
Scientia Iranica D (2023) 30(1), 154{166

Sharif University of Technology
Scientia Iranica

Transactions D: Computer Science & Engineering and Electrical Engineering
http://scientiairanica.sharif.edu

Risk-based optimal decision-making by the retailer in a
mixed local and wholesale market environment
considering demand response solution

F. Separi, A. Sheikholeslami�, and T. Barforoushi

Faculty of Electrical and Computer Engineering, Babol Nooshirvani University of Technology, Babol, Iran.

Received 21 June 2020; received in revised form 10 April 2021; accepted 23 August 2021

KEYWORDS
Active distribution
network;
Retail electricity
providers;
Locational marginal
prices;
Decision-making;
Local markets.

Abstract. The present research proposes a comprehensive model to determine the retailer
strategy for purchasing electrical power from the wholesale and/or local market in an active
distribution network. The uncertainties associated with the load and distributed generation
resources in the active distribution network, wholesale market price, and behavior of the
local market players were all incorporated into the presented model. The demand response
program bene�ts the retailers in governing the risks. A risk-based decision-making scheme
was established in this paper that considered every instrument accessible to retailers and the
uncertainties involved. The major objective of this paper is to maximize the retailer bene�t
concerning a tolerable risk. In order to model risks, scenario theories were exploited and
Particle Swarm Optimization (PSO) was employed to solve the optimization problem. The
proposed scheme was simulated in an actual network, and the obtained results con�rmed
the e�ectiveness and computability of this method.
© 2023 Sharif University of Technology. All rights reserved.

1. Introduction

In recent decades, the power industry has gone through
restructuring following its transformation into a com-
petitive �eld with new organizations emerging in a
new arrangement. In this new frame, electricity re-
tailers appear as intermediaries between the producer
companies and customers [1]. An electricity retailer
plays the role of an electricity intermediary between
the wholesale market and end users. Within the rear-
ranged electricity markets, retailers buy the required
demand of consumers from a variety of energy sources
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including self-producing plans, mutual contracts, and
pool market [2].

The retailers need to handle and govern the
procured power in order to maximize their predicted
bene�t. At the same time, their gain will be reduced
due to the low vending price. However, when the
vending price is high, customers will be discouraged to
buy from this retailer, hence a decline in the retailer's
bene�t.

1.1. Retailer participation in the wholesale
market

There are certain authentic and well-established studies
in the literature that de�ne the retailer's presence in
the wholesale market, especially in the �eld of retail-
ers' electrical energy purchasing. A new and unique
approach that rests on the Information Gap Decision
Theory (IGDT) was suggested in [2] to assess the
risk levels under unstructured pool price uncertainty.
An optimum approach for retailers was also presented
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in [3] where they a�orded energy costs via the pool
market and forward contracts, taking into account
medium- and long-run decisions. More importantly,
this study suggested a mathematical technique that
rested on mixed-integer random programming in order
to determine the retailer's optimum contract price with
users and the corresponding electricity policy provision
for a speci�c time. The authors in [4] proposed random
linear planning to determine the curve of the buying
o�ers of the wholesale market. A load pro�le clustering
method for an optimum price was also proposed for
o�ering to the clients in order to maximize the retailer's
bene�ts. In [5], a scheme was introduced to regulate
price spikes that motivate the clients to move their
loads regarding time-of-use tari�s. In [6], a game theo-
retic model accounting for the Stackelberg relationship
between retailers and consumers in a dynamic price
environment was proposed. Both players in the game
solve an economic optimization problem subject to
stochasticity in prices, weather-related variables, and
must-serve load.

In [7], a strong optimization strategy was pro-
posed for identifying the optimum purchasing model
that helped retailers to use it practically in the pool
market. A random structure was also o�ered to elec-
tricity retailers to satisfy the targets such as predicted

bene�t and predicted downward risk, which could help
them determine the optimum level of engagement in
forward contracting and pool and place the optimum
vending prices for customers.

In [8], a Robust Optimization Approach (ROA)
was proposed to obtain optimal bidding and o�er-
ing strategies for the retailer. In [9], a Real-Time
Pricing (RTP) framework was introduced, considering
the uncertainties of various input parameters such as
electricity demand, output power of renewable energy
resource, and pool market price.

Most of the reviewed studies, introduced in Ta-
ble 1, focused on presenting proper strategies and
approaches to facilitate purchasing energy from the
wholesale market and selling strategies for the cus-
tomers.

