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Abstract. Scheduling is considered one of the most signi�cant factors in the success
of construction projects. In recent years, global construction markets have become
increasingly competitive and the number of project stakeholders has grown signi�cantly.
As a result, concurrently pursuing multiple project objectives, such as optimizing the time,
cost, resources, environmental impact, safety risks, and quality of a project, is imperative.
Several types of research e�orts have focused on multiple-objective construction scheduling
models to deal with the above-mentioned objectives. However, there is still a need to
integrate all these objectives in the scheduling process to take into account most aspects
of a project. To �ll this gap, a many-objective optimization model regarding time, cost,
resource, environmental impact, safety, and quality based on a newly developed many-
objective optimization algorithm called Non-dominated Sorting Di�erential Evolution
algorithm based on Reference points (NSDE-R) is presented in this study. To determine
the most proper schedule based on decision-makers' priorities, the Technique for Order
Preference by Similarity to Ideal Solution (TOPSIS) is merged with the optimization
algorithm. The applicability of the proposed model is demonstrated employing a case
study of a building construction project.
© 2021 Sharif University of Technology. All rights reserved.

1. Introduction

Because of today's competitive construction environ-
ment, companies should focus on maintaining the
objectives of a project to be able to survive. Con-
struction projects involve many parties; this matter
will inevitably lead to conicts of interest because of
di�erences in expectations of a project. A construction
project is comprised of a variety of activities with spe-
ci�c priorities among them. Activities can be accom-
plished in either one or many di�erent modes. Various
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modes of activity are possible, depending on some vari-
ables like the construction method, resource utilization,
and the consumption material. Choosing an activity
mode in the project scheduling process depends on the
project's goals and limitations. Several objectives such
as time, cost, resource usage, environmental impact,
safety, and quality can be a�ected by choosing di�erent
combinations of available execution modes. Therefore,
a reasonable balance needs to be achieved between
these contradictory objectives when choosing a suitable
option for each activity. However, it is time-consuming
to examine all combinations of options, especially
when numerous activities are involved in a project.
Consequently, there is an urgent need for optimization
tools that can accommodate multiple conicting ob-
jectives of construction projects. The Multi-Objective
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Scheduling Problem (MOSP) describes these kinds of
problems. Prior studies have examined how construc-
tion scheduling and selecting di�erent combinations
of project activities impact several factors including
time, cost, resource use, environmental impact, safety,
and quality. Applying a trade-o� between di�erent
objectives in MOSPs has received much attention from
project management researchers in recent years.

The two main approaches to solving complex
optimization models are mathematical programming
and meta-heuristics. Although the �rst group usually
provides accurate solutions, they are sometimes time-
consuming and rely on an appropriate initial point and
gradient information of the objective function. With
these methods, problems must be de�ned in contin-
uous space, whereas many problems are de�ned in
discrete space. Meta-heuristics, on the other hand, �nd
approximately optimal solutions within a reasonable
span of time. In addition, stochastic methods can
be applied to all disciplines. Many e�cient single-
objective optimization algorithms have been developed
over the last two decades [1]. These algorithms identify
the best result after searching through possible feasible
solutions. Multi-objective optimization techniques are
used in various �elds including construction scheduling,
engineering design, and many others. Using these
methodologies, decision-makers can identify the best
solutions to choose from while maximizing the bene�ts
that can be gained from current resources. There
have been many multi-objective algorithms developed
for dealing with bi-objective problems like the time-
cost tradeo� problem including Non-dominated Sorting
Genetic Algorithm II (NSGA-II) and Multi-Objective
Particle Swarm Optimization (MOPSO) [2{7]. Several
kinds of multi-objective optimization models have been
developed incorporating one or more other factors such
as quality, safety, environmental impact, and resource
moment deviation into bi-objective models.

Deb and Jain [8] outlined a number of issues that
Multi-Objective Evolutionary Algorithms (MOEAs)
might face when solving multi-objective problems as
follows: existence of a large number of nondominated
solutions within the population due to the increase in
objectives; complexity of diversity measurement and
performance metrics; ine�ciency of recombination op-
eration; and di�cult visualization of high-dimensional
tradeo� front. Researchers have proposed various
evolutionary algorithms, known as many-objective evo-
lutionary algorithms, to overcome these obstacles. For
example, NSGA-III was developed by Deb and Jain [8]
to address the ine�ciencies of MOEAs in solving many-
objective optimization problems, with the crowding
distance concept being replaced by the reference point-
based selection approach in NSGA-II. MOSP has been
studied in the literature by several authors, to be
explained as follows.

1.1. Time-cost tradeo� models
Due to the importance of total project time and
total project cost for assessing a project's success, the
time-cost tradeo� is the most common type of bi-
objective optimization problem [9]. Generally, reduc-
ing construction project duration leads to additional
costs due to more expensive resources being needed.
Therefore, the e�ciency of a construction project is
greatly a�ected by the tradeo� between time and cost.
Multi-objective optimization techniques are employed
to determine the most e�ective method of minimizing
the total project cost and duration. In order to resolve
the construction time-cost tradeo� problem, Zhang and
Li [10] proposed the MOPSO technique which was
incorporated with a combined methodology. Afshar et
al. [11] developed a new Nondominated Archiving Ant
Colony Optimization (NA-ACO) algorithm to solve the
time-cost multi-objective optimization problems using
multi colony ant principals.

1.2. Time-cost-resource tradeo� models
Previous studies have examined the linking of resource
planning with time and cost optimization since resource
utilization is closely related to the project's overall
duration and cost [12]. Problems of resource allocation
or resource leveling are commonly used in construction
when scheduling resources. Peak resource demands
are reduced through resource leveling and period-to-
period assignments are smoothed out while assuming
an unlimited supply of resources. According to the
resource allocation problem, resources are limited to
a maximum value and the objective is to allocate
the available resources to project activities to reduce
project duration [13]. Zahraie and Tavakolan [14]
developed a multi-objective method to optimize total
time, total cost, and the moments of resources at
the same time with NSGA-II. Moreover, their study
utilized fuzzy numbers also for direct cost and time
to take into account managers' behaviors when pre-
dicting cost and duration for a given activity. In
order to consider resource constraints, Ghoddousi et
al. [15] extended the general Multi-mode Resource-
Constrained Project Scheduling Problem (MRCPSP)
to a Multi-mode Resource-Constrained Discrete-Time-
Cost-Resource Optimization (MRC-DTCRO) model
while minimizing the time, cost, and resource moment
deviation simultaneously.

