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Abstract. This paper studies the heart oscillation model to separate fetal ECG from
maternal ECG based on abdominal recordings. To this end, two phases are designed. A
modi�ed version of the Du�ng-Van der Pol oscillator is considered a computational heart
model at the modeling phase. To evaluate the e�ect of the interaction between maternal
and fetal hearts as well as the di�erences and features of the fetal heart structure, the fetal
heart model is modi�ed based on the maternal heart model. A non-identical network is
employed as an interactive network of the maternal and fetal hearts. Then, the degree
of network synchronization is measured using a pattern synchronization index of the non-
identical network. An attempt is made to separate the fetal signal from the maternal
signal in abdominal signals at the separation phase. Two problem-solving approaches are
explained: the step-by-step mode that calculates the signal at any given moment and the
construction of general equations. These approaches are used to calculate the variables,
including maternal and fetal signals, making it possible to separate the maternal ECG from
fetal one.

© 2023 Sharif University of Technology. All rights reserved.

1. Introduction

Cardiovascular problem is one of the most common
congenital diseases that remains undiagnosed even
years after birth [1]. Therefore, recording fetal car-
diac activities monitors fetal heart performance. The
results show that fetal electrocardiogram (fECG) can
identify most disorders in the hearts of mother and
fetus [2]. In addition, the prominence of fECG over
Cardiotocography (CTG) in the fetal heart disease di-
agnosis was reported in [3,4]. Since most fetal diseases
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can be detected possibly by studying fECG, a complete
analysis of fECG signal can prevent such drawbacks
[5]. However, recording fECG signals contains is not
without critical challenges [6,7].

The fECG signal can be obtained via direct
or indirect procedures [6]. The direct method is
invasively using wire electrodes on the fetus scalp
or abdomen [8]. Due to the dangers of the direct
method, a non-invasive procedure was utilized in [9,10].
In such methods, ECG signals are recorded over the
mother's abdomenal surface. The recorded signal is
the abdominal ECG (aECG), which consists of fetal
and maternal electrocardiograms (mECG). Given that
the mECG amplitude is signi�cantly larger than the
fECG amplitude, recovery of fECG from aECG is quite
challenging [11]. Consequently, many studies have
investigated di�erent separation methods to ful�ll the
aim [5,12].
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Several methods including adaptive �ltering
method [13{15], genetic algorithm [16], Singular Value
Decomposition (SVD) [11,17], Independent Compo-
nent Analysis (ICA) [18{21], and wavelet transform
analysis [22,23] have been employed in order to extract
the fECG signal from the aECG. Adaptive �lters are
divided into two groups: stochastic gradient approach
and recursive least square algorithms [24]. In these
algorithms, the crucial issue is to set correct parameters
[25]. The SVD technique reduces noise and separates
components [11] within the constraint on the number of
recording electrodes, which must be more than sources
[26]. ICA is a Blind Source Separation (BSS)-based
method that is used when sources are independent [27].
The method presented in [28] functions based on the
FastICA algorithm. Wavelet transform is another tech-
nique used for time-scale domain analysis [29]. In [22],
Datian and Xuemei detected the mECG signal edges
using spline wavelet transform and then, extracted the
mECG signal by �nding the local maximum of aECG.
In addition to the mentioned approaches, such methods
as arti�cial intelligence [30], maternal ECG pattern
[31], Gaussian moments [32], time structure informa-
tion, and high-order statistical components related to
fetal ECG signal [33] are utilized to extract fECG
from aECG signal. Here, the computational model is
introduced as an approach to fECG extraction.

Computational modeling provides the best math-
ematical representation of a system [34]. The compu-
tational biological models provide a virtual laboratory
that characterizes the complex system features [35].
An appropriate theoretical model mainly highlights
essential features and underplays insigni�cant details
of the natural system [36]; thus, such a model can
be the right approach to illustrating heart activities.
The heart is a complex, adaptable system that operates
e�ectively due to the interactions of its dynamic parts
[37]. Former studies have found the ECG signal to be
periodic [36]. However, the heart as a biological system
shows evolutionary properties [38]. On this matter, the
authors in [39] stated that the hierarchical model was a
viable way to simulate the properties of such a complex
system since agents are the main components of this
model.