1.2. The emergence of the retail market
As a result of the inclination toward smart networks,
di�erent tools have emerged in the distribution network
including the local market, energy-producing resources
(like renewable energy resources), and demand re-
sponse. The strategy of electricity retailers is a�ected
by the emergence of these tools which, in turn, will af-
fect the manner of their electricity buy and sell. Under
such conditions, the retailer can buy electricity from

Table 1. Di�erences between the current paper and previous studies.

Ref. Publication year Considered market Objective Optimization method

[2] 2014 Wholesale market Assessing the risk levels under
unstructured pool price uncertainty

Approximation/Equality-
Relaxation (OA/ER) algorithm

[3] 2009 Wholesale market Determining the retailer's
optimum contract price

Branch and cut
algorithm

[4] 2010 Wholesale market
O�ering optimal price to

customers for maximizing the
pro�t of a retailer

{

[5] 2013 Wholesale market

Setting price changes
which encourage customers to
shift their loads considering

time-of-use tari�s

Generalized Reduced-
Gradient (GRG) algorithm

[6] 2013 Demand response market Maximum retailer pro�t Commercial o�-the-
shelf optimisation

[7] 2015 Wholesale market Maximum retailer pro�t e-constraint method

[8] 2017 Wholesale market Obtaining optimal bidding
and o�ering strategies

Mixed-integer
linear programming

[9] 2020 Wholesale market Retailer's real-time pricing |
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the wholesale market, distributed generation units,
forward contracts, and demand response programs.
A comprehensive model of a retailer activity in an
active distribution network was presented in [10]. In the
proposed method, it is assumed that several retailers
are active in the distribution network who can provide
the required energy for their customers from di�erent
resources such as distributed generations, storage re-
sources, retailers, and Demand Response (DR). The
authors in [11] presented a combinatorial model to �nd
a way of providing energy for the retailer via di�erent
options such as self-su�cient generators, mutual con-
tracts, and wholesale market. An optimization method
for integrated portfolio management in the wholesale
and retail power markets was also proposed in [12].
The results from the proposed model quantify the risk
threatening the electric utilities in both wholesale and
retail markets under several market conditions and
with some schemes on the generation side as well as
with di�erent representation shares on the demand
side. A short-term decision-making model for a price-
maker distribution company in both wholesale and
retail electricity markets was presented in [13], con-
sidering the demand response and RTP, to develop the
sell and purchase strategies for a strategic distribution
company in the energy and retail markets. A risk-
based purchasing energy for electricity consumers by
retailer using IGDT considering the DR exchange was
provided in [14]. Further, based on the opportunity
and robustness functions, an optimal bidding strategy
of electricity retailer can be obtained using IGDT
technique. A two-stage stochastic framework for an
electricity retailer was proposed in [15], considering
the DR and uncertainties based on a hybrid clustering
technique, to maximize the expected value of the
retailer's pro�t while the exposure risk was con�ned
to a pre-speci�ed level.

In [16], a new method was proposed for retailer's
decision-making considering day-ahead and real-time
markets as well as liberalized Distributed Renewable
Energy (DRE) market where the retailer competes
with other Load Serving Entities (LSEs) for procuring
DRE. A bi-level hybrid framework was given in [17]
to support Retail Electric Providers (REPs) and make
the best day-ahead dynamic pricing decisions in a
realistic scenario with the aim of maximizing the pro�t
achieved by the REP while some of the customers
have already installed smart meters with an embedded
Home Energy Management System (HEMS). For the
�rst time, the interactions between electricity retailers
and local energy markets were modeled in [18], and a
method was proposed for pricing decisions of a strategic
retailer.

1.3. Paper contribution
As mentioned above, most of the studies in recent

years have focused on presenting an optimal method
for providing the required energy for a retailer. For this
purpose, we highlighted e�cient use of the capacities
of the resources such as distributed generations, DR
programs, and renewable energy resources alongside
the pool market and bilateral contracts. With the
development of the renewable resources and DR in the
distribution network, the structure of the wholesale
market was not found suitable to incorporate these
resources. Therefore, local markets are presented as a
response to these resources to be active in the market
[18{21]. In addition to providing energy through other
resources and wholesale market, the electricity retailers
can obtain their required energy from the local market.
It should be noted that despite the role of retailers in
the wholesale market, they are price makers in the local
market. Therefore, the manner of energy procurement
from other resources as well as the wholesale market
determines the demand from the local market and, con-
sequently, the local market price. Given this fact and
assumption of speci�ed tari�s for the �nal customers,
this study proposed a comprehensive two-stage model
to determine the strategy of energy procurement by
the retailer through the wholesale market, distributed
generations resources, and DR programs with the main
objective of maximizing the retailer's pro�t under the
related uncertainties. The main contributions of this
paper are highlighted in the following:

� Introducing a comprehensive two-stage model for
optimal determination of the retailer portfolio con-
sidering the retailer's interactions with the wholesale
and local markets;

� Considering the impact of uncertain variables on the
decision-making process using a risk-based model
and determining the optimal risk-taking and risk-
averse decisions;

� Assessing the role of DR program as an e�ective
solution in the hands of retailer(s) for price making
in the local market;

� Reducing losses through the application of the DR
program by the retailer.

