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Abstract. The present study aims to examine the vibrational behavior of buckled
Functionally Graded (FG) circular plates under clamped and simply-supported edge
conditions. To this end, von K�arm�an assumptions were taken into account to incorporate
geometric nonlinearity into Kirchho� plate theory and derive the nonlinear governing
equations of motion using Hamilton's principle. Critical buckling load and linear natural
frequencies were �rst calculated using Generalized Di�erential Quadrature (GDQ) method.
Next, the postbuckling characteristics of the circular plate were identi�ed through direct
solving of the nonlinear governing equations. Several comparative studies have con�rmed
the reliability of the proposed model. Finally, the fundamental natural frequency of the
plate was evaluated for pre- and postbuckled con�gurations. This study also evaluated the
e�ects of material property and boundary conditions on the static bifurcation diagram and
natural frequency of the initial undeected and buckled plate. According to the �ndings,
the trend of the fundamental natural frequency changes with the applied radial load around
the pre-buckled con�guration di�ered from the one around the buckled con�guration.
© 2022 Sharif University of Technology. All rights reserved.

1. Introduction

In 1984, a group of Japanese scientists specializing
in materials put forward the idea of constructing
Functionally Graded Materials (FGMs). The supreme
properties of FGMs such as high thermal resistance
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and lack of stress concentration made them appro-
priate candidates for future smart composites in a
variety of engineering �elds including fast comput-
ers, aerospace, and environmental sensors, to name
a few [1]. Given the rising applicability of FGMs in
practice, the mechanical behavior of FGM structures
has drawn considerable attention. In this respect, the
buckling, postbuckling, and vibration analyses of the
plate structures are of signi�cance in the design of
FGMs devices. A number of researches on these topics
can be found in the literature. In the following, some
of the most relevant published studies on the static
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and vibrational analyses of FG (Functionally Graded)
plates are introduced.

Naja�zadeh and Hedayati [2] studied the ax-
isymmetric buckling of FG circular plates subjected
to thermal and mechanical loads. They also derived
the governing equations based on the �rst-order shear
deformation plate theory. Allahverdizadeh et al. [3]
proposed a semi-analytical solution method to explore
the nonlinear free and forced vibration properties of a
thin circular FG plate. They declared that the natural
frequencies of the plate varied depending on vibration
amplitudes and material gradient index. Sepahi et
al. [4] examined the buckling and postbuckling behav-
iors of FG annular plates in a thermal environment.
The material properties were assumed to be di�erent
in the radial direction. Fallah et al. [5] addressed
the postbuckling behavior of the functionally graded
circular plates using an asymmetric load in the plane
and transverse directions based on the �rst-order von
K�arm�an theory. Ansari et al. [6] employed a variational
method to o�er a weak solution to the vibration
problem of nanocomposite oblique plates in a thermal
environment. _Zur investigated the axisymmetric vibra-
tions of functionally graded circular and annular plates
through Green's function [7{9] and quasi-Green's func-
tion methods [10]. In this study [11], closed-form
multiparametric solutions to frequency analysis of
FGM circular plates were developed through poros-
ity adopting classical plate theory. Shahabodini et
al. [12,13] proposed a continuum model considering the
interatomic potential to address the vibration problems
of nanoscale plates with small and large amplitudes of
oscillations. Nikbakht et al. [14] presented a review of
advanced studies on the optimization of functionally
graded materials until 2018 as well as the important
�ndings of the di�erent types of FG structures. Smita
and Mohanty [15] developed a �nite element model to
measure the vibrations of a rotating FG plate subjected
to thermal environment based on the higher-order
shear deformation theory. Gholami and Ansari [16]
examined the free vibration behavior of postbuckled
FG nanocomposite annular plates using a numerical
technique based on the di�erential quadrature. Arti
and Shojaee [17] analyzed the static, vibrational, and
buckling behaviors of composite plates by coupling the
truncated hierarchical B-splines and reproducing the
kernel particle method within the higher-order shear
deformation plate theory. Li et al. [18] successfully
employed a new generalized �ve-variable theory with
emphasis on shear deformation e�ect to assess the
static response of functionally graded plates. They
also took into account the e�ect of the volume fraction
of constituent phases and aspect ratio on the static
behavior. Sharma [19] conducted a study on the
free vibration of a circular plate with a piezoelectric
layer under a �xed-�xed boundary condition using