1.3. Time-cost-environmental impact tradeo�
models

Few studies have considered environmental impact
in MOSP. Marzouk et al. [16] developed a multi-
objective optimization framework to address construc-
tion pollution. Three objective functions representing
project duration, cost, and pollution were considered
using evolutionary genetic algorithms within their
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framework. Building materials have environmental
impacts at every stage of their life cycle including
manufacturing, construction, maintenance, and end-of-
life. This issue was analyzed by Ozcan-Deniz et al. [17]
by combining both lifecycle assessments with multi-
objective optimization utilizing NSGA-II to evaluate
the total Greenhouse Gas (GHG) emissions. Cheng
and Tran [18] presented an opposition-based multiple-
objective Di�erential Evolution (DE) to solve the
time-cost-environment impact tradeo� problem. They
proved the superiority of their algorithm over other
techniques that had been previously applied to the
time-cost-environmental impact tradeo� problems.

1.4. Time-cost-safety tradeo� models
An essential objective of every construction project
is to ensure construction safety. However, safety is
rarely incorporated into construction schedules in the
literature. Afshar and Dolabi [19] added safety risk
to the time-cost tradeo� model and determined the
Pareto-optimal solution using the multi-objective ge-
netic algorithm. They stated that there were two types
of safety risk assessment methods: activity-based and
job-based. According to their argument, the safety risk
assessment should employ an activity-based approach
since the discrete time-cost tradeo� problem is activity
based. Furthermore, often, accurate safety data are
not available in the planning process. Therefore, the
qualitative safety risk assessment approaches are more
practical than quantitative methods. Based on these
facts, they devised a Qualitative Activity-based Safety
Risk (QASR) method that could be applied to discrete
frameworks for estimating safety risks.

1.5. Time-Cost-Quality Tradeo� (TCQT)
models

El-Rayes and Kandil [20] introduced a modi�ed multi-
objective genetic algorithm to solve the Time-Cost-
Quality Tradeo� (TCQT) optimization problem in
which the value of quality assigned to a speci�c execu-
tion mode was quanti�ed. Afshar et al. [21] developed
a multi-colony ant algorithm to deal with TCQT. A
colony of ants was allocated to each objective and the
ants within a colony were instructed to determine the
optimal solution for that objective.

1.6. Four-objective optimization models
The scheduling of construction projects addressing
more than three objectives has been investigated in a
few studies. Elbeltagi et al. [22] proposed a PSO-based
scheduling model with a new evolutionary strategy
using the Pareto-compromise solution, taking concur-
rently into account the four objectives of time, cost,
resource utilization, and cash ow. Although the re-
searchers have optimized four objectives using a multi-
objective PSO algorithm, they did not indicate whether
this algorithm was appropriate or not for dealing with

many-objective optimization problems. In case of
multiple competing objectives, �nding non-dominated
solutions is less likely, meaning that the multi-objective
PSOs show less e�ectiveness [23]. Zheng [24] created
a model based on a genetic algorithm to handle large-
scale construction project scheduling while minimizing
the total project time, cost, quality defect level, and
environmental impact. A priori approach was applied
to determine the weight of each objective to convert
the four-objective problem into a single-objective op-
timization. They considered a single objective by
integrating four objectives, which was less helpful
when solving many-objective optimization problems.
Panwar and Jha [25] introduced an optimization model
based on NSGA-III to determine the tradeo� among
the four objectives of time, cost, resource moment,
and environmental impact. They used the weighted
sum method allowing the project team to make the
optimal choice according to their priorities. In Sharma
and Trivedi's [26] work, a Latin Hypercube Sampling
(LHS)-based NSGA-III model was developed to op-
timize time-cost-quality-safety tradeo�s in a multi-
mode resource-constrained problem. They used LHS
to generate a well-distributed parent population. Both
quality indicators and activities were weighted using
the Analytical Hierarchy Process (AHP) method and
Fuzzy logic was applied to assess safety risks. In
another study by Panwar and Jha [27], they proposed
a many-objective optimization scheduling model based
on NSGA-III that included time, cost, quality, and
safety objectives.

Due to the intrinsic tradeo�s between time, cost,
resource moment, environmental impact, safety, and
quality, it would be challenging to identify the best
construction alternatives that result in low overall
costs, a short delivery period, limited uctuation in re-
sources, minimal environmental impact, proper safety
risk score, and high quality in a real-world project.
However, no study was found related to time-cost-
resource moment-environmental impact-safety-quality
tradeo� optimization. In the present study, this
problem is addressed by developing a model that con-
siders six objectives simultaneously. This framework is
created based on NSDE-R, a recently developed many-
objective optimization algorithm.

More objectives lead to a larger nondominated
population (Pareto solutions) and decision-makers are
responsible for �nding the best compromise solution
from the Pareto set of alternatives based on stake-
holders' priorities. As a result, it makes sense to
apply a Multi-Attribute Decision Making (MADM)
approach. Generally, simple additive weighting [28] or
Technique for Order Preference by Similarity to Ideal
Solution (TOPSIS) [29] are used to arrive at the best
compromise. However, simple additive weighting does
not comply with the requirement of each criterion being
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independent [30]. Thus, in this research, TOPSIS is
used to �nd the best compromise solution.

This paper provides an NSDE-R-based optimiza-
tion model for many-objective tradeo� in construction
scheduling employing TOPSIS to choose the �nal solu-
tion between a pool of nondominated solutions based
on project team priorities. A pairwise comparison-
based AHP theory is also employed to assign the
corresponding weight of each project objective.