The rest of the paper is organized as follows:
Section 2 describes the decision factors related to
the electricity retailer and illustrates the proposed
framework. Section 3 determines the value of the DR
programs from the retailer's perspective. Section 4
presents the proposed structure for the local market.
Section 5 provides a comprehensive decision-making
formulation. Section 6 presents simulation results to
validate the proposed method and �nally, Section 7
gives the concluding remarks.
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2. Decision factors related to the electricity
retailer and the proposed framework

A retailer can purchase electricity from di�erent re-
sources and sell it to customers. In addition to their
electricity trading role, the retailers are responsible for
o�ering services to the customers as well as taking
measurements and billing. The retailers can provide
energy for their customers through the wholesale mar-
ket, distributed generations, and local market. Energy
suppliers in the wholesale and local markets are power
plant and virtual power plant, respectively. According
to the given de�nition, a virtual power plant is a
cluster of dispersed generator units, controllable loads,
and storages systems that were aggregated in order
to operate as a unique power plant. In addition, the
retailer can bene�t from the potentials of DR programs.
The DR programs comprise a variety of programs and
in this study, it is assumed that the retailer uses the
demand reduction program as one of the DR programs.
On the customer side, the retailer provides electricity
with the prede�ned tari�s for the customers [22]. The
overall structure of providing and selling the electricity
by the retailer is presented in Figure 1.

In interactions with the distribution company,
the retailer is responsible for o�ering services to the
customers. Generally, the manner of interactions
between the distribution company and retailer can be
elaborated in di�erent models. In one of these models,
the retailer is responsible for supplying electricity for
all customers of one feeder. In this model, which
is currently implemented in Iran, the issue of non-

Figure 1. The overall structure of buying and selling the
electricity by the retailer.

technical losses is of high signi�cance to the retailer. In
fact, the distribution company determines a level for
technical losses according to the network coordinates
and takes responsibility for it. The remaining losses of
the feeder are considered as non-technical losses that
are under the responsibility of the retailer.

It is also assumed that the retailer has enough
facilities for storage. Retail decision-making variables
include the amounts of purchases from the wholesale
market, purchases from the local market, purchases
from dispersed sources, and the utilized load response
programs and how to charge and discharge storage.
Both local and wholesale markets are assumed to be
of day-ahead market type. However, the retailer is a
price taker in the wholesale market and a price maker
in the local market.

Retail decision-making variables include the
amounts of purchases from the wholesale market, pur-
chases from the local market, purchases from dispersed
generation units as well as the used load response
programs and charge/discharge storage patterns. Both
local and wholesale markets are assumed to be of day-
ahead market type, assuming that the retailer is a price
taker in the wholesale market and a price maker in the
local market.

The market price is uncertain in a day-ahead
market. For this reason, \scenario theory" was used
to model the wholesale market uncertainty. Since
the retailer is the price maker in the local market,
it is essential that the local market clearing model
is considered in the main decision-making function.
Therefore, a two-stage programming model is used to
solve the problem. The behavior of other actors is
further modeled based on the scenario theory in the
local market function.

The distributed generation and storage are then
modeled based on the corresponding cost functions.
The uncertainties related to the load and production of
the distributed generation resources are also considered
as scenarios. In the case of the load response program,
it is assumed that the load reduction program is
used. Accordingly, a contract is concluded with some
subscribers, under which the subscriber must reduce
its load to a speci�ed amount within a speci�ed time.
The retailer then rewards the customer for reducing
the load. Since load reduction also a�ects network
losses, the cost of the load reduction program will be
determined in advance of the losses and average price
on the main bus. This price varies across di�erent
network buses. The overall structure proposed to solve
the problem is shown in Figure 2.