COMSOL multiphysics. Radakovi�c et al. [20] presented
an analysis of the thermal buckling and free vibration of
FG plate. They established a new shape function-based
mathematical model of FG plate using the higher-
order shear deformation theory. Lal and Saini [21]
studied the vibrations of thin FG circular plates with
parabolic variation of thickness in the radial direction
when subjected to a thermal environment. Xu and
Wellen [22] analytically derived du�ng equations to
evaluate the e�ect of moderately large transverse load
on the nonlinear dynamics of a circular plate with
clamped edge support. They adopted harmonic bal-
ancing method to study the frequency response near
the primary resonance. Imran et al. [23] conducted
experimental, analytical, and numerical simulations
to measure the vibrations of composite plates using
Rayleigh-Ritz and �nite element methods. They found
that increasing the size of delamination would decrease
the natural frequency. Qin et al. [24] considered a cir-
cular composite plate-type structure containing a sti�-
ener and studied its bending and vibration behaviors
using a Mindlin plate theory-based mesh-free method.
Then, they compared the results of their model with
those of �nite element method and found them to be
superior to the other results because no mesh was
required for deriving the governing equations of the
members. Javani et al. [25] adopted the �rst-order
shear deformation theory along with the nonlinear
kinematic relations to study the free vibrations of the
Graphene Platelet (GPL) reinforced composite circular
plate. The plate was functionally graded in three
types of GPL distribution lying on a nonlinear elastic
foundation. They employed Generalized Di�erential
Quadrature (GDQ) and weighted residual methods to
calculate the natural frequencies of the nanocomposite.
Sobhy [26] conducted a study on the circular and
annular plates made of the same composite materials
under mechanical and thermal loads, humidity, and
in-plane magnetic �eld. He developed a GDQ-based
three-dimensional solution to determine the displace-
ment and stresses within the plates. Hilali and Bouri-
hane [27] combined the asymptotic numerical method
with the Hermite-type moving least squares methods
to study the bending, buckling, and postbuckling of
classical thin plates. They also adopted the arc-length
continuation technique to trace the solution path.
Singh and Sahoo [28] suggested an analytical solution
based on the trigonometric shear deformation theory
and Navier approach to determine the stresses and
natural frequencies of FG carbon nanotube reinforced
plates. In another work, Singh et al. [29] analyzed
the dynamic instability of the same structure when
subjected to in-plane loading based on the higher-
order shear deformation theory. They derived the
parametric relations for the stress components within
the plate using Airy stress function and determined
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the instability boundaries using Galerkin and Bolotin
methods.

With rapid progression in the technology of struc-
tural elements, FG circular plates have gained wide
technological applications in di�erent smart materi-
als such as magneto-electro-elastic functionally graded
plates and Nano/Micro Electro-Mechanical Systems
(NEMS/MEMS) [30,31]. Furthermore, based on the
literature review of both aspects of buckling and
vibration analyses of circular FG plates, it can be
concluded that there is a clear gap in the vibration
analysis of buckled functionally graded circular plates.
In all the aforementioned studies, only the buckling
or vibrational response of the plates was separately
examined, and the dependence of these two phenomena
and their e�ects on each other was not evaluated yet.
However, as shown in [16,32], the con�guration (either
the prebuckled or postbuckled one) may have signi�-
cant e�ects on the vibrational behavior of the structure.
Moreover, the e�ect of the inertia and sti�ness on
the dynamics of the structure may be di�erent when
it vibrates around these two types of con�gurations.
Inspired by this phenomenon, this paper primarily aims
to obtain the natural vibration frequency of the FG
circular plates around the buckled con�guration and
determine whether the con�guration a�ects the role
of sti�ness and inertia, as the two characteristics of
a vibratory system, in the vibrational behavior of the
structure. To this end, the Kirchho� plate theory
was used for axisymmetric analysis in conjunction with
the von K�arm�an assumptions to derive the nonlinear
governing equations and boundary conditions of the
FG circular plates. Through the GDQ method, the
linear buckling and nonlinear postbuckling problems
were �rst solved and then, the buckled con�guration
was elaborated. Subsequently, the linear vibration of
the pre- and postbuckled plates was analyzed. The
e�ectiveness of the proposed approach was checked
through a few comparative studies. Further, the
e�ects of edge conditions, material gradient, and radial
force on the frequencies of the plate were studied.
The formula derived in this study can be e�ciently
applied to the axisymmetric analysis of the vibrational
behavior of the buckled FG circular plates.

2. Mathematical formulation

2.1. Modeling the material properties of FGM
circular plate

The present study used a functionally graded circular
plate with the radius of R and thickness of h in a
cylindrical coordinate system (as shown in Figure 1)
whose origin was located at the center of the mid-plane
of the plate. The coordinate variables such as r, �, and
z stand for the radial, circumferential, and thickness
directions, respectively.

Figure 1. Schematic of a functionally graded circular
plate, geometric parameters, and coordinate system.

The top (z = h=2) and bottom (z = �h=2)
surfaces of the plate were considered to be fully ceramic
and fully metallic, respectively. The volume fractions
of the ceramics Vc and metal Vm were taken to be of
the form of a power function as follows:

Vc(z) =
�

1
2

+
z
h

�k
; Vm = 1� Vc; (1)

where k denotes the power-law or volume fraction
index. When the value of k is set to zero, the plate
is ceramic-rich; however, when it tends to in�nity, the
plate becomes a metal-rich one. Therefore, according
to the linear rule of mixtures, Young's modulus E and
mass density � can be obtained as follows:

E(z) = (Ec � Em)Vc(z) + Em; (2-1)

�(z) = (�c � �m)Vc(z) + �m; (2-2)

where the subscripts m and c denote the metallic and
ceramic phases, respectively. Poisson's ratio � usually
remains unchanged with the material constituents;
therefore, it is assumed to be constant [2].