The rest of the paper is organized as follows. In
Section 2, the study begins with problem formulation.
The NSDE-R-based optimization model is developed
in Section 3. Veri�cation of the model is performed
in Section 4. An analysis of a case study project is
conducted numerically in Section 5. The results and
discussion form Section 6. TOPSIS used to determine
the best compromise solution is described in Section 7.
Results and discussion are provided in Section 8.
Finally, in Section 9, the conclusions are derived.

2. Problem formulation

As described before, an activity in a construction
project can be performed using a variety of methods.
Each activity mode is di�erent in terms of completion
time, completion cost, resource utilization, environ-
mental impact, safety risk score, and quality index
due to variations in resource consumption. Hence,
an appropriate execution mode must be designated
for each project activity during the planning phase
of the project. In this paper, the following input
parameters for the optimization process are assumed:
activity completion time (T ), activity completion cost
(C), activity resource requirement (R), activity En-
vironmental Impact (EI), activity Safety Risk score
(SR), and activity Quality Index (QI). Figure 1
shows a construction project consisting of n activi-

ties represented by Activity1;Activity2; � � � ;Activityn
which can be implemented using various execution
modes denoted by EM1; EM2; � � � ; EMm. Di�erent
alternatives of an activity consume a particular amount
of Labor Resources (LR), Material Resources (MR),
and Equipment Resources (ER). T , C, R, EI, SR,
and QI values are determined according to the se-
lected alternative for each activity. In this paper,
the construction scheduling optimization model has the
following objective function:

(i) Minimization of the Project Completion Time
(PCT);

(ii) Minimization of the Project Completion Cost
(PCC);

(iii) Minimization of the Total Resource Moment
(TRM);

(iv) Minimization of the Total Environmental Impact
(TEI);

(v) Minimization of the Project Safety Risk (PSR);
(vi) Maximization of the Project Quality Index (PQI).

This framework aims to develop a set of non-
dominated solutions according to the mentioned six
objective functions representing feasible schedules that
meet the requirements of the project.

The six previously identi�ed objectives are formu-
lated as follows:

Objective 1: Minimize PCT. The �rst objective is
to minimize project makespan as an essential factor
of construction projects. One of the critical path
methodologies is the Precedence Diagramming Method
(PDM), by which project duration can be assessed [25].
Therefore, the time function is de�ned as the sum
of the durations of all activities on the critical path

Figure 1. Input data for the optimization model.
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while maintaining precedence relationships between
activities.

PCT =
X

T jicp ; (1)

where T jicp is completion time that corresponds to the
jth alternative of the ith activity on the critical path
(cp).

Objective 2: Minimize PCC. The second objective
of MOSP is to minimize the project's costs. Total
project cost is a function of the sum of each activity's
direct cost and total indirect cost. A project's costs
are typically separated into direct and indirect costs.
The costs of labor, materials, and equipment constitute
the direct cost speci�cally attributed to the execution
of activities, while the indirect cost refers to overhead
expenses and outage losses. PCC is formulated as
follows:

PCC = DC + IC; (2)

DC =
X
A

Cji ; (3)

IC = Cic � PCT; (4)

whereDC is the total Direct Cost; IC the total Indirect
Cost; Cji the performance cost of the jth mode of the
ith activity; and Cic the indirect cost per unit of time.

Objective 3: Minimize TRM. Resources should be
allocated e�ciently to prevent high resource uctu-
ations, periods of high utilization, and extra costs.
Intense variations in resource levels of a project lead
to:

1. Employment and �ring of labors abruptly;
2. Di�culties in attracting and retaining top-quality

workers if employment is unstable;
3. Disruptions in learning curve e�ects;
4. The need to maintain the unproductive level of

workers on site, which keeps some workers idle
during periods of low demand [31].

Besides, when resources from other sources are hired
or shared across multiple projects, it is imperative to
reduce the resource-utilization timeframe. With the
minimum moment approach introduced by Panwar and
Jha [25], both of the mentioned factors are minimized.
In this method, the uctuations in resources consider-
ing the resource histogram moments along the x-axis
(Mx) are computed. In addition, calculating the y-
moment (My) about the y-axis represents the resource
utilization period. The sum of Mx and My is referred
to as the double moment or TRM. TRM is calculated
as follows:

TRM =
X
A

Mx +My; (5)

where:

Mx =
X
A

(Rtk)2; (6)

My =
X
A

Rtk � t; (7)

where Rtk indicates the utilization of resources k for a
time period t.

Objective 4: Minimize TEI. The environmental
impact can be measured along the project's life cycle
through metrics such as GHG emissions, energy con-
sumption, acidi�cation, pollutants to air and water,
etc. [32]. This study de�nes the environmental impact
function as the sum of kg CO2 equivalent produced by
all activities. TEI is given by:

TEI =
X
A

EI ji ; (8)

where EI ji indicates the environmental impact of op-
eration of activity i in the jth execution mode.

Objective 5: Minimize PSR. Construction is rec-
ognized as one of the most hazardous industries [33].
This study incorporates safety measures into the model
through the calculation of PSR, which is the sum of
each activity's safety risk score. Afshar and Dolabi [19]
assessed the safety risks of each activity using a QASR
method. The QASR can be proposed in the following
steps:

Step 1. Identi�cation of major safety risks;
Step 2. Determination of likelihood and severity of

safety risks;
Step 3. Overall evaluation of safety risk score.

On the basis of safety legislations such as Bureau of La-
bor Statistics (BLS), Occupational Health and Safety
Administration (OSHA), Health and Safety Executive
(HSE), and literature, the most probable safety risks
related to the alternatives are identi�ed �rst. In the
second step, the probable likelihood and severity of
identi�ed safety risks are assessed based on expert
judgment. In order to provide numerical input for the
optimization model, qualitative risk evaluation must
be quanti�ed. Therefore, both likelihood and severity
were rated on a 1{6 scale. Table 1, which is adapted
from Cooke and Williams [34], illustrates a simple 6�6
matrix approach to assessing identi�ed safety risks.