Chaos has been investigated in various biological
systems as a long-term non-periodic behavior in a
deterministic system, sensitive to the initial conditions
[40,41]. The unpredictability of the complex behavior
of chaotic systems is one of the crucial factors in
modeling biological systems with complex features [42].
The cardiovascular system as a biological system can
be considered a chaotic system [43{45]. In [46], the
positive Lyapunov exponents of the RR-interval signal
were extracted from the pulse signal of �nger capillar-
ies, which pointed out that the heart had a chaotic
behavior. Chaos in cardiac myocytes has also been

shown in many experimental studies and modeling. For
instance, Chialvo et al. indicated that the cardiac
Purkinje �bers could bifurcate due to their chaotic
dynamics [47].

Many studies have investigated the heart at mi-
croscopic, mesoscopic, and macroscopic levels [48]. In
this study, macroscopic models have been proposed for
the heart dynamical function based on Van der Pol
oscillators [49]. Some modi�ed Van der Pol models
have been introduced by incorporating physiological
features of the heart dynamics [50,51]. In another
study, the coe�cients of a modi�ed Van der Pol
oscillator as a computational model of the heart were
optimized using neural network algorithms [52]. In [53],
two Van der Pol oscillators were coupled as a cardiac
model in which one of the oscillators was assumed to
represent the dynamics of the heart pacemaker. Some
research used a three-coupled Van der Pol oscillator
(SA node, AV node, and HP complex) to discuss
the heart rhythm implementation and model it in a
macroscopic state [54,55]. To investigate the dynamics
of the mother and fetus hearts, the interaction should
consider a network.

From a systemic perspective, a network consists
of nodes and their connections that can sometimes
create the most crucial form of dynamical collective
behavior, i.e., synchronization [56,57]. Each node
demonstrates a dynamical system in such networks,
and their connections represent the interaction between
them. Networks of identical oscillators with the same
parameter values, called identical lattices, can produce
complete synchronization [58]. However, non-identical
networks can never be fully in synch [59,60]. Real-world
systems, such as biological and engineering networks,
are non-identical [61]. In 2020, Panahi and Jafari
proposed an approximate synchronization index [62],
inspired by the Poincar�e section. Unlike conventional
methods, this method provides a quantitative index
for measuring the degree of behavioral synchronization,
focusing on the pattern of 
uctuations in the network.

This paper is organized as follows: In Section 2,
a heart model is presented and also, the maternal
and fetal heart interaction is modeled. In Section 3,
the synchronization of this network is investigated.
Besides, the system equations are generated through
time variation in this section. In Section 4, the
approach to separating fetal signals from the abdominal
signal is introduced. Finally, in Sections 5 and 6, the
discussion and conclusions are presented, respectively.

2. Model

2.1. The heart model
Nonlinear oscillators are used as computational models
to show the normal or abnormal heart rhythm. In
this study, a nonlinear Modi�ed Du�ng-Van der Pol
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Figure 1. (a) The time series and (b) phase space of Du�ng-Van der Pol model with respect to parameters a = 0:2,
b = 5:8, and c = 3 corresponding to the initial condition (12; 6:6).

Figure 2. (a) The time series and (b) phase space of modi�ed Du�ng-Van der Pol model with respect to parameters
a = 2:5, b = 1:8, c = 3:8, w1 = 1:8, and w2 = 1:2 with initial condition (1;�0:7).

oscillator is proposed as a computational model of the
heart rhythm. Since heart rhythms have been claimed
to be chaotic signals [43,44], many researchers have
attempted to reconstruct the heart signal model based
on the chaotic oscillator. The Modi�ed Van der Pol
oscillator has drawn wide attention among di�erent
oscillator models as it can achieve di�erent aspects of
the heart signal [63]. As an e�ective parameter, time
delay was incorporated into the Van der Pol oscillator
as well; thus, it could illustrate the heart oscillation
perfectly [51].