3. Determination of the value of DR programs
from the retailer perspective

As stated in the previous section, it is assumed that the
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Figure 2. The overall structure proposed to solve the problem.

retailer acts on a speci�ed feeder. To provide the load
for the customers and manage the electricity purchase,
the retailer can use the potential of the DR program
alongside other energy-providing resources. The DR
programs consist of a variety of programs. In this
study, it is assumed that the retailer uses the demand
reduction program as one of the DR programs. This
program is known as Direct Load Control (DLC) in the
literature. In this program, the retailer pays a sum as
a reward to the customer in exchange for the demand
reduction in a speci�ed bus. It should be noted that the
e�ects of these programs on the feeder loss reduction
vary depending on which bus customers participate in
the DR programs.

Considering the feeder presented in Figure 3, the
higher the �nal feeder load, the higher the network
losses. Since it is assumed that the retailer is respon-

Figure 3. Single line sample feeder based on GIS.

sible for the losses of the feeder, the more demand re-
duction by the customers of the feeder, the more it will
a�ect the network losses. Assuming that the price of
the demand reduction program from the retailer stand-
point regardless of the network losses is �DR, we can
conclude that this value may di�er depending on the
customers' locations, which play a role in the demand
reduction programs according to the network losses.
In [23], the loss value for a certain amount of power
injection into the ith bus was calculated as follows:

�loss;hDGi =
1
2

�
�0;h
DGi + �p;hDGi

�
; (1)

�0;h
DGi = �hn

@P loss
@PDGi

����fPDGj=0jj=1;2;::;Ng
; (2)

�p;hDGi = �hn
@P loss
@PDGi

����fPDGj=PJ jj=1;2;::;Ng
; (3)

where �n is the energy price in the main bus of
the network, and P the amount of power injected
into di�erent buses within the network. Therefore,
any amount of power injected into the network is
equivalent to the reduction of the same amount of
demand on that bus. Hence, the value of the DR
program for a speci�ed amount in the ith bus of the
network for the retailer is obtained as follows:

�lossDR = �DR +
1
2
�hn

 
@P loss
@Plr;i

����fPlr;j=0jj=1;2;::;Ng
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+
@P loss
@Plr;i

����fPlr;j=PJ jj=1;2;::;Ng

!
; (4)

where Plr;i is the amount of consumption reduction in
the ith bus.

It should be noted that in the above equation, it
is assumed that the retailer transfers all of the bene�ts
gained from loss reductions resulting from implementa-
tion of the demand reduction program to the customer.
In case the retailer transfers � percent of the bene�ts
to the customer, the price of the demand reduction
program for customer participation is as follows:

�lossDR = �DR +
1
2
��hn

 
@P loss
@Plr;i

����fPlr;j=0jj=1;2;::;Ng

+
@P loss
@Plr;i

����fPlr;j=PJ jj=1;2;::;Ng

!
: (5)

4. The proposed structure for the local market

The infrastructure in the electricity markets is designed
such that the power plants with large capacities are
capable of supplying electricity within it. Owing to
the development policies of the distributed generation
resources such as renewable and storage resources,
it is necessary to provide a business �eld for these
resources in the distribution sector. Therefore, the
local markets will have the opportunity to locally trade
the generations with customers [24].

It is not possible to predict the production of the
distributed resources in the long run; therefore, the
trade period should be close to the real operation time
in these markets.

The schematic diagram of a local market is shown
in Figure 4. The market operator is the entity that
manages the local market. The optimal price of the
local market is determined by the market operator
based on the information received from the sellers and
buyers. As shown in this �gure, several retailers can
separately participate in a local market. In addition,
it is assumed that the suppliers participate in the

Figure 4. Retail interactions and actors in the local
market.

local market as the virtual power plants as a set of
distributed generation resources and they can work in
the market involving energy trading or even ancillary
services. The local market will be managed and cleared
such that the bene�ts of all participants are provided.
Given the interaction of and competition between
di�erent retailers, non-cooperative game theory was
used for the market settlement. In this game, each
player has its target function, and the players with
di�erent targets seek to achieve their interests.

The overall structure of the problem-solving
model can be summarized in the following stages:

1. Producing the scenarios of the virtual power plants:
Since di�erent actors of the retail market are known
in the local market and there are several parameters
that a�ect the amount of power presented in the
market, di�erent scenarios will be produced for the
virtual power plants;

2. Producing the scenario of the retailer's demands:
Since the actors in the local market are known in
the virtual power plants, the number of demands for
the retailers will be predicted based on the e�ective
parameters in the form of di�erent scenarios;

3. Predicting the price proposed by the producers and
retailers: The price proposed by the producers and
retailers will be predicted in di�erent scenarios;

4. Determining the market settlement price: Given
that di�erent scenarios and retailer demands are
known, the market settlement price can be calcu-
lated using the NIRA algorithm through the game
theory to �nd the Nash equilibrium point.

