between the components in other styles and patterns of
software architecture such as service-oriented architec-
ture and layered architecture should be used to evaluate
quality attributes.

In this study, like many methods, basic informa-
tion on the reliability of components, the likelihood of
transition between the components, and the correlation
between components is available. However, essential
information is necessary to be obtained for the purpose
of further evaluation. In this study, a positive corre-
lation between components and dependencies between
components were assumed to be identical. Therefore,
the proposed method can be generalized by considering
negative correlations between the components and the
exact relationship between the components.

Nomenclature

pij Probability of transfer from state i to
state j

M Transfer matrix
m Number of states in Markov model
Si State i
M(i; j) Probability of successful transition of

reaching state Sj from Si
t(i; j) Total number of invocations or control

transfers from component ci to cij
Ri Reliability of component Ci
E(Ri) s-expected reliability of component i
�i s-expected reliability of a component
�i;j Rate parameter encoding correlation

between components i and j
�i;j Correlation between components i and

j
Yk Kth Poisson variable
�k � matrix in iteration k
Sk Set of components to which Y k�kmin is

added
�kij (i; j)th entry of �k

References

1. Aghaee Ghazvini, G. and Emadi, S. \An analytical
algorithm of component-based heterogeneous software
architectural styles performance prediction", Journal
of Advances in Computer Research, 5(3), pp. 85{100
(2014).

2. Ingeno, J., Software Architect's Handbook: Become
a Successful Software Architect by Implementing Ef-

148 S. Emadi/Scientia Iranica, Transactions D: Computer Science & ... 29 (2022) 135{149

fective Architecture Concepts, Packt Publishing Ltd
(2018).

3. Wang, W.L., Wu, Y., and Chen, M.H. \An
architecture-based software reliability model", Inter-
national Symposium on Dependable Computing, Hong
Kong, pp. 143{150 (1999).

4. Bachmann, F., Bass, L., Clements, P., et al., Docu-
menting Software Architectures: Views and Beyond,
Second Edn., Addison-Wesley (2010).

5. Dobrica, L. and Niemela, E. \A survey on software
architecture analysis methods", IEEE Transactions on
Software Engineering, 28(7), pp. 638{653 (2002).

6. Clements, P.C. \Coming attractions in software archi-
tecture", In Proc. the Joint Workshop on Parallel and
Distributed Real-Time Systems, Geneva, Switzerland,
pp. 2{9 (1997).

7. Zeng, B., Li, C., and Liu, S.F. \A novel grey target
decision-making model based on cobweb area and
its application for choosing the software development
pattern", Scientia Iranica. Transaction E, Industrial
Engineering, 23(1), p. 361 (2016).

8. Caiuta, R., Pozo, A., and Vergilio, S.R. \Meta-
learning based selection of software reliability models",
Automated Software Engineering, 24(3), pp. 575{602
(2017).

9. Ghafarian Salehi Nezhad, A., Eshraghniaye Jahromi,
A., Salmani, M.H., et al. \A four-phase algorithm
to improve reliability in series-parallel systems with
redundancy allocation", Scientia Iranica, 21(3), pp.
1072{1082 (2014).

10. Fiondella, L., Rajasekaran, S., and Gokhale, S.S.
\E�cient software reliability analysis with correlated
component failures", IEEE Transactions on Reliabil-
ity, 62(1), pp. 244{255 (2013).

11. Fiondella, L., Rajasekaran, S., and Gokhale, S.S.
\E�cient system reliability with correlated compo-
nent failures", IEEE 13th International Symposium on
High-Assurance Systems Engineering (HASE), Boca
Raton, FL, USA, pp. 269{276 (2011).

12. Singpurwalla, N.D., Reliability and Risk: A Bayesian
Perspective, John Wiley & Sons (2006).

13. Littlewood, B. \The impact of diversity upon com-
mon mode failures", Reliability Engineering & System
Safety, 51(1), pp. 101{113 (1996).

14. Bindal, D. \A review of Markov model for esti-
mating software reliability", International Journal of
Advanced Research in Computer Science and Software
Engineering, 3(6), pp. 426{433 (2013).

15. Franco, J.M.D.C.S. \Automated reliability prediction
and analysis from software architectures", Doctoral
Dissertation, University of Coimbra (2016).

16. Wang, W.L., Pan, D., and Chen, M.H. \Architecture-
based software reliability modeling", Journal of Sys-
tems and Software, 79(1), pp. 132{146 (2006).

17. Fazlollahtabar, H. and Jalali, S.G. \Adapted Marko-
vian model to control reliability assessment in multiple
AGV", Scientia Iranica, 20(6), pp. 2224{2237 (2013).

18. Tyagi, K. and Sharma, A. \Reliability of component-
based systems: A critical survey", ACM SIGSOFT
Software Engineering Notes, 36(6), pp. 1{6 (2011).

19. Gokhale, S.S. and Trivedi, K.S. \Analytical models for
architecture-based software reliability prediction: A,
uni�cation framework", IEEE Transactions on Relia-
bility, 55(4), pp. 578{590 (2006).