2.2. Governing equations of motion
Since the plate under study was considered to be thin,
its thickness was smaller than its radius. Therefore,
the Kirchho� plate theory was used for describing
the displacement �eld. In this respect, u1, u2, and
u3 denote the radial, circumferential, and transverse
displacements of any point inside the plate, respec-
tively. According to this theory, the axisymmetric
displacement components are expressed as follows:

u1 =u(t; r)� z @w(t; r)
@r

; u2 =0; u3 =w(t; r); (3)

where u and w represent the displacements in the
mid-plane of the plate in the radial and thickness
directions, respectively. According to the von K�arm�an
assumption, the non-zero components of the strain
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tensor are related to the displacement components, as
shown in the following:

"11 = "rr = u1;r +
1
2

(u3;r)2;

"22 = "�� =
1
r
u2;� +

u1

r
; (4)

where the subscript comma is a symbol of the partial
derivative. For a linear elastic material, the constitu-
tive equation can be given by:

�ij = �"kk�ij + 2�"ij ; (5)

where �ij is the classical stress tensor and � the
Kronecker delta. The parameter � and shear modulus
� in this equation are referred to as the Lam�e constants
given by:

� =
E�

1� �2 ; � =
E

2(1 + �)
: (6)

Based on Eqs. (3) and (4), the strain-displacement
relationships for the plate with moderately large ax-
isymmetric deformations are given by:

"rr = u;r � zw;rr +
1
2
w2
;r; "�� =

u
r
� zw;r

r
: (7)

The stress components can be determined by intro-
ducing Eq. (7) into Eq. (5). The resultant forces and
bending moments were then evaluated based on the
stress components. Next, the elastic energies of the
plate and the work done by the external radial force
applied to the FG plate, Nr0, were computed. Fi-
nally, the governing equations can be obtained through
Hamilton's principle and following equations:

A11

�
u;rr +

u;r
r
� u
r2 + w;rw;rr

�
�B11

�
w;rrr +

w;rr
r
� w;r

r2

�
+
A55

r
w2
;r

= I1u;tt � I2w;rtt; (8-1)

�D11r4w +B11

�
u;rrr +

2
r
u;rr � u;r

r2 +
u
r3

�
+A11

�
u;rw;rr+w;ru;rr+

1
2r
w3
;r+

3
2
w2
;rw;rr

�
+
�
A12

r

�
(uw;rr + 2u;rw;r)

+
�
B11 � 3B12

r

�
w;rw;rr + 2

�
A55

r

�
u;rw;r

+
1
r
d
dr

(rNr0w;r)= I1w;tt+I2
�
u;rtt+

1
r
u;tt
�

� I3
�
w;rrtt +

1
r
w;rtt

�
;

(8-2)

where:

r4w = w;rrrr +
2
r
w;rrr � 1

r2w;rr +
1
r3w;r:

The sti�ness coe�cients and mass moments of inertia
are expressed as:

fA11;B11; D11g

=

h
2Z

�h2
f�(z) + 2�(z)gf1; z; z2gdz; fA12; B12g

=

h
2Z

�h2
�(z)f1; z; z2gdz; 2A55 = (A11 �A12);

(9-1)

fI1; I2; I3g =

h=2Z
�h=2

�(z)f1; z; z2gdz: (9-2)

Further, the possible boundary conditions, clamped
and simply-supported ones, are obtained as:

Clamped edge:

u = w = w;r = 0 at r = R: (10)

Simply-supported edge:

u = w = Mr = 0 at r = R: (11)

The regular boundary condition at the center of the
plate is:

u=M��(rMr);r�rNrw;r=w;r=0 at r = 0; (12)

where the resultant force and moments are given by:

Nr=A11

�
u;r+

1
2
w2
;r

�
�B11w;rr+A12

u
r
�B12

w;r
r
;
(13-1)

Mr=B11

�
u;r+

1
2
w2
;r

�
�D11w;rr+B12

u
r
�D12

w;r
r
;

(13-2)

M�=B11
u
r
�D11

w;r
r

+B12

�
u;r+

1
2
w2
;r

�
�D12w;rr:

(13-3)

3. Numerical solution

Di�erent numerical techniques are available for solv-
ing the nonlinear deferential equations under speci�c
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KL=
�

A11
�
D(2) + rdD(1) � �rd �^2

�
I
� �B11

�
D(3) + rdD(2)���rd� �^2

�
D(1)�

B11
�
D(3)+2rdD(2) � ��rd� �^2

�
D(1)+

��
rd� �^3

�
I
�

�(4)

�
;
(16-1)

N =
�
0 0
0
�
rdD(1) + D(2)�� : (16-2)

Box I

boundary conditions. Here, the GDQ method was
used to discretize and solve the governing equations
under speci�c edge conditions. Of note, numerical
methods are time-consuming, especially in complex
problems such as nonlinearities, just like what we face
in the current problem. Having said that, one can
conclude that compared to other numerical methods,
the GDQ is an e�cient method that converges rapidly
to the �nal solution. Furthermore, as opposed to the
�nite element method, since the GDQ is locking-free,
it does not require any assemblage process which is
also capable of satisfying both natural and essential
boundary conditions. In the discretization, the solution
domain is de�ned in r1 = �R < r < rn = R and the
mesh generation in the radial direction is calculated as
follows:

ri=R
��

1� cos
i� 1
n� 1

�
�
� 1
�
; i = 1 : n; (14)

where n is the number of discrete points.