4.1. Formulation of the local market problem
As mentioned in the previous section, the NIRA game
theory was employed to solve the market problem. For
this purpose, it is assumed that the intended local
market consists of n participants in a non-cooperative
game. The target function of each player is presented
in the following to be implemented in the local market
settlement mechanism.

Target function of producers: The pro�t of the
generator i at time t and scenario ! is git;!, which can
be calculated as follows:

max git;! = Rit;! � Cit;!; t 2 f1; 2; ; ::::; 24g ;
i 2 t 2 f1; 2; ; ::::; ng ; (6)

Rit;! = �jt �
h
PDGU;jt;! + PNDU;jt;!

i
; (7)

Cit = CDGU;jt

CDGU;jt = aj :(PDGU;jt;! )2 + bj :PDGU;jt;! + cj ; (8)

where R and C are the revenue and cost of the power
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generation, respectively. In addition, a, b, and c are
the power generation cost coe�cients.

4.1.1. The objective function of the retailer
The cost function of the retailer at time t in the market
can be obtained through the following equation:

minCr;kt;! = �r;kt � P r;kt;! t 2 f1; 2; ; ::::; 24g ;
k 2 f1; 2; ; ::::; n0g : (9)

General constraints:Xn

j=1
PDGU;jt;! + PNDU;jt;! =

Xn0

k=1
P r;kt;! ; (10)

minPDGU;jt;! � PDGU;jt;! � maxPDGU;jt;! ; (11)

0 � PNDU;jt � EV NDU;jt ; (12)

0 � P r;kt � EV r;kt : (13)

In this research, the local market price will be calcu-
lated based on the Nash equilibrium calculations, infor-
mation received from the players, and aforementioned
target functions [12].

5. The comprehensive decision-making
formulation

In the previous section, the application of the DR
program as one of the available options for the retailer
and how to bene�t from the local market capacity to
provide the required energy with the least costs possible
were discussed.

In this study, it is assumed that the retailer
can provide energy through the wholesale market,
distributed generations, and storage resources. In the
wholesale market, the retailer is the receiver of the
price. The wholesale market outperformed the local
market in terms of time. The prices of the local market
and wholesale market have uncertainties among the
di�erent parameters of the problem.

This research also took into consideration the risk-
averse two-stage stochastic programming framework
similar to those of [7]. The general form of the retailer
plan problem is formulated as follows:

(1� �)Z + ��; (14)

where Z is the retailer's predicted expenditure, and �
the risk associated with the retailer's schedule. The
factor � 2 [0; 1] was considered to develop the risk
aversion of the retailer in the objective function. While
the zero value of � denotes that the retailer is risk-
neutral, the value one indicates that the retailer is
risk-averse. The predicted expenditure of the two-stage
random retailer problem can be formulated as:

Z = f (Xc) +
XN


!=1
�!q (!) ; (15)

where f(Xc) and q(!) are the objective functions of
the �rst-stage problem for a decision vector Xc and
the second-stage problem related to the realization of
the scenario !, respectively. The predicted cost and
risk related to it are described below:

� Expected pro�t (Z): The cost in scenario ! is math-
ematically expressed as:

Z =Revc � CDG � CESS � CDR

�
N
X
!=1

�!
NTX
t=1

fCLM (Yt!)+CWM (Yt!)g ; (16)

where Revc is the income from the customer billings,
CWM (Yt!) the cost of purchasing power from the
upstream network, CDG the cost of providing energy
through the distributed generations, CESS the cost
of providing power for the customers through the
storage resources, and CDR the cost of encouraging
the customers to run the DR programs. The
following formula shows how to calculate each cost.

Eq. (17) shows the amount of income for
the retailer from receiving the costs of electricity
consumed by customers:

Revc =
TX
t=1

NcX
c=1

Rtc
�
Ltc ��Ltc

�
; (17)

where Rtc is the cost for the consumption of each
kWh of energy at hour t by the customer c, Ltc the
amount of demand for the customer c at hour t,
and �Ltc the amount of demand reduction for the
customer c at hour t caused by participation in the
DR program.