Based on reported ratings from the experts, the
safety risk score of an identi�ed risk is determined by
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Table 1. Safety risk rating system adapted from [34].

Likelihood Severity
Level

description
Score Level

description
Score

Remote 1 Minor injury 1
Unlikely 2 Illness 2
Possible 3 Accident 3
Likely 4 Reportable injury 4
Probable 5 Major injury 5
Highly probable 6 Fatality 6

multiplying its likelihood by its severity, as shown in
the following equation:

SjRi =
PX
p=1

(Ljp � Sjp)i: (9)

Then, PSR can be calculated by summation of obtained
safety risk scores for each alternative. PSR is given by:

PSR =
X
A

SjRi ; (10)

where SjRi is the safety risk score of the jth execution
mode of the ith activity; P the total number of prob-
able safety risks for the ith activity; Ljp the likelihood
of the pth safety risk performing in the jth execution
mode; and Sjp the severity of the pth safety risk in the
jth execution mode.

Objective 6: Maximize PQI. Throughout the con-
struction process, it is vital to employ adequate quality-
control measures. Lack of quality of performance
can lead to failure or defect in constructed facilities,
ultimately causing increases in construction costs and
delays in the project. In order to quantify the con-
struction quality, the impact of di�erent strategies of
performing activities on the quality of activities should
be considered. The proportion of each activity's quality
performance to the total quality level of the project
should also be determined. Therefore, PQI is a function
of the weighted sum of each activity's quality. In this
formulation, an activity's weight implies its relative
importance and contribution to the overall quality of
the project. The PQI is formulated as follows:

PQI =
X
A

wi
KX
k=1

wji:k � qji:k; (11)

where wi is the weight of ith activity; wji:k the weight
of the kth quality indicator for jth execution mode
of ith activity (indicates the relative importance and
contribution of the quality indicator over the other
activity indicator measures); and qji:k denotes the
performance of the kth quality indicator value of the
jth execution mode of the ith activity.

3. Development of NSDE-R-based
optimization model

DE [35,36] algorithm is currently among the most
popular evolutionary computation techniques used in
a wide range of highly non-linear and complicated
optimization problems. DE enables global optimization
over a continuous domain with a stochastic population-
based search approach. DE shifts its population
towards global optimum utilizing mutation operators,
crossover operators, and selection operators. The
ability of DE to solve complex problems e�ciently
with relatively straightforward operations has moti-
vated many researchers to develop Multi-Objective DE
(MODE) techniques [37]. Applications of MODE-
based algorithms to solving MOSPs are described in
the works of Cheng and Tran [38], Tran and Long [39],
and Tran et al. [40].

The literature demonstrates that MOEAs can
�nd well-converged and well-diversi�ed non-dominated
solutions to a wide range of two- or three-objective
optimization problems. Nevertheless, many real-world
problems have multiple objectives, which require the
detection of optimal solutions involving four or more
objectives. Such problems are called many-objective
optimization problems [41]. Since increasing the num-
ber of objectives in an optimization problem leads to an
exponential increase in the population of subsets that
are non-dominated, it might be a challenge for MOEAs
to handle a large number of objectives. Creating new
solutions for the next generation of an optimization
process from a non-dominated population and preserv-
ing diversity in the Pareto solutions are some of the
existing di�culties that MOEAs may face in handling
many-objective problems. In order to overcome these
issues, several many-objective optimization algorithms
have been developed in the last years.

This paper uses NSDE-R developed by Reddy
and Dulikravich [42] to solve the proposed MOSP.
This algorithm utilizes a reference point-based non-
dominated sorting approach. A set of reference points
evenly distributed throughout the objective function
space allows for diversity preservation. NSDE-R has
never been applied to the MOSP before this study.

As discussed previously, construction projects are
composed of several activities that can be implemented
by one or more methods. With a MOSP, various
activity alternatives are combined optimally to meet
the project's objectives simultaneously. Resources used
by these alternatives (materials, equipment, labor)
a�ect how these activities are performed. It is a tedious
task to determine which combinations of execution
modes should be used in a particular project since
numerous activities and their execution modes should
be regarded in the scheduling process. The proposed
framework is designed to provide a set of Pareto-
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optimal solutions, taking into account the most suitable
alternatives for the overall project activities while
considering all project objectives.

Initially, the NSDE-R starts with a randomly
generated population set Pt known as the initial or
parent population, having N members and a set of
reference points, R. In this study, the reference points
are distributed uniformly through objective function
space. In each generation, the algorithm then selects
three members and applies the mutation operator. It
creates the o�spring population, O, with size N . After
that, the parent population and o�spring population
are combined and normalized. Following this, each
individual within the combined population, C, is linked
to the nearest reference point. The best N individuals
from the combined population will be selected through
an environmental selection procedure. This promotes
both diversity of solutions and facilitation of conver-
gence in generations.

The following steps explain the NSDE-R algo-
rithm in detail:

Step 1. Population initialization and evaluation: Ini-
tializing the population is the �rst step of any evolu-
tionary algorithm. Each individual in the population
is generated using input data of the project such as
the number of activities, activity relationships, and
the number of available execution modes for each
activity. Every individual represents a solution to
the MOSP. A population with N individuals can be
generated as follows:

Xi:j = LBj + rand[0:1]� (UBj � LBj)

(i = 1; � � � ; N ; j = 1; � � � ; D); (12)

where Xi:j is the jth decision variable of the ith
individual in the initial population; LBj and UBj
denote the lower and upper bounds of the jth decision
variable, respectively. In this study, LBj and UBj are
considered to be 0 and 1, respectively. The rand[a:b]
is a function that represents a uniformly distributed
random number between a and b. D is the number
of decision variables of the problem, which is equal to
the total number of activities in the project. In this
model, the candidate solution can be represented as
a vector with D elements as follows:

Si = [si:1 � si:2 � � � si:j � � � si:D]; (13)

where Si represents a set of feasible execution modes
for all activities. Consider the jth activity, which
can be performed in Mj modes. Then, si:j is an
integer number in the range [1:Mj ] that refers to a
selected execution mode for activity j. Since the
original version of DE uses real numbers as the
decision variable to perform its operations, a function

is used to convert real numbers to integer values in
the feasible range to determine the execution mode
of activities as follows:

si:j = minfFloor(1 +Xi:j �Mj) �Mjg; (14)

where the Floor function rounds a real number to
the nearest integer which is less than or equal to it.
To illustrate the solution vector formation, we simply
assume that a project consists of n activities that can
all be completed using three di�erent alternatives. A
vector solution is shown in Figure 2. This solution
suggests execution modes of 3, 1, 3, 2, 1, and 2 to
execute activities from 1 to n, respectively. Based on
each activity's execution mode, respective values of
objective functions are calculated using Eqs. (1){(11).
Step 2. DE operations intended to create o�spring
population: In the traditional DE algorithm for
each individual i in parent population P , three
unique parents are randomly chosen to perform
mutation and crossover to create o�spring. The most
commonly used mutation operator in DE algorithms
is the \rand/1/bin" (R1B) [35] given by:

~Vi = ~Xr1 + F
�
~Xr2 � ~Xr3

�
; (15)

where ~Vi = [vi:1; � � � ; vi:D] and r1:r2:r3 2 f1; � � � ; Ng
are randomly selected, subjected to: r1 6= r2 6=
r3 6= i. The F value controls the scaling of the
di�erence between two randomly selected parents.
Parent r3 is considered a donor parent. In the R1B
method, an individual of the population is randomly
chosen as the donor vector.

The mutated vector and the ith individual of the
current population are then subjected to crossover
operation. The o�spring o is then created as follows:

oj =

(
vj if rand � Cr _ j = jrand

xi:j otherwise

�����
j=1;��� ;D

;
(16)

where Cr 2 [0:1] determines the probability of
crossover and jrand is a randomly chosen index from
f1; � � � ; Dg that ensures trail vector oi di�ers from
its target Xi by at least one parameter.
Step 3. Nondominated sorting of combined
population: A combined population of size 2N was
created by merging child and parent population.
In this step, these solutions are divided into
nondominated fronts (F1; F2; � � � ; Fn) using a
nondominated sorting approach.
Step 4. Generation of new population: In order to
create a new population for the next generation, an
intermediate population St is then preserved from the
sorted fronts (F1; F2; � � � ; Fn) until St � N . In case
the number of solutions of St equals N (jStj = N),
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Figure 2. NSDE-R-based optimization model owchart.

no further operations are required and St becomes
the new generation (Pt+1). However, if jStj � N
at �rst, members from the �rst l � 1 nondominated
fronts are added to St and the remaining K(N�jStj)
required solutions are picked from front Fl based on
the maximum diversity. Within NSDE-R, diversity
is achieved by a reference point (Zs)-based approach.

According to this method, initially, each individual's
objective value is normalized. Then, H number of
reference points (Zr) is constructed on a normalized
hyperplane. H is calculated as follows:

H =
�
M + d� 1

d

�
=

(M + d� 1)!
(M � 1)!d!

; (17)
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where M is the number of objectives in the optimiza-
tion problem and d is the number of divisions desired
in each objective axis on the normalized hyperplane.
All individuals in St are then associated with a single
reference point. Then, with niche counting strategy,
the required K individuals for the next generation
are selected from Fl to �ll the vacant population of
Pt+1. Figure 2 shows the procedure of progressing
from one generation to the next in NSDE-R. This
process is iterative and it continues until the stopping
criterion is met. Some stopping criteria include the
maximum number of generations, maximum number
of function evaluations, or achieved convergence
of solutions. At the end of the optimization
process, construction planners are provided with
Pareto-optimal solutions as a �nal solution set.

4. Veri�cation of the model

To verify and evaluate the e�ectiveness of the proposed
model, two types of optimization problems from the
literature are chosen. Based on the proposed frame-
work, these problems are analyzed, and the outcomes
are assessed by comparison with reported �ndings in
the literature. The �rst case study is a time-cost opti-
mization problem taken from Feng et al. [9]. This case
study presented a construction project with eighteen
activities, each of which could be executed in several
execution modes. The use of di�erent optimization
algorithms for �nding a tradeo� between time and
cost has been o�ered in previous studies [43,44]. As
shown in Table 2, the proposed model provides good
performance and acceptable solutions similar to and
even better than the others with a considerably small
number of function evaluations. The second example is
a time-cost-environmental impact analysis taken from
Ozcan-Deniz et al. [17]. The results of the developed
model were compared with the literature results in

Table 3. To make a comparison, only those results
obtained by the model developed by Ozcan-Deniz et
al. [17] and the minimum solution derived from the
proposed model are shown in this table. As can be
seen, the proposed model o�ers more promising solu-
tions than the method investigated in the literature.
Therefore, the results con�rm the model's applicability
to the MOSP.

5. Case study

An analysis of a case study project is conducted
numerically to demonstrate how e�ective the many-
objective scheduling model for the six-objective opti-
mization problems is. The case data was �rst presented
by Ozcan-Deniz et al. [17] to investigate construc-
tion time-cost-environmental impact tradeo� analysis.
This case study presents a zero-net-energy residential
house construction project with 11 activities, each of
which can be performed in several execution modes.
According to the permutation theory, there are 9216
ways to complete this project, and each must be
examined. Thus, the complexity of the problem renders
mathematical approaches useless. This large space
of options is searched via an optimization module to
provide optimal solutions. Originally, the optimization
model from literature considered the three objectives
of time, cost, and environmental impact and neglected
the inuence of resources, safety, and quality in the
scheduling procedure. The resources data was taken
from the study of Panwar and Jha [25]. Safety and
quality are incorporated in the present study as the
�fth and sixth objectives, respectively, to explain the
advantages of integrating all six factors in a single
optimization model. Since the detailed information of
this case study is not available and there is no MOSP
example in the literature in which six objectives are
involved, the risk score and quality index values of

Table 2. Comparison of results for two-objective optimization problems.