3.1. Buckling problem
The e�ect of boundary conditions on the buckling
behavior of the plates is of signi�cance in this study.
According to the previous studies [5,33{36], the bifur-
cation buckling phenomenon does not occur for the un-
symmetrical cross-ply laminated and FGM structures
with at least one simply-supported or free edge. Given
that the elastic moduli of the higher and lower surfaces
of the structure are di�erent for FGMs, curvature and
moments are induced in the structures. In the case
of clamped FG structure, the induced moments are
handled by the supports and the structure remains
undeected similar to homogeneous structures. On the
contrary, in the case of the simply-supported structure,
the bending moment is zero at the support and the
structure starts to deect at the onset of bending, and
there will be no buckling. In this regard, the buckling
and postbuckling phenomena were studied considering
both clamped FG and simply-supported homogenous
isotropic plates only.

The beginning of the static instability of the
initial equilibrium state can be determined by solving
the buckling problem, leading to the determination of
the critical buckling load. The problem can be solved

by eliminating the time-dependent and nonlinear terms
in Eqs. (8) and (13). Therefore, the discrete form of the
linear counterpart of Eqs. (8) can be represented in a
matrix format using the GDQ method, as shown in the
following:

KL

�
u
w

�
= �Nr0N

�
u
w

�
; (15)

where u and w are in the form of a column vector with
n elements containing the nodal displacements; and
KL and N represent the conventional and geometric
sti�ness matrices, respectively, with the size of 2n�2n
given by Eqs. (16) shown in Box I, where:

�(4) =�D11

�
D(4) + 2rdD(3) � ��rd� �^2

�
D(2)

+
��

rd� �^3
�
D(1)

�
;

and:

rd =

26664
1
r1 0 � � � 0
0 1

r2 � � � 0
...

...
. . .

...
0 0 � � � 1

rn

37775 : (17)

In Eq. (16-1), the symbol �^ represents the Hadamard
product [13] to the power of a number, i.e.:

x �^n =
n timesz }| {

x � x � � � � � x : (18)

I indicates an identity matrix with n2 components, and
the di�erential operator D(m) denotes the weighting
coe�cient matrix of the mth-order derivative in the
GDQ method [37] as expressed by Eq. (19) shown in
Box II. The related boundary conditions were then
transformed into a discrete form in a similar way. For
instance, in the simply-supported edge condition, we
have:

u1 = un = w1 = wn = Mr(1) = Mr(n) = 0; (20)

where:

Mr =
�
B11D(1) +B12rdI

�
u

� �D11D(2) +D12rdD(1)
�

w:
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D(m)
ij =

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

Iij m = 0
P(xi)

(xi�xj)P(xj) where P(xi) =
nQ

k=1;i 6=k
(xi � xk) i; j = 1; � � �n and i 6= j and m = 1

r
�
D(1)
ij D

(m�1)
ii � D(m�1)

ij
xi�xj

�
; i 6= j i; j = 1; � � � ; n and m � 2

� nP
k=1
k 6=i

D(m)
ik ; i = j; i; j = 1; � � � ; n and m � 2

(19)

Box II

Followed by imposing the boundary conditions
and making some manipulations, we can transform
Eq. (15) into the standard form of an eigenvalue
problem in the domain from where the critical
buckling load can be determined.

3.2. Postbuckling problem
If the applied radial force exceeds the critical buck-
ling load, the plate will lose its initial stability and
buckle [2]. To �nd the equilibrium path, the post-
buckling con�guration obtained from solving the non-
linear buckling problem should be taken into account.
Followed by dropping the time-dependent terms, the
nonlinear governing equations given in Eqs. (8) were
discretized through the GDQ method that was stated
in a condensed form and shown in the following:

KL

�
us
ws

�
+
�

Z1
Z2

�
= 0; (21)

where us and ws are the displacement variables in
the postbuckling region. Here, KL has the same
relationship as the one in the buckling analysis, i.e.,
Eq. (16-1), obtained by discretizing the linear terms in
the governing equations. Finally, Z1 and Z2 are the
column vectors of n elements including the nonlinear
terms expressed below:

Z1 =A11

h�
D(1)ws

� � �D(2)ws

�i
+A55ir �

��
D(1)ws

� �^2
�

(22-1)

Z2 =A11

h�
D(1)us

� � �D(2)ws

�
+
�
D(2)us

���D(1)ws

�
+

1
2
ir ��D(1)ws

��^3

+
3
2

(D(2)ws) � (D(1)ws) �^2
�

+A12ir�

h
us �

�
D(2)w bs

�
+ 2

�
D(1)us

� � �D(1)ws

�i
+ (B11 � 3B12) ir � �D(1)ws

� � �D(2)ws

�
+ 2A55ir �

�
D(1)us

� � �D(1)ws

�
+
h
ir � �D(1)ws

�
+
�
D(2)ws

�i
Nr0 =0; (22-2)

where:

ir =
�

1
r1
;