Van der Pol equation is a proper choice for
modeling heart dynamics systems such as cardiac cycles
and heart rate variations. It can also show the heart's
relaxation oscillations [50,52]. The qualities of Van
der Pol signals are very similar to the heart action
potential characteristics. Both slow and fast types of
action potentials can be easily simulated using Du�ng-
Van der Pol. The driving term in each oscillator is
responsible for the external input, which is included in
Eq. (1). Figure 1 shows the time series and phase space
of the Du�ng-Van der Pol model in the determined
parameters.

�x� a(1� x2) _x+ x3 = b cos(ct): (1)

The parameters of the Modi�ed Du�ng-Van der Pol

model are adjusted based on the actual heart signal. It
can be formulated as Eq. (2):(

_x = y
_y = �a(x� w1)(x+ w2)y � x3 + b cos(ct):

(2)

Figure 2 shows the time series and phase space of
the heart model using Eq. (2). It indicates the heart
chaotic function when the parameters are set to a =
2:5, b = 1:8, c = 3:8, w1 = 1:8, and w2 = 1:2 upon
choosing (1;�0:7) as the initial conditions.

The bifurcation diagram is another way of analyz-
ing the chaotic behavior of this model. Hence, the sys-
tem dynamics are analyzed via the bifurcation diagram
concerning the variation of parameter a. In Figure 3,
the system bifurcation diagrams are plotted for both
x and y variables with two di�erent approaches. In
the �rst approach, the bifurcation diagram is plotted
using peaks of the time series (see Figure 3(a) and
Figure 3(b)). In the second approach, Inter Spike In-
tervals (ISI) of the time series are used for plotting the
bifurcation diagram in Figure 3(c) and (d). Plotting
bifurcation diagrams using max values of the variables
shows their amplitude variations. However, plotting
ISI bifurcation diagrams reveals the variation in the
timing of interspike. Therefore, these bifurcations
present two di�erent features of the system dynamics.
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Figure 3. Bifurcation diagrams of the modi�ed Du�ng-Van der Pol model using constant initial conditions [1;�0:7].
Peak values with changing a as the bifurcation parameter in (a) x variable and (b) y variable. ISIs versus a for (c) x
variable and (d) y variable. (e) The corresponding Lyapunov exponent of the Modi�ed Du�ng-Van der Pol model, and (f)
zoom of the region within [�0:2; 0:2]. Other parameters are b = 1:8, c = 3:8, w1 = 1:8, and w2 = 1:2.

For example, by changing the parameter a in the range
of [1.79,2.23], the spike amplitude varies, although the
ISI bifurcation shows that the intervals of these spikes
are constant. Moreover, a positive Lyapunov exponent
is employed to show chaotic dynamics in the system
[64]. In Figure 3, below the bifurcation diagrams,
the corresponding Lyapunov exponents are plotted via
parameter a. As shown in Figure 3(e) and (f), one of
the Lyapunov exponents turns positive in the chaotic
region.

Complex dynamics can be seen in the model
bifurcation diagram according to changes in the other
parameters of the model. Figure 4 shows di�erent
bifurcation patterns by changing parameters b, c, w1,
and w2.

2.2. Fetal heart model
The amplitude of the fetal ECG is 20% smaller than
that of the maternal ECG. In addition, the amplitude

value of the cardiac signals in adults is about a few
millivolts. Consequently, the fetal signal is much
weaker than the maternal one. One of the problems
in the mother-fetus signal separation is the constant
presence of maternal ECG signal, which is about 5 to 20
times larger than the fetal ECG signal [11]. Therefore,
the fetal heart is modeled using a Modi�ed Du�ng-
Van der Pol, which 
uctuates with the intensity of
one-twentieth adult heart. To this end, the modi-
�ed Du�ng-Van der Pol concerning the fetus heart
model is formulated with scaled variables ( _x = A _X and
_y = A _Y ) as follows:8>>>><>>>>:

_x2 =
� 1
A

�
(By2)

_y2 =
� 1
B

���a(Ax2 � w1)(Ax2 + w2)y

�(Ax2)3 + b cos(ct)
�

(3)

To demonstrate how the amplitudes of mECG and



Zandi-Mehran and Hashemi Golpayegani/Scientia Iranica, Transactions D: Computer Science & ... 30 (2023) 577{591 581

Figure 4. Bifurcation diagrams of the modi�ed Du�ng-Van der Pol model for constant initial conditions [1;�0:7]: (a)
Peak values of y variable and (b) ISIs of y versus b. (c) Peak values and (d) ISIs of y with changing c. (e) Maximum values
of y and (f) ISIs of y variable concerning the variation of parameter w1. (g) Peak values of y variable and (h) ISIs of y
versus w2.

fECG are di�erentiated in the worst cases, two coef-
�cients A and B are set to 20. The result is plotted in
Figure 5.