20. Cheung, R.C. \A user-oriented software reliability
model", IEEE Transactions on Software Engineering,
2, pp. 118{125 (1980).

21. Kristiansen, M., Winther, R., and Natvig, B. \Com-
ponent dependencies in compound software", Inter-
national Journal of Reliability, Quality and Safety
Engineering, 17(05), pp. 465{493 (2010).

22. Fiondella, L. \Joint distribution decomposition for the
reliability analysis of systems with correlated failures",
In Proc. of ISSAT International Conference on Relia-
bility and Quality in Design, San Francisco, CA, pp.
275{279 (2009).

23. Brosch, F., Koziolek, H., Buhnova, B., et al.
\Architecture-based reliability prediction with the pal-
ladio component model", IEEE Transactions on Soft-
ware Engineering, 38(6), pp. 1319{1339 (2012).

24. Li, X., Yin, Y., Fiondella, L., et al. \Software reliabil-
ity analysis considering correlated component failures
with coupling measurement framework", Journal of
Systems Engineering and Electronics, 26(5), pp. 1114{
1126 (2015).

25. Delac, G., Silic, M., and Srbljic, S. \A reliability im-
provement method for SOA-based applications", IEEE
Transactions on Dependable and Secure Computing,
12(2), pp. 136{149 (2015).

26. Anjum, D. and Mustafa, T. \Reliability of software
correlated components failure in pakistan industry",
International Journal of Information Engineering and
Electronic Business, 9(2), p. 27 (2017).

27. Aleti, A., Trubiani, C., van Hoorn, A., et al. \An
e�cient method for uncertainty propagation in robust
software performance estimation", Journal of Systems
and Software, 138, pp. 222{235 (2018).

28. Zhu, M. and Pham, H. \A two-phase software reliabil-
ity modeling involving with software fault dependency
and imperfect fault removal", Computer Languages,
Systems & Structures, 53, pp. 27{42 (2018).

29. Li, B., Liao, L., and Yu, X. \A veri�cation-based
approach to evaluate software architecture evolution",
Chinese Journal of Electronics, 26(3), pp. 485{492
(2017).

30. Cortellessa, V., Eramo, R., and Tucci, M. \From soft-
ware architecture to analysis models and back: Model-
driven refactoring aimed at availability improvement",
Information and Software Technology, 127, 106362
(2020).

31. Sedaghatbaf, A. and Azgomi, M.A. \Software archi-
tecture modeling and evaluation based on stochastic
activity networks", In International Conference on
Fundamentals of Software Engineering, Tehran, Iran,
pp. 46{53 (2015).

S. Emadi/Scientia Iranica, Transactions D: Computer Science & ... 29 (2022) 135{149 149

32. Sedaghatbaf, A. and Azgomi, M.A. \SQME: a frame-
work for modeling and evaluation of software architec-
ture quality attributes", Software & Systems Modeling,
18(4), pp. 2609{2632 (2019)

33. Sedaghatbaf, A. and Azgomi, M.A. \Reliability eval-
uation of UML/DAM software architectures under
parameter uncertainty", IET Software, 12(3), pp. 236{
244 (2018).

34. Ouhbi, S. \Software architecture evaluation: A sys-
tematic mapping study", 13th International Confer-
ence on Evaluation of Novel Approaches to Software
Engineering (ENASE), Funchal, Madeira Portugal, pp.
447{454 (2018).

35. Babar, M.A., Shen, H., Bi�, S., and Winkler, D.
\An empirical study of the e�ectiveness of software
architecture evaluation meetings", IEEE Access, 7, pp.
79069{79084 (2019).

36. Bani Milhem, H.A.I. \Evaluating software architecture
based on their implemented patterns and tactics",
Doctoral dissertation, the University of Ottawa (2020).

37. Zhang, C., Ma, Y., Wang, X., et al. \Software archi-
tecture modeling and reliability evaluation based on
Petri net", In 2017 IEEE International Conference on
Dependable Systems and Their Applications (DSA),
Beijing, China, pp. 51{56 (2017).

38. Prentice, R.L. \Binary regression using an extended
beta-binomial distribution, with discussion of correla-
tion induced by covariate measurement errors", Jour-
nal of the American Statistical Association, 81(394),
pp. 321{327 (1986).

39. Kamavaram, S. and Goseva-Popstojanova, K. \Sensi-
tivity of software usage to changes in the operational
pro�le", In 28th Annual NASA Goddard Software
Engineering Workshop, Greenbelt, MD, USA, pp. 157{
164 (2003).

Biography

Sima Emadi is an Assistant Professor and the Direc-
tor of Computer postgraduate at the Computer En-
gineering Department, Islamic Azad University, Yazd
Branch. She received the BEng degree from Islamic
Azad University, Iran in 1995 and the MS degree
from Islamic Azad University, Iran in 1997, both in
Computer Software Engineering. In 2008, she com-
pleted the PhD program at Islamic Azad University,
Science and Research Branch, Iran. Her current
research interests include services computing software,
web service composition, service-driven architecture,
software testing, and design pattern.