Eq. (18) shows the costs of purchasing power
from the upstream network:

CWM (Yt!) = �t!Pt!: (18)

where �t! is the price for purchasing each kWh of
energy from the upstream network in the main bus,
hour t, and scenario !, and Pt! is the amount of
power received from the upstream network at hour
t and scenario !. Of note, the costs of providing
energy from the local market can be calculated as
follows:

CLM (Yt!) = �Lt!P
L
t!: (19)

The critical point here is that the price scenar-
ios of �Lt! were obtained during the problem-solving
process by solving the local market problem. On the
contrary, the scenario of the wholesale market price
was obtained based on the price prediction.
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Eq. (20) is the target function for Eq. (6)
for providing power through the distributed
generations:

CDG =
XT

t=1

XNDG

g=1

(�gutg + �gP tg + g
�
P tg)2 + cstartg vtg

�
; (20)

where �g, �g, and g are the coe�cients of the cost
function for the power production of the distributed
generation resource of g, cstartg the cost of setting
up distributed generations resource of g, and vtg
the binary variable that indicates the setup of the
distributed generation resource of g at time t.

The costs of providing energy for the storage
resource can be calculated through the following
equation:

CESS =
XT

P
t=1

XNES
Pout;t
ES

ES=1
cdegES ; (21)

where cdegES is the depreciation cost for the ES
storage resource for each kW of power, and P out;tES
the amount of power produced by the ES storage
resource at hour t.

The �nal phase is the �rst target function of
the costs required for encouraging the customers to
reduce their consumption (DR):

CDR =
XT

t=1

XNc

c=1
�tDRc ��Ltc; (22)

where CDR is the sum of money paid to the
customer c (the amount of encouragement) for
reducing each kW of power at hour t, and �Ltc the
amount of the power reduction of the customer c at
hour t calculated by Eq. (23):

�Ltc = a2;c � FItc + a1;c � FItc + a0;c; (23)

where a2;c, a1;c, and a0;c are the coe�cients of
behavior modeling for the customer c when facing
the encouragement o�ered by the retailer.

Target functions of Eq. (16) were optimized,
considering the constraints stated in Eqs. (24) to
(27):

Pmin
g � P tg � Pmax

g ; (24)

P in;min
ES � P in;tES � P in;max

ES ; (25)

P out;min
ES � P out;tES � P out;max

ES ; (26)

SOCmin
ES � SOCtES � SOCmax

ES : (27)

Constraints (24) to (27) represent the allowed
limitsof the output power for the distributed

generation resources, allowed limits of the charge
power for the storage resources, allowed limits of the
discharge power for the storage resources, allowed
limits for the amount of charge in the storage
resources, and allowed limits of encouragement for
the customers by the retailer, respectively.

� Risk measure (�): Value at Risk (VaR) is a
commonly used risk measure that is utilized to
estimate exposure to risk [25]. In the pro�t
maximization context, V aR� is the �-quantile
of the distribution of the pro�t that provides a
lower bound which is exceeded only by a small
probability of (1� �), as formulated below [7]:

P [ZP � V aR�] = �: (28)

No information is o�ered by VaR on the worst
possible expenditure beyond the con�dence
level. The current research employed Conditional
Value-at-Risk (CVaR), i.e., the predicted cost of the
(1��)�100% scenarios with the largest expenditure
[26,27]. The CVaR of model is described by:

CV aRP = E[ZP jZP � V aR�]

=
sV aR��1 Zpf (Zp) dZp
P [Zp < V aR�]

: (29)

Given the expression of the pro�t in scenario !,
Eq. (29), the �� CV aR is computed as:

��CV aR=max
�;�!

; �� 1
1��

XN!

!=1
�!�!; (30)

Subject to:

& �XNC

C=1
�c fCL(Xc) + CS (Xc)g

+
XNT

t=1
fCL (Yt!) + CS (Yt!) + CDF (Yt!)g

� �!8!; (31)

�! � 0;8!: (32)

5.1. General formulation
Based on the material used in the previous sections
as well as the overall risk-based model, the general
formulation of the problem is consistent with the
following equation:

Z = (1� �)
�
Revc � CDG � CESS � CDR

�
N
X
!=1

�!
NTX
t=1

fCLM (Yt!) + CWM (Yt!)g
�

+�
�
� � 1

1� �
XN!

!=1
�!�!