1
r2
; � � � ; 1

rn

�T
:

Eq. (21) includes 2n nonlinear equations of the form
of:(

F (Nr0;us;ws) = 0
R2n+1 ! R2n (23)

This set of nonlinear equations and their corresponding
boundary conditions make it di�cult to �nd a solution
through the linearization scheme. In this regard, the
present study aims to solve the nonlinear problem
through a direct solution approach with no need for
linearization. This objective was accomplished by
adopting the Newton's method for which the initial
values were regarded as the solution to the linear
problem associated with a speci�c mode obtained by
eliminating the nonlinear terms in Eq. (21). For a
speci�c value of the radial force, however, this tech-
nique faces a challenge, i.e., it provides a trivial solution
when applied to the nonlinear system of equations
given in Eq. (23). To overcome this drawback and
�nd the postbuckling path, a normalizing equation as
a constraint was considered in this system:(

F (Nr0;us;ws) = 0
wT
s ws � c = 0

(24)
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where c is the load controlling parameter that cor-
responds to the magnitude of buckling deformation.
Here, the new system of equations was solved through
the Newton's method under the related boundary
conditions to trace the postbuckling path. In other
words, it achieves the applied radial force as well as
the corresponding postbuckling con�guration for the
given value of the parameter c.

3.3. Free vibration of the prebuckled and
postbuckled plate problem

To study the free vibration of the buckled plate, the
variables of the displacement �eld are regarded as the
total of the buckled con�guration and a small dynamic
disturbance, as shown below [38]:

u(r; t) = us(r) + du(r; t); (25-1)

w(r; t) = ws(r) + dw(r; t); (25-2)

where du and dw are considered the time-dependent
disturbances around the buckled con�guration in the
form of [38]:

du(r; t) = �uei!t; (26-1)

dw(r; t) = �wei!t; (26-2)

where ! is the natural frequency, and �u and �w rep-
resent its corresponding mode shape. By substituting
Eqs. (25) and (26) into Eqs. (8) and then discretizing
the resulting equations in a condensed form, we have:

KL

�
�u
�w

�
+
�

G1
G2

�
+F (Nr0;us;ws)=!2ML

�
�u
�w

�
;

(27)

where �u and �w are n� 1 vectors and:

G1 =A11

��
D(1)ws

� � �D(2)�w

�
+
�
D(1)�w

�
� �D(2)ws

�
+
�
D(1)�w

� � �D(2)�w

��
+A55ir �

��
D(1)�w

� �^2 + 2
�
D(1)�w

�
� �D(1)ws

��
; (28-1)

G2 = A11

��
D(1)us

� � �D(2)�w
�

+
�
D(2)ws

�
��D(1)�u

�
+
�
D(2)�u

���D(1)ws

�
+
�
D(1)�w

�
��D(2)us

�
+

3
2
ir��(D(1)ws) �^ 2

���D(1)�w
�

+
3
2

��
(D(1)ws)�^ 2

� � �D(2)�w
�

+2
�
D(1)ws

�
��D(1)�w

� � �D(2)ws

��
+
�
D(1)�u

�
��D(2)�w

�
+
�
D(2)�u

� � �D(1)�w
�

+
1
2
ir

�
�

(D(1)�w) �^ 3 + 3
�

(D(1)�w) �^ 2
�

��D(1)ws

��
+

3
2

��
(D(1)�w) �^ 2

�
��D(2)ws

�
+
�

(D(1)�w) �^ 2
� � �D(2)�w

��
+3
�
D(1)ws

� � �D(1)�w
� � �D(2)�w

��
+A12ir �

�
us �

�
D(2)�w

�
+ �u �

�
D(2)ws

�
+2
�
D(1)us

� � �D(1)�w
�

+ 2
�
D(1)ws

�
��D(1)�w

�
+ �u �

�
D(2)�w

�
+ 2

�
D(1)�u

�
��D(1)�w

��
+ (B11 � 3B12) ir �

��
D(1)ws

�
��D(2)�w

�
+
�
D(2)ws

� � �D(1)�w
�

+
�
D(1)�w

� � �D(2)�w
��

+ 2A55ir

�
��

D(1)us

� � �D(1)�w
�

+
�
D(1)�u

�
��D(1)ws

�
+
�
D(1)�u

� � �D(1)�w
��

+
�
ir � �D(1)�w

�
+
�
D(2)�w

��
Nr0; (28-2)

ML =� �I1I I2D(1)

�I2 �rdI+D(1)� �I1I+I3
�
D(2)+rdD(1)�� :

(28-3)

Given that the dynamic disturbances are assumed
to be small compared with the postbuckling con�gura-
tion, we can obtain the linear free vibration problem
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by omitting the nonlinear terms from Eq. (27) [38].
Matrices �us and �ws are introduced as:

�us = us
�
1 1 � � � 1

�
1�n ;

�ws = ws
�
1 1 � � � 1

�
1�n ; (29)

and F(Nr0;us;ws) = 0; then, Eq. (27) becomes:�
KL +

�
K�11 K�12
K�21 K�22

���
�u
�w

�
= !2ML

�
�u
�w

�
; (30)

where:

K�11 = 0;

K�12 =A11

h�
D(1) �ws

��D(2) +
�
D(2) �ws

��D(1)
i

+ 2A55rd
h�

D(1) �ws

� �D(1)
i
; (31-1)

K�21 =A11

h�
D(1) �ws

� �D(2) +
�
D(2) �ws

� �D(1)
i

+A12rd
h�

D(2) �ws

�� I+2
�
D(1) �ws

��D(1)
i

+ 2A55rd
h�

D(1) �ws

� �D(1)
i
; (31-2)

K�22 =A11

h�
D(1)�us

� �D(2) +
�
D(2)�us

� �D(1)

+
3
2
rd
��

D(1) �ws �^2
� �D(1)

�
+

3
2

��
D(1) �ws

� �^2
� �D(2)

+3
��

D(1) �ws

� � �D(2) �ws

�� �D(1)
i

+A12rd
h
�us �D(2) + 2

�
D(1)�us

� �D(1)
i

+ 2A55rd
h�

D(1)�us

� �D(1)
i

+ (B11 � 3B12) rd
h�

D(1) �ws

� �D(2)

+
�
D(2) �ws

��D(1)
i
+
�
rdD(1) + D(2)

�
Nr0:
(31-3)

By substituting the boundary conditions into Eq. (30)
and separating the domain and boundary grid points,
assigned by the subscripts d and b, respectively,
from each other by de�ning the vectors Xd =
f(�u)Td ; (�w)TdgT , Xb = f(�u)Tb ; (�w)TbgT , this equa-
tion can be rewritten as:�

Kdd Kdb
Kbd Kbb

��
Xd
Xb

�
= !2

�
Mdd Mdb

0 0

��
Xd
Xb

�
:
(32)

From the previous equation, an eigenvalue problem in
the domain can be extracted as:�

Kdd �KdbK�1
bbKbd

�
Xd

= !2 �Mdd �MdbK�1
bbKbd

�
Xd: (33)

The natural frequencies of the vibrations of the plate
for any given radial load around the corresponding
buckled con�guration can be obtained using Eq. (33).

In the case of the pre-buckling problem, by taking
the value of the applied load in the domain 0 �
Nr0 � Pcrit, where Pcrit denotes the critical buckling
load for a given mode, and setting the variables of
displacement in postbuckling �us and �ws to zero, the
natural frequencies of the plate around the initial
undeected position are determined.

4. Results and discussion

In the following, the results obtained from the solutions
of the buckling, postbuckling, and free vibrations of
the undeected and buckled FG plate are presented
and compared for fully-clamped and simply-supported
edge supports. The FG plate was made of aluminum
and alumina with the material properties as [2]:

- Metal: Em = 70 GPa, �m = 2707 kg
m3 ,

- Ceramic: Ec = 380 GPa, �c = 3800 kg
m3 ,

unless otherwise speci�ed. Moreover, Poisson's ratio is
at a constant value of 0.3 [2].

In the numerical computations, the following non-
dimensional parameters should be evaluated:

- Central deection ratio = wmax
h ,

- Non-dimensional radial load = Nr0R2

Emh3 ,
- Non-dimensional natural frequency

= !R2

h

p
12�m(1� �2)=Em,

where wmax denotes the maximum deection of the
plate and the parameters were all de�ned in the
previous sections. In addition, the aspect ratio (h=R)
is 0.04, unless otherwise speci�ed.

It is �rst necessary to make sure that the present
results converge and then, the convergence of the
numerical solution proposed here should be examined.
Figure 2 represents the central deection ratio of the
clamped FG circular plate corresponding to the �rst
buckled con�guration against non-dimensional radial
load for a number of grid points. The volume fraction
index is k = 3. As observed, upon increasing the
number of grid points, the gap between the curves
diminishes and perfectly disappears when n reaches
22. Thus, n = 22 is chosen as the appropriate
number of grid point in all the numerical computations.
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Figure 2. Convergence of the postbuckling path of the
clamped functionally graded circular plate for the �rst
buckled con�guration.

According to the numerical simulations, the linear
results including the critical buckling load and natural
frequency rapidly converge at n = 14. This study
veri�es the fast convergence of the present numerical
method.

To verify the accuracy of the presented numerical
model, several comparison examples are given. In the
�rst example, the critical buckling loads of clamped cir-
cular FG plates were calculated for a number of volume
fractions and h=R ratios; then, they were compared
with those in [2] based on Classical Plate Theory (CPT)
and First-order Shear Deformation Theory (FSDT) in
Table 1. The results were in good agreement with each
other.

In the second example, the �rst four non-
dimensional linear natural frequencies of the clamped
FG circular plates for axisymmetric vibrations were
compared with those of [3] in Table 2. The results
contain di�erent values of volume fraction and aspect
ratio of h=R = 0:04. Here, the metal and ceramics
phases of the FGM system were assumed to be stainless
steel and silicon nitride, respectively. According to [3],
these material properties depend on temperature. As
observed, the two sets of results were in good agree-
ment. As observed in previous tables, with an increase
in the volume fraction index, the critical buckling
load and the natural frequency would decrease, mainly
because increasing the volume fraction index would
decrease the plate sti�ness.