As shown in Figure 5, coe�cients A and B only
a�ect the amplitude intensity; thus, similar results have
been obtained concerning the performance and pattern
of the two models.

2.3. The interacting network of maternal and
fetal hearts

A dynamical network is considered here to investigate
the dynamic interaction between the maternal and
fetal hearts. The interaction between maternal and
fetal hearts is modeled through linear coupling of x
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Figure 5. (a) The time series and (b) phase space of Eq. (3) for parameters A = 20, B = 20, a = 2:5, b = 1:8, c = 3:8,
w1 = 1:8, and w2 = 1:2 with initial condition (0:2; 0:6).

Figure 6. (a) The time series of x variable in fetal in red and maternal in blue, and (b) the time series of y variable in
fetal in red and maternal in blue. (c) Delayed phase space of maternal x variable and (d) delayed phase space of maternal
variable in Eq. (4) for setting parameters as parameters A = 20, B = 20, a = 2:5, b = 1:8, c = 3:8, w1 = 1:8, w2 = 1:2, and
� = 20 with initial condition (1;�0:7; 0:02; 1).

variables, which can be formulated as Eq. (4):8>>>>>>>>><>>>>>>>>>:

_x1 = y1 + "(x2 � x1)
_y1 = �a(x1 � w1)(x1 + w2)y1 � x3

1 + b cos(ct)
_x2 =

� 1
A

�
(By2) + "(x1 � x2)

_y2 =
� 1
B

���a(Ax2 � w1)(Ax2 + w2)y2

�(Ax2)3 + b cos(ct)
� (4)

In Eq. (4), " shows the interaction coe�cient (coupling
strength), the variable x acts as a Cardiac Pacemaker
(CP) in each of the maternal and fetal heart models,
and the variable y shows the Heart Rate Variable

(HRV). The model outputs are shown in Figure 6
after setting the interaction coe�cient to " = 0:01.
Sometimes, chaotic behaviors appear to be irregular
and random in time series, but have a strong underlying
order in phase space [65]. A phase space projection
shows the dependency of each state on the next
one; hence, the phase space is used to study chaotic
dynamics [66] and topological characteristics of the
system [67]. Numerical processes, i.e., estimating the
correlation dimension and the Lyapunov exponents or
modeling and forecasting the time series, are performed
based on phase space [68]. In Figure 6(c) and (d),
trajectories pass close together in the delayed phase
space.
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3. Analysis of synchronization in a
non-identical network

From a systemic perspective, a network consists of
nodes and their connections that can sometimes create
the most crucial form of dynamical collective behavior,
i.e., synchronization [56,57]. Each node demonstrates
a dynamical system in such networks, and their con-
nections represent the interaction between them. Syn-
chronization is one of the most exciting consequences
of interaction in dynamic networks [69]. Networks of
identical oscillators with the same parameter values,
called identical lattices, can produce complete synchro-
nization [58]. However, non-identical networks can
never be fully in synch [59,60]. Real-world systems
such as biological and engineering networks are non-
identical [61].

Non-identical networks can be divided into two
general groups: (1) the same dynamical system with
di�erent parameters and (2) di�erent dynamical sys-
tems placed at each node [70]. Most of the real-
world research studies have investigated non-identical
networks of the �rst group [71]. In 2008, Hill et
al. presented conditions for global synchronization
for the �rst group of the non-identical network [72].
Also, other studies were conducted to generalize the
existing methods for measuring synchronizes in these
networks [73,74]. Then, the approximate synchroniza-
tion method was considered for both groups of non-
identical networks [75]. Approximate synchronization
uses measuring similarity in di�erent behavior aspects
[76]. A new method (pattern synchronous) based on
the behavioral pattern of the network oscillators was
proposed to measure synchronization in non-identical
complex biological systems [62]. Inspired by the
Poincar�e section, this method considers inconsistency
between the network oscillations as a principle and
ignores such parameters as amplitude and phase simi-
larity.