Study Zheng et al. [47] Afshar et al. [11] Zhang and Ng [48] Proposed model
Optimization

algorithm
MAWA-GA NA-ACO ACS-SGPU NSDE-R

Objective Time
(days)

Cost
($)

Time
(days)

Cost
($)

Time
(days)

Cost
($)

Time
(days)

Cost
($)

Solution
1 100 287720 100 283320 100 285400 100 283320
2 101 284020 101 279820 101 282508 101 279820
3 104 280020 104 276320 104 277200 104 276320
4 110 273720 110 271270 110 273165 110 271270

Number of
function

evaluation
25000 12300 2000 1500
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Table 3. Comparison of results for three objective optimization problem.
Study Ozcan-Deniz et al. [17] Proposed model

Execution
modesSolution Time

(days)
Cost
($)

EI
(CO2-eq)

Time
(days)

Cost
($)

EI
(CO2-eq)

1 83 758768 164173 83 741430 163830 2,2,2,2,2,3,4,1,2,2,1
2 87 713714 147150 87 585090 131170 2,2,1,2,2,1,4,1,2,2,2
3 87 713765 146022 87 585150 131080 2,1,1,2,2,1,4,1,2,2,2
4 88 705409 145767 88 592530 120440 2,2,2,2,2,1,2,1,2,2,2
5 90 608776 130381 89 586370 120270 2,2,1,2,2,1,2,1,2,2,2
6 92 627709 126217 92 476470 80520 2,2,2,2,2,1,4,1,1,2,1
7 93 587667 97689 93 470310 80346 2,2,1,2,2,1,4,1,1,2,1
8 95 533065 89779 95 421710 74222 2,2,1,2,2,1,4,1,1,2,2
9 98 495348 68582 97 423000 63323 2,2,1,2,2,1,2,1,1,2,2
10 99 428887 77051 99 418350 74222 2,2,2,1,2,1,4,1,1,2,2
11 99 478885 71069 99 419770 72756 1,1,1,2,1,1,4,1,1,2,2
12 106 422029 77045 106 411350 62975 2,2,1,1,1,1,2,1,1,2,2
13 106 428741 62190 106 411530 61683 1,1,1,1,1,1,2,1,1,2,2
14 107 424867 74465 107 405450 72832 1,2,1,1,2,1,3,1,1,2,2
15 111 422924 73001 111 403390 72576 1,1,1,1,1,1,3,1,1,2,2

Average 96.07 556703.6 103372.07 95.93 490126.67 92149.67 |

each execution mode are assumed by the authors in this
paper. This assumption does not compromise the legit-
imacy of the proposed framework because the alterna-
tives' information is project-speci�c and can be de�ned
by the user of the model as input. Activities, associated
execution modes, and successors with data of duration,
cost, resources, and environmental impact of each alter-
native are presented in Table 4. Corresponding safety
risk score (potential likelihood and severity of identi�ed
safety risks) and identi�ed quality indicators with
respective weight and quality performance percentage
of each option are also shown in Table 5. The proposed
model is practically implemented on the mentioned
case study project utilizing the MATLAB R2018b.

6. Results and discussion

The developed MOSP is applied to the six-objective
case study project. Based on the fact that the param-
eter con�guration inuences the performance of meta-
heuristics, a tuning procedure was performed on the
parameters of the optimization algorithm, including
population size, number of generations, scaling factor,
and crossover probability. These parameters were set
in accordance with the literature, and the trials were
run by varying those parameters. Performance metrics
of multi-objective algorithms di�er from those of single-
objective algorithms. There may not be a unique op-
timal solution when considering all objective functions
in the multi-objective case. Hence, di�erent approaches
are needed for comparing the performance of each test

of the proposed algorithm. Several performance indi-
cators (e.g., number of Pareto solutions, diversi�cation
metric, spacing metric, mean ideal distance, and spread
of non-dominant solution) are available in the literature
to assess the quality of the Pareto fronts estimated
by multi-objective optimization algorithms [45]. These
indicators are widely available in several references, so
they are not discussed here for the sake of brevity.
A detailed explanation of these methods and their
formulation may be found in [45,46]. In this case, the
best possible combination of the mentioned parameters
is set as follows: population size is 100, number of
generations is 200, scaling factor is 1-2, and crossover
probability is 0.8. A total of 65 unique optimal combi-
nations of activity alternatives were acquired that sat-
is�ed the desired project objectives. Project objectives
such as total duration of the project, cost, resource
moment, environmental impact, safety risk score, and
quality index were determined for these 65 project
implementation alternatives. The total completion
time of the project varied from a minimum of 83 days to
a maximum of 122 days. Although 65 Pareto optimal
solutions have been found, only 38 solutions are pre-
sented for di�erent project durations. The alternative
combinations and the numerical values of the objectives
for these 38 solutions are shown in Table 6. In order to
examine the behavior of each objective with respect to
the PCT, tradeo� graphs for the obtained results are
shown in Figure 3. The parallel coordinate plot system
has been used to visualize all six objectives at a time.
Figure 4 shows the plot for the parallel coordinates
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Table 4. Activities and available options.