As the third example, the postbuckling behavior
of clamped FG circular plates predicted by the present
study was compared with the one by Fallah et al. [5]
based on the FSDT in Figure 3. The results are
generated for the FG material system of aluminum{

Table 1. Validation of the critical buckling load (�106 N/m) of the clamped functionally graded circular plates.

h
R = 0:01 h

R = 0:03 h
R = 0:05

k Present
work

CPT
[2]

FSDT
[2]

Present
work

CPT
[2]

FSDT
[2]

Present
work

CPT
[2]

FSDT
[2]

0 0.5109 0.5108 0.5107 13.7946 13.7927 13.7495 63.8639 63.8553 63.3022

0.5 0.3312 0.3311 0.3310 8.9422 8.9410 8.9161 41.3992 41.3937 41.0741

2 0.1987 0.1987 0.1986 5.3653 5.3646 5.3502 24.8394 24.8360 24.6523

Table 2. Validation of the lowest four non-dimensional linear natural frequencies of axisymmetric vibration of the
clamped functionally graded circular plates.

�!1 �!2 �!3 �!4

k Present
work

[3] Present
work

[3] Present
work

[3] Present
work

[3]

0.5 17.4693 17.2985 67.8710 67.0527 151.5222 | 267.6454 |

0.8 15.7946 16.0439 61.3647 62.0397 136.9968 | 241.9877 |

1 15.0869 15.4879 58.6160 59.8276 130.8633 | 231.1607 |

5 12.0604 12.4211 46.8706 48.1363 104.6935 | 185.0650 |

10 11.3981 11.5676 44.2992 45.0113 98.9592 | 174.9531 |

Metal 10.2483 10.2160 39.8305 39.7710 88.9767 89.104 157.304 158.181
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Figure 3. Comparison of the postbuckling paths of the
clamped functionally graded circular plate for the �rst
buckled con�guration.

zirconia taken in [5] based on which setting k = 0 and
k = 1 yields fully metallic and fully ceramic plates,
respectively. It is also assumed that h=R = 0:02. It is
observed from Figure 3 that the two curves are quite
close to each other speci�cally at small non-dimensional
loads. The starting points of the postbuckling paths
corresponding to the critical buckling load almost
coincide. However, at higher loads, there is a small
gap (maximum 5.5%) between the two responses which
may be due to di�erent theories used.

In what follows, the inuences of material model
parameters and edge conditions on postbuckling and
free vibrations behavior of the undeected and buckled
functionally graded plate are examined. As discussed

in Section 3.1, the clamped FG plates behave like
homogenous isotropic plates and buckling occurs for
them, while the FG plates with at least one simply-
supported or free edge start to bend when subjected to
in-plane compressive loading. Since the present work
focuses on the vibrations of the circular plates around
the prebuckling and postbuckling con�gurations, the
responses of FG clamped and homogenous isotropic
simply-supported plates are evaluated, only. Accord-
ingly, the results are provided for di�erent volume
fraction indices when the plate is all edges clamped and
for k = 0 and k =1, i.e., rich-ceramic and rich-metal
plates, when it is all edges simply-supported.

The central deection ratio of the circular
plate for the �rst buckled con�guration versus non-
dimensional radial load is depicted in Figure 4. It is ob-
served from this �gure that when the non-dimensional
radial load passes the bifurcation point (i.e., the critical
buckling load), the plate loses the straight con�gu-
ration and gains a new stable equilibrium position,
namely postbuckling con�guration. It is obvious that
increasing the radial load causes the central deection
ratio to rise. Furthermore, one can see that the
ceramic- and the metal-rich plates have the minimum
and maximum deection and so, the sti�est and the
most exible exural behaviors in the postbuckling
region, respectively.

Presented in Figure 5 is the postbuckling behavior
of clamped and simply-supported homogenous circular
plates corresponding to the �rst buckling mode. From
this �gure, it is seen that the starting points of the
curves associated with clamped plate are subject to
larger radial force (i.e., larger critical buckling load)
than that in the simply supported plate. Moreover, for
a speci�c value of radial force, the central deection
ratio of the plate with clamped edge conditions is

Figure 4. Static bifurcation diagrams of the circular plate for the �rst buckled con�guration.
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lower than that of the plate with simply-supported end
conditions. In other words, the plate with sti�er edge
supports has higher strength against the load. It is
noticeable that the curves corresponding to the two
edge conditions converge, as the non-dimensional radial
load is increased. It means that at higher loads, the
e�ect of edge conditions on deection of the plate in
the postbuckling region gets nulli�ed.

Variation of the non-dimensional fundamental
natural frequency of the circular plate around
prebuckled con�guration with non-dimensional radial
load is given in Figure 6. The starting points of the

Figure 5. Postbuckling behavior of the homogenous
circular plate with clamped and simply-supported edge
conditions for the �rst buckled con�guration.

curves correspond to the linear fundamental natural
frequency. As shown, for all the materials considered,
the natural frequency of the plate diminishes with
the increase of the non-dimensional radial load so
that it tends to zero when the load approaches its
critical value. In other words, applying the radial
force, as much as the critical buckling load, makes
the undeected con�guration unstable. It is also
found from Figure 6(a) that for the plate with smaller
volume fraction indices, stability of the straight
position lasts longer than the one with higher indices
due to having greater critical buckling load.