In this method, each time series peak is considered
as a sign of complete oscillation. The algorithm of
this method begins with �nding the peaks of each
oscillator of the network. Then, the peaks of di�erent
time series are compared and the close peaks are
counted, considering the threshold value. Finally, the
synchronization degree is then de�ned, proportional to
the number of corresponding peaks in the time series of
the network oscillators. In this paper, the synchronous
study was carried out using this method since non-
identical oscillators interacted. The results are shown
in Figure 7.

As illustrated in Figure 7, by enlarging the
coupling coe�cient, the degree of synchronization in-
creased by calculating and averaging it with 20 random
initial conditions to reduce dependence on the initial
condition. It can be seen that for coupling strengths

Figure 7. Measuring pattern synchronization index in
the coupled maternal and fetal heart model in the
di�erent coupling coe�cients (").

larger than 0.01, the two oscillators share the same
pattern. Thus, the coe�cient of 0.01 is chosen and
considered as the coupling coe�cient for the rest of
this study.

4. Separation

In general, there are two methods for extracting the
fECG signal: direct method (invasive) and indirect
method (non-invasive). The indirect fECG signal ex-
traction holds signi�cant advantages over other meth-
ods. However, this method is subject to some limita-
tions.

As shown in Figure 8, a combination of the
maternal and fetal heart signals can be captured with
abdominal recording. Therefore, a combined signal of
the maternal and fetal hearts, i.e., y1 + y2, is recorded.

In the following, we are looking for a way to
separate the fetal signal from the collective signal
y1 + y2. A fragment of this signal is shown in Figure 9.

Suppose that the heart's systemic model and

Figure 8. Combination of the maternal and fetal heart
signals in abdominal recording. Higher intensity of the
maternal heart signal than that of fetal heart signal was
shown with a thicker arrow.
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Figure 9. Assuming abdominal recording, time series of
the combined heart signal of the mother and the fetus,
y1 + y2, from Eq. (4).

its parameters are known, while the degree of the
interaction (the coupling parameter) is unknown. The
ultimate goal is to be able to calculate y2 at any time
by having abdominal recording. An attempt has been
made to get some additional information that could
bring us closer to the answer. For instance, the sum of
x variables can also be obtained based on the model.
Eq. (5) shows both x variables of the network:(

_x1 = y1 + "(x2 � x1)
_x2 =

� 1
A

�
(By2)+"(x1 � x2) = y2+"(x1�x2): (5)

By summing the two sides of Eq. (5), it can be
concluded that y1 +y2 = _x1 + _x2. Then, by integrating
both sides, we have:Z

sum(y1 + y2) =
Z

_x1 + _x2 = sum(x1 + x2): (6)

Therefore, recording the collective signal y1 + y2 with
abdominal recording can end with the summation of x
variables. Figure 10 shows the summation of variables
calculated from the collective signal y1 + y2.

Considering Eulerian [77], the continuous form of
Eq. (4) can be discretized as Eq. (7) shown in Box I.
There are two ways to solve Eq. (7): step-by-step

Figure 10. Integral of the summation of y variables in
blue and the generation of the x variables summation in
green.

and high-order techniques. The step-by-step technique
uses x and y summation signals at each moment and
generates Eq. (8):(

x1(i) + x2(i) = sum(x1 + x2)(i)
y1(i) + y2(i) = sum(y1 + y2)(i)

i = 1; : : : ; N
(8)

Based on the summation signal, the relation can be
written with a further step:

y1(i+ 2) + y2(i+ 2) = sum(y1 + y2)(i+ 2): (9)

Since new unknowns are added to Eq. (9), the Euler
relation is used to write the present step with the
previous step variables:

y1(i+ 2) + y2(i+ 2) = y1(i+ 1) + y2(i+ 1)

+�t
�
�a(x1(i+ 1)�w1)(x1(i+1)+w2)y1(i+1)