ID Activity Successors Alt. Time
(days)

Cost
($)

Resource
(Units)

EI
(CO2-eq)

1 Site work 2 1 4 5039.71 4 1728.86
2 4 4924.93 5 2938.36

2 Excavation 3 1 2 360.71 6 317.66
2 2 297.05 6 399.34

3 Footing 4 1 6 84232.67 20 9541.15
2 5 90392.28 28 9715.51

4 Stem wall 5 1 13 76650.79 24 9647.65
2 8 86174.94 28 9822.01

5 Slab 6 1 11 14636.05 21 15790.29
2 7 16758.59 25 15964.65

6 Exterior wall 7
1 6 25959.52 12 9152.52
2 14 65399.94 16 35518.33
3 5 127542.4 20 35518.33

7 Interior wall 11

1 18 27970.53 6 4152.23
2 10 35650.22 10 4164.16
3 15 27508.21 12 15056.4
4 8 34365.99 16 15062.37

8 Flooring |
1 16 28341.6 10 118.59
2 12 45616.48 8 544.3
3 8 36554.88 8 3030.66

9 Exterior �nish | 1 31 69659.78 12 4219.17
2 23 233034.5 8 61163.85

10 Interior �nish | 1 3 4006.8 6 256.03
2 4 1746.55 10 256.03

11 Roof 8, 9, 10 1 21 117851.8 10 12871.66
2 23 69253.17 6 6747.33

of the obtained Pareto optimal solutions from the
proposed model. Objective labels are placed along the
horizontal axis, and normalized values of the objectives
appear along the vertical axis. It can be concluded that
the proposed model produced a suitable distribution
of solutions in the solution space since it spread the
Pareto-optimal solutions over the entire vertical axis.

7. TOPSIS to determine the best compromise
solution

A Pareto optimal solution that best meets the decision
maker's preferences should be determined at the end of

a multi-objective optimization process. Therefore, in
multi-objective optimization, the interaction between
the decision-maker and the optimization algorithm is
critical. Indeed, it is impossible to rank Pareto optimal
solutions globally. The proposed framework o�ers
several optimal solutions while optimizing the speci�ed
objectives simultaneously, allowing the project team to
choose the �nal solution according to their priorities.
Di�erent approaches have been proposed for selecting
a single Pareto solution out of a collection. In this
paper, TOPSIS introduced by Hwang and Yoon [29] is
used to rank the Pareto solutions obtained by NSDE-
R. According to the weight assigned to each objective
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Table 5. Safety and quality data.

Safety risk score
Act. W

Quality performance (Qp)
and quality indicator (K)

ID Alt. Likelihood Severity K = 1 K = 2 K = 3
k1 q1 k2 q2 k3 q3

1 1 2 2 0.12 20 98 70 99 10 95
2 2 3 0.12 20 81 70 83 10 79

2 1 3 3 0.11 10 97 80 94 10 96
2 4 4 0.11 10 86 80 78 10 84

3 1 3 5 0.15 35 97 35 93 30 91
2 4 6 0.15 35 78 35 85 30 79

4 1 2 5 0.1 40 99 30 90 30 94
2 3 6 0.1 40 83 30 75 30 82

5 1 3 4 0.08 60 81 20 84 20 77
2 2 5 0.08 60 96 20 92 20 95

6
1 4 5 0.11 45 63 20 71 35 60
2 1 5 0.11 45 99 20 95 35 92
3 3 5 0.11 45 80 20 83 35 75

7

1 1 3 0.07 40 79 20 74 40 63
2 2 2 0.07 40 98 20 96 40 89
3 1 4 0.07 40 64 20 66 40 51
4 3 4 0.07 40 88 20 82 40 75

8
1 2 5 0.05 60 82 30 74 10 81
2 2 4 0.05 60 93 30 87 10 90
3 3 5 0.05 60 71 30 62 10 69

9 1 2 2 0.09 65 81 10 79 25 83
2 3 3 0.09 65 99 10 98 25 99

10 1 1 2 0.06 70 94 5 92 25 97
2 1 3 0.06 70 83 5 78 25 85

11 1 3 6 0.06 50 96 20 99 30 91
2 4 5 0.06 50 84 20 86 30 80

function by decision-makers, TOPSIS determines the
best compromise solution, which is the closest to
positive ideal solution (S+) and furthest from negative
ideal solution (S�) in the Pareto set. The TOPSIS
process for determining the best compromise solution
is presented as follows:

Step 1. Input S and W , where the element sij rep-
resents the jth objective value of the ith alternative
(that is, S is composed of the Pareto solutions) and
wj corresponds to the weight of the jth objective; and
W must satisfy

Pn
j=1 wj = 1.

Step 2. S is then normalized to be �s according to
the following equation:

�sij =
sijqP�
i=1 s2

ij

;

for i = 1; 2; � � � ; � and j = 1; 2; � � � ; n: (18)

Step 3. Weighted normalized decision matrix �s is
calculated using the following equation:

ŝij = wj � �sij ;

for i = 1; 2; � � � ; � and j = 1; 2; � � � ; n: (19)

Step 4. Best alternative (S+) and worst alternative
(S�) are determined as follows:
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Table 6. Obtained Pareto optimal solutions of case study project.