Figure 7 shows the �rst natural frequency of the
circular plate around the initial position and the �rst
postbuckled con�guration against the radial load. It
is observed that increasing the radial load beyond the
critical buckling load causes the �rst natural frequency
to increase. In other words, it is found that the trend
in variations of the fundamental natural frequency
with the applied radial load around the prebuckled
con�guration di�ers from the one around the buckled
con�guration, as shown in Figure 7. Moreover, it is
interesting to note that in the postbuckling region, the
natural frequency of the rich-metal structure is greater
than that of the rich-ceramic structure, which is in con-
trast to the result obtained in the prebuckling region.
For the selected material properties, the mass density of
the metal is lower than that of the ceramics. Therefore,
it can be concluded that in the postbuckling region, the
e�ect of inertia dominates the e�ect of sti�ness.

To address this issue further, an FG material
system of stainless steel-silicon nitride is selected for
which the mass density of the metal is higher than
that of the ceramics (Em = 201:04 GPa, Ec =
348:43 GPa, �m = 8166 kg/m3, �c = 2370 kg/m3).

Figure 6. Non-dimensional �rst natural frequency of the circular plate around the initial undeected con�guration versus
non-dimensional radial load.
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Figure 7. Non-dimensional �rst natural frequency of the circular plate around the prebuckled and the �rst postbuckled
con�gurations against non-dimensional radial load.

Figure 8. Non-dimensional �rst natural frequency of the circular plate around the �rst postbuckled con�guration against
non-dimensional radial load.

The free vibration behavior of the circular plate made
of this material around the postbuckling con�guration
is shown in Figure 8. It is observed that like the pre-
buckling region, the maximum and minimum natural
frequencies are obtained for ceramic- and metal-rich
plates, respectively.

It is worth mentioning that the �rst buckled
con�guration is a stable equilibrium position [38]. Also,
the �rst natural frequency is of greater signi�cance
than at the higher modes; therefore, herein, the natural
frequency of FG circular plate related to the lowest
vibration mode around the �rst buckled con�guration
is evaluated. Moreover, the model developed in the
present work is axisymmetric and for its antiaxisym-
metric counterpart, the natural frequencies correspond-
ing to the higher modes are less important.

5. Conclusion

In this work, the buckling, postbuckling, and vibrations
around the buckled con�guration behaviors of the
functionally graded circular plate were investigated.
The nonlinear governing equations of motion together
with the related boundary conditions were extracted
based on the Kirchho� plate theory and solved by the
generalized di�erential quadrature method. Through
several comparative studies, the reliability of the
present model was assessed. It was shown that the
present method had a high rate of convergence and
accuracy. In the case of the �rst natural frequency
when no load was applied and the critical buckling
load of the plate was obtained, it was found that
the clamped plate achieved higher values for these
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parameters than those in the simply-supported one.
This study found that as the volume fraction index
decreased, the critical buckling load and the �rst
natural frequency increased. In other words, the plate
having lower volume fraction index displayed a sti�er
exural behavior in the postbuckling region. Further,
it was observed that as the radial force increased, the
e�ect of edge supports on deection of the plate in the
postbuckling region became less pronounced. It was
also discerned that as the radial load increased, the
fundamental natural frequency of the plate around the
prebuckled position decreased, whereas it was increased
around the �rst buckling con�guration. The present
work showed that the inertia and sti�ness might play
di�erent roles in vibrations of plates with di�erent
equilibrium positions. More clearly, in the postbuckling
con�guration, it was found that the e�ect of inertia
was dominant (in contrast to the prebuckling region)
so that the material with smaller mass density had
higher natural frequency than the one with higher
elastic modulus. So, one can �nd the importance of the
knowledge of the vibrational behavior of the plates at
di�erent equilibrium positions in the designing process
as the structures may behave quite di�erently when
they vibrate around the prebuckled or postbuckled
con�guration.
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Nomenclature

R Plate radius
h Plate thickness
r; �; z Coordinate variables in the radial,

circumferential, and thickness
directions

Vc; Vm Volume fraction of ceramics and metal
Ec; Em Young's modulus of ceramics and

metal
�c; �m Mass density of ceramics and metal
� Poisson's ratio
u;w Mid-plane displacement in the radial

and thickness directions
"ij Strain tensor

�ij Stress tensor
�; � Lam�e constants
Nr0 External radial force
A11; B11; D11 Sti�ness coe�cients
I1; I2; I3 Mass moments of inertia
Nr;Mr;M� Resultant force and moments
n Number of discrete points
KL;N Conventional and geometric sti�ness

matrices
D(m) Weighting coe�cients matrix in

di�erential quadrature method
I Identity matrix
c Load control parameter
us; ws Displacement variables in postbuckling

region
du; dw Time-dependent disturbances
! Natural frequency of vibration
�u; �w Mode shapes of vibration
ML Mass matrix
Pcrit Critical buckling load
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