�x3
1(i+ 1) + b cos(ct)

�
+ �t

��
1
B

�
�
�a(Ax2(i+1)�w1)(Ax2(i+1)+w2)y2(i+1)

8>>>><>>>>:
x1(i+ 1) = x1(i) + �t (y1(i) + "(x2(i)� x1(i)))
y1(i+ 1) = y1(i) + �t

��a(x1(i)� w1)(x1(i) + w2)y1(i)� x3
1(i) + b cos(ct)

�
x2(i+ 1) = x2(i) + �t

�� 1
A

�
(By2(i)) + " (x1(i)� x2(i))

�
y2(i+ 1) = y2(i) + �t

�� 1
B

� ��a(Ax2(i)� w1)(Ax2(i) + w2)y2(i)� (Ax2(i))3 + b cos(ct)
��

i = 1; :::; N � 1: (7)

Box I
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Figure 11. (a) Computed unknown coupling parameter, ", in the time domain. (b) A zoomed plot of part a in the
speci�ed region. (c) Histogram of di�erent answers for all the times.

�(Ax2(i+ 1))3 + b cos(ct)
��

= sum(y1 + y2)(i+ 2): (10)

Of note, �ve equations are obtained: two equations
from the x variables summation, two equations from
the y variables summation (Eqs. (8) and (10)).8>>>>>><>>>>>>:

x1(i) + x2(i) = sum(x1 + x2)(i)
y1(i) + y2(i) = sum(y1 + y2)(i)
x1(i+ 1) + x2(i+ 1) = sum(x1 + x2)(i+ 1)
y1(i+ 1) + y2(i+ 1) = sum(y1 + y2)(i+ 1)
Eq:10

In addition, four equations have been achieved from the
Euler discretization in Eq. (7). Finally, the problem
leads to a system of nine equations and nine variables.
Figure 11 shows the results for a part of the signal in
the time domain.

As shown in Figure 11, this system of equations
has three roots for coupling parameter, ". Roots with
imaginary values are omitted because they were not
acceptable. One of the roots was equal to the value of
0.01 in all cases that remained visible on a continuous
line at the mentioned value. In the histogram plot in
Figure 11(c), the maximum intensity is the exact value
of 0.01. Similarly, for other unknown values, y1(t) and
y2(t), three roots can be calculated, while roots with
imaginary values must be eliminated. Assume that M1,

M2, and M3 are three roots of y1, and F1, F2, and F3
are roots of y2, in which only one answer is correct at
a time. Figure 12 shows these roots.

Figure 13 illustrates the estimated variations in
the maternal and fetal heart rates based on the calcu-
lated roots of y1 (maternal heart) and y2 (fetal heart)
at any given time when the coupling coe�cient is set
to " = 0:01.

The second approach involves an overview of the
problem. By taking an overall look at the whole system
of equations from the beginning to the end, it can
be seen that our problem is broken into solving nine
equations with nine unknown variables. However, there
are solution methods with high-order equations, too.
Meanwhile, in the previous method, variables in the
next step are calculated once here and then again in
the next. If all Euler's equations (Eq. (7)) are put
together, as the equations are based on one step ahead,
the problem is resolved upon solving the 4(N � 1)
equations and 4N + 1 variables. However, with the
summation of x and y signals in Eq. (8), we have 2N
equations as follows:8>>>>><>>>>>:

x1(1) + x2(1) = sum(x1 + x2)(1)
y1(1) + y2(1) = sum(y1 + y2)(1)

...
x1(N) + x2(N) = sum(x1 + x2)(N)
y1(N) + y2(N) = sum(y1 + y2)(N)

In conclusion, by assuming the signal length N , there
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Figure 12. Separation of mother and fetus hearts by computed unknowns: (a) M1, M2, and M3 as three roots in
computing y1, (b) a zoomed plot of it in the speci�ed region, (c) F1, F2, and F3 as three roots in computing y2, and (d) a
zoomed plot of it in the speci�ed region.