�
: (33)

The particle swarm optimizing algorithm was used to
�nd the optimal answer with the highest pro�t [28].
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Given that the number of decision-making variables for
the retailer is N , each chromosome will be an array of
1 �N genes. These genes can take di�erent numbers,
and each one of these numbers represents the amount
of purchasing or usage of di�erent resources by the
retailer [29,30]. The initial population of chromosomes
will be randomly produced to determine the limitations
of the problem under study [31]. If an answer does not
determine the constraints of the problem, it will be
eliminated from the algorithm. Otherwise, the costs
for this answer will be calculated for each chromosome
to establish convergence. The following algorithm is
used for �nding the optimal answer:

Algorithm:

1. Adjusting the parameters and �;
2. Producing the scenarios;
3. Producing the initial population;
4. Solving the problem to reach the convergence;
5. Producing the function of the pro�t probability

distribution for each chromosome;

6. Calculating the expected pro�t and risk for each
chromosome;

7. Calculating the value function for each chromo-
some;

8. Updating the population;
9. The end.

6. The simulation results

In this section, the results of simulating the proposed
model in a real sample network are presented. Accord-
ing to Figure 5, the network under study is a 182-bus
network at a voltage level of 20 kV that supplies a
load of approximately 6.3 MW. The information about
the loads and lines of this network was neglected in
this study; however, the interested parties can request
the data through email. Of note, some corrections
to this network were made to �t the problem in
this article. A 156-kW diesel distributed generation
resource, the properties of which are listed in Table 2,
was placed at the bus number 32, and an energy storage
resource device, the properties of which are mentioned

Figure 5. Distribution system under study.

Table 2. Technical and cost characteristics of DG unit.

Capacity
(kW)

Minimum
generation

(kW)

Initial
commitment

status

a
($)

b
($/kWh)

c
($/(kWh)2)

Startup
cost ($)

Bus

156 18 0 14.628 0.1023 0.00003526 16.25 32
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Table 3. Technical and cost characteristics of ESS.

Charging
e�ciency

Discharging
e�ciency

Maximum
energy

level (kWh)

Minimum
energy

level (kWh)

Charging
rate

(kW/h)

Discharging
rate

(kW/h)

Initial
energy
(kWh)

Degradation
cost

($/kWh)
Bus

0.95 0.8 1245 316 254 186 426 0.0394 69

Table 4. The input value of PSO's parameters.

Parameter Value

Particle size 5
Population size 500

Number of iterations 1000

Table 5. Wholesale market data ($/MWh).

Scenario# Period#
1 2 3

1 30.94 42.5 36.7
2 29.5 43.8 34.2
3 31.4 41.2 36.7
4 35.7 41 40.1

in Table 3, was placed at the bus number 69. The
loads at buses 26, 68, and 49 are regarded as the
responsive loads. The proposed method was simulated
using the MATLAB software on a PC with 3.4 GHz
CPU and 16 GB RAM. The run time was set as
two hours. Further, the Particle Swarm Optimization
(PSO) algorithm was employed to �nd the answer, the
parameters of which are shown in Table 4.

According to the assumptions in this study, the
retailer should determine three di�erent periods. Due
to the uncertainty in the wholesale market price, the
scenario method was used for modeling this uncer-
tainty. The scenarios of the wholesale market are
assumed and shown in Table 5.

Given that the retailer also participates in the
local market, the behavior of other actors in the local
market is subject to a certain degree of uncertainty con-
cerning the retailer. Given the presence of another re-
tailer and two virtual power plants in the local market,
the o�erings of these actors are determined as shown
in Tables 6 to 8. It is also assumed that these actors
exhibit the same behavior in three di�erent periods.

Based on the above-mentioned discussions, it
can be concluded that the retailer's decision-making
problem can be solved in an active distribution network
with di�erent �s ranging from 0.2 to 1. Table 9 o�ers
the expected pro�t and value of the CVaR for the
best answer to each �. As observed in this table,
di�erent expected pro�t and CVaR values are obtained
for di�erent �s. The small values of � con�rm that
the retailer is more risk-seeking and consequently, the
expected pro�t is higher than that of others, while the

Table 6. Retailer#2 buying curve data.

Block
Scenario# Price ($/MWh) Demand (MW)

1 2 1 2
1 38.4 50.5 4 3.5
2 37.4 52.4 4.2 3.4
3 39.2 49.4 4.1 3.7

Table 7. VPP#1 o�ering curve data.

Block
Scenario# Price ($/MWh) Power (MW)

1 2 1 2
1 39.4 51.4 1.5 2.5
2 38.4 52.4 1.8 2.9
3 37.2 51.2 1.3 2.3

Table 8. VPP#2 o�ering curve data.

Block
Scenario# Price ($/MWh) Power (MW)

1 2 1 2
1 34.2 48.2 1.8 2.3
2 33.2 49.4 1.7 2.4
3 35.3 50.4 1.9 2.6

Table 9. Pro�t and CVaR.

� Expected pro�t ($) CVaR 0.05 ($)

0 1150.224 352.345
0.2 1094.862 499.324
0.4 942.033 565.29
0.6 824.423 626.942
0.8 764.821 795.423
1 642.423 824.32

CVaR value is low. At � = 1, the retailer is entirely
risk-averse. Hence, its expected pro�t is minimum,
while the CVaR value is maximum.