Solution PCT PCC TRM TEI PSR PQI Execution modes
1 83 743750 79416 163750 133 86.64 2,1,2,2,2,3,4,1,2,1,1
2 84 659560 71590 136600 134 87.45 1,1,2,2,2,1,4,2,2,1,1
3 85 650960 73527 137720 135 85.07 2,2,1,2,2,1,4,2,2,2,1
4 86 658590 73082 125700 127 87.63 1,1,2,2,2,1,2,2,2,2,1
5 87 635040 79437 126310 122 87.01 2,1,1,2,2,1,2,1,2,2,1
6 88 609920 68772 119660 136 85.27 1,2,2,2,2,1,2,2,2,2,2
7 89 597030 62433 121890 126 88.42 1,1,1,2,2,1,2,3,2,1,2
8 90 634816 75672 138740 124 89.67 1,1,1,1,2,1,4,3,2,1,1
9 91 591360 70877 132610 137 85.71 1,1,1,2,1,1,4,3,2,2,2
10 92 578000 81358 129700 121 89.49 1,1,1,1,2,1,4,1,2,1,2
11 93 584430 80195 118800 124 87.12 1,1,1,2,1,1,2,1,2,2,2
12 94 543010 87643 99722 117 88.84 1,1,1,2,2,3,4,2,1,1,2
13 95 474040 97027 68156 114 88.13 1,1,1,2,2,1,2,1,1,1,1
14 96 532860 86193 92520 119 85.92 2,1,1,2,2,3,2,3,1,2,2
15 97 580950 76971 120260 129 83.78 2,2,1,2,2,1,1,1,2,1,2
16 98 585380 74502 121540 120 88.64 1,1,1,1,1,1,2,3,2,1,2
17 99 563830 110050 94348 102 90.59 1,1,1,1,2,3,2,1,1,2,1
18 100 481670 98464 69617 106 88.06 2,1,1,1,2,1,2,2,1,1,1
19 101 529470 105205 105850 105 91.5 1,1,1,2,2,2,4,2,1,1,1
20 102 577450 76140 122910 120 85.56 2,1,1,1,2,1,1,3,2,2,2
21 103 513480 112159 94522 99 91.82 1,1,1,2,2,2,2,1,1,1,1
22 104 418460 99902 75494 124 85.53 1,1,1,1,1,1,4,3,1,2,2
23 105 462500 110659 89607 104 88.4 2,1,1,2,2,2,2,1,1,2,2
24 106 519940 114768 105670 97 92.89 1,1,1,1,2,2,4,2,1,1,1
25 107 415980 98426 75662 113 85.82 1,1,1,1,2,1,3,3,1,1,2
26 108 501580 124966 95557 94 90.51 2,1,1,1,2,2,2,1,1,2,1
27 109 421470 95725 65967 125 81.44 2,1,1,2,1,1,1,3,1,2,2
28 110 455350 117044 88224 93 92.48 1,1,1,1,2,2,2,1,1,1,2
29 111 405650 116580 72576 110 85.2 1,1,1,1,1,1,3,1,1,1,2
30 112 451950 124752 98947 103 90.45 1,1,1,1,1,2,4,1,1,1,2
31 113 472210 108233 88812 99 89.39 1,1,1,2,2,2,1,2,1,2,2
32 114 412060 104252 64584 115 84.83 1,1,1,1,1,1,1,3,1,2,2
33 115 447150 126214 99198 100 88.43 1,2,1,1,2,2,3,1,1,1,2
34 116 511290 122964 94762 89 91.51 1,1,1,1,2,2,1,2,1,2,1
35 117 452820 123195 88212 103 87.68 1,1,1,2,1,2,1,1,1,2,2
36 118 453560 113302 91205 105 88.06 1,2,1,1,2,2,1,3,1,2,2
37 119 442770 136404 99023 103 86.58 1,2,1,1,1,2,3,1,1,2,2
38 122 445550 129682 88037 94 89.75 1,1,1,1,1,2,1,1,1,1,2

S+ = f (max (ŝij)j j 2 J�)� (min (ŝij)j j 2 J+)j
i = 1; 2; � � � ; �g ;

and:
S� = f(min (ŝij)j j 2 J�)� (max (ŝij)j j 2 J+)j

i = 1; 2; � � � ; �g : (20)

Step 5. The separation measures h+
i and h�i for

each alternative are then calculated. The separation
measure h+

i from S+ is given by:

h+
i =

vuut nX
j=1

�
ŝij � s+

j
�2 for i = 1; 2; � � � ; �: (21)

The separation measure h�i from S� is:
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Figure 3. Obtained Pareto optimal solutions shown for each objective with respect to the project completion time.

Figure 4. Six-objective coordinate plot.

h�i =

vuut nX
j=1

�
ŝij � s�j �2 for i = 1; 2; � � � ; �: (22)

Step 6. Relative closeness Hi for each Pareto solu-
tion is calculated according to the following equation:

Hi =
h�i

h+
i + h�i

for i = 1; 2; � � � ; �; (23)

where 0 < Hi < 1.
Step 7. The best compromise solution whose relative
closeness Hi is the closest to 1 is selected.

Three scenarios are analyzed using the proposed ap-
proach. The AHP has been used to set the weight value
for each objective. Table 7 shows the weight assigned
to each objective and the �nal solutions obtained by
TOPSIS.

8. Conclusion

In response to rapid technological developments and
growing stakeholder demands, tradeo� strategies are
needed between project goals. Construction projects
involve important and interdependent performance
factors, including time, cost, resources, impact on
the environment, safety, and quality. Integrating
all objectives into a single scheduling optimization
model and making compromises between them can be
considered as an approach to improve the e�ectiveness
of construction project planning. As the number
of activities, their alternatives, and the number of
objectives of the project increase, the Multi-Objective
Scheduling Problem (MOSP) becomes exponentially
more complex to solve. Previous studies have mainly
focused on two or three objectives. Although a few
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Table 7. Optimal solutions with respect to the considered project scenarios.

Scenario Objective weight Time
(days)

Cost
($)

RM EI
(CO2-eq)

Safety
score

Quality
(%)

Execution
modesPCT PCC TRM TEI PSR PQI

1 0.456 0.086 0.034 0.054 0.242 0.129 87 635040 79437 126310 122 87.01 2,1,1,2,2,1,2,1,2,2,1
2 0.051 0.601 0.135 0.072 0.042 0.1 107 415980 98426 75662 113 85.82 1,1,1,1,2,1,3,3,1,1,2
3 0.073 0.06 0.085 0.03 0.316 0.436 116 511290 122964 94762 89 91.51 1,1,1,1,2,2,1,2,1,2,1

studies have attempted to optimize four objectives
simultaneously in recent years, none of them have
considered the simultaneous e�ect of six objectives in
an optimization model. In order to achieve the tradeo�
among time, cost, resource moment, environmental
impact, safety, and quality, which are considered as
signi�cant factors for construction projects, an NSDE-
R-based optimization model was developed. Two case
studies from the literature were analyzed to validate the
proposed optimization model, and the results proved
the superiority of the proposed model over previous
models available in the literature. Also, a case study
was used to demonstrate the model's applicability. In
order to determine the best compromise solution based
on the priorities of project team members, a Technique
for Order Preference by Similarity to Ideal Solution
(TOPSIS) based approach was employed. Besides
Analytical Hierarchy Process (AHP) method was used
to determine the weight of each objective. As a result,
all stakeholders will bene�t if decision-makers use this
integrated model in the planning phase of the project.
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