Figure 13. (a) Estimated maternal and fetal HRV. (b) Actual maternal and fetal HRV. (c) Phase space of estimated
maternal ECG in green and natural maternal ECG in blue.
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Figure 14. Block diagram of the proposed algorithm that summarizes the method at two phases. At the modeling phase,
a non-identical network of maternal and fetal hearts is synchronized. The separation phase summarizes how abdominal
signal breaks down into maternal and fetal heart signals.

are 4(N�1) Eulerian system equations and summation
equations (Eq. (8)) with 4N + 1 variables (x, y, and
the coupling coe�cient). Therefore, the number of
equations is 6N � 4, while the number of unknowns
is 4N + 1.

Generally, it can be concluded that for any basic
m-dimensional model, especially the heart model with
nonlinear interaction function and a signal with length
N , there are N + 2m(N � 1) equations with 2mN +
1 variables. The 2m(N � 1) equations are captured
from Eulerian system equations, and N comes from the
summation relations. The 2mN variables are the state
variables in each step with one coupling coe�cient.

Moreover, the model parameters can be consid-
ered as unknown variables. In this problem, the
number of equations is N +2m(N�1) and the number
of variables turns to 2mN +A (A is the number of the
model parameters).

5. Discussion

This paper is basically constructed of two modeling and
separation phases. At the �rst phase, a heart model
was presented. The selected model functions based
on modi�cation of the Du�ng-Van der Pol system,
which is entirely optional. To develop this method,
any other model can be replaced with Van der Pol, as
long as the model is compatible with the model chaotic
dynamics of the heart system. In order to analyze
the chaotic dynamics of the system, the bifurcation
and Lyapunov exponents diagrams were plotted. One
of the considerable challenges on fECG separation
was the distinction between maternal and fetal ECG
amplitudes caused by structural di�erences in the fetal
heart. Therefore, the fetal heart model was obtained
by creating coe�cients in the heart model. These
coe�cients can be modi�ed as desired in Section 2.2.

In the worst case scenario, fECG amplitude was chosen
20 times weaker than mECG amplitude. Choosing
another value out of the boundary to illustrate the
strength of mECG can reproduce the whole computa-
tion as well. In other words, the selected value depends
on the expected ratio of maternal to fetal amplitudes.
Besides, the non-identical coupling of the maternal and
fetal hearts showed the interaction between maternal
and fetal hearts. The coupling was assumed linear in
the x variables equations. The e�ect of CP on each
other was studied. Finally, the synchronization pattern
of this network was checked.

At the separation phase, the values of variables
and the law of interaction (coupling coe�cient) were
assumed to be unknown. The system of equations
according to the interactive network equation and the
abdominal signal was constructed. Two methods for
performing calculations were discussed: a step-by-step
method and high-order equations. In the step-by-step
method, while solving the equation at the ith iteration,
additional variables were computed (variables in the
next step were calculated one time in the present step
and once again in the next). This study proposed
a high-order equation to reduce computational com-
plexity by reducing additional unknowns in another
approach. Solving equations is done only for the
step-by-step method, but an analytical explanation
for higher-order equations has been proposed. In the
study of the high-order equation, more parameters, in
addition to the interaction coe�cient, can be assumed
unknown. In the end, the fetal heart signal can be
separated by selecting the correct roots. The diagram
in Figure 14 summarizes the procedure application.

6. Conclusion

This work presented the modi�ed Van der Pol model
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to separate the fetal Electrocardiagrams (fECGs) based
on the abdominal recordings. To this end, two phases
were employed: modeling and separation phases. At
the modeling phase, a heart model was proposed based
on a modi�ed Du�ng-Van der Pol oscillator. Because
of the fetal heart's structural changes, some parameters
were added to the model; thus, the model can illustrate
the fetal cardiac state faultlessly. During pregnancy,
the hearts of the mother and fetus interacted with
each other; hence, the two heart models were coupled
linearly. Based on the pattern synchronization, the
coupling parameter was calculated. At the separation
phase, the obtained combination of maternal and fetal
heart signals was considered as the abdominal ECG
(aECG). Then, the system of equations with the
problem assumptions was constructed by solving the
system of equations and calculating the variables, i.e.,
maternal and fetal signals. Finally, the state variables
were calculated in each step, making it possible to
separate the maternal signal from the fetal one.
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