Table 10 presents the results of the retailer's
decision-making for � = 0:2. To be speci�c, several
items are allocated to each one of the three periods,
namely the amount of the customers' demand for
energy and the way the retailer provides this energy by
purchasing from the wholesale and local markets, run-
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Table 10. Optimal retailer decisions for three periods.

� = 0:2 Period 1 Period 2 Period 3

Energy demand (kWh) 15720 43799 26624

Upstream network (kWh) 16249 31292 20453

Local market (kWh) 0 8665 4651

DR (kWh) 0 1880 425

DG (kWh) 400 1248 880

ESS (kWh) {929 +714 +215
Local market price

($/kWh)
0.030 0.039 0.037

ning the DR program, distributed generation resources,
and energy storage. In addition, this table suggests the
local market settlement price for each one of the three
periods.

The results indicate that due to the low wholesale
price in the �rst period, the whole energy required by
the retailer to respond to the customer consumptions is
provided within this market. The amount of power pur-
chased from the wholesale market is around 16.2 MWh,
which is higher than that of customer consumption in
the �rst period, i.e., approximately 15.7 MWh, mainly
because the retailer is supposed to decide to charge
the storage resource for usage in the second and third
periods. Of note, the application of the DR program
is not a�ordable and for this reason, the amount of
DR in the �rst period is obtained as zero. Also,
the usage of the power of the distributed generation
resource is relatively limited in this period. In the
second and third periods, due to the higher price of
the wholesale market, the local market participation
rate for providing the energy required by the retailer
increases. Also, we implemented the DR program in
these two periods to decrease the required energy. 1880
kWh and 425 kWh demand reductions were reached in
these two periods, respectively, through the demand
reduction of responsive customers. On the other hand,
the storage resource was in the discharge mode in these
periods and provided part of the energy by injecting
power into the network. Furthermore, the energy
produced by the DG in bus number 32 increased by
1248 kWh and 880 kWh in the second and third
periods, respectively, compared to the �rst period.
In other words, in the second and third periods, the
retailer decides to provide a more signi�cant share of
energy through the available resources and local market
to increase the pro�t. This led to an increase in the
power purchased from the local market, hence a rise in
the local market settlement price.

As mentioned earlier, considering the small size
of the local market, the retailer acts as a price-making
player that can inuence the local market price through
the amount of power purchased. Figure 6 shows the

Figure 6. E�ect of � on local market price.

e�ect of the risk management strategy for the retailer
on the local market clearing price.

As shown in Figure 6, the local market-clearing
price decreases with an increase in �. In other
words, in the process of achieving the risk-aversion
approach (increase in �), the local market clearing
price decreases. In order to justify this, risk sources
(uncertainty sources) should be considered closely.
Considering that there are more sources of uncertainty
in providing power from the local market, the retailer
tends to provide the required power from the wholesale
market in the risk-aversion approach. Therefore, the
amount of power provided from the local market as
well as the local market-clearing price are reduced.

6.1. DR program role
This section discusses the role of the DR program as an
e�ective solution employed by the retailer to manage
the local market and increase the expected pro�t based
on the sensitivity analysis. For this purpose, the main
results were compared with each other in two cases of
implementing and ignoring the DR program by the
retailer. Figure 7 shows the values of local market
price in these two cases and three periods of study in
a speci�ed risk management strategy (� = 0:2). As
observed, in case the retailer ignored the DR program,
the given values increased in all three periods mainly
due to the ability of the retailer to reduce the local
market energy demand by implementing DR program

Figure 7. Local market price sensitivity to DR program
(� = 0:2).
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and, consequently, a�ect the local market price. It
should be noted that the e�ectiveness of the DR
program is more prominent in Period 2 than Period 3.
In other words, the positive role of the DR program
becomes more obvious in the peak period.

7. Conclusion

With the expansion of the distributed energy resources
including the distributed generation and demand re-
sponse programs as well as the development of local
markets, retailers are given more options to provide
energy for their customers. With this said, the current
research proposed a comprehensive two-stage model to
determine the best strategy for energy procurement
by the retailer through the wholesale market, local
market, distributed generations, storages and demand
response programs to maximize the retailer's pro�t
under the related uncertainties. The obtained results
indicated that according to the risk-based decision-
making strategy, retailers could optimally provide the
required energy of their customers. However, it should
be noted that the retailer acts as a price-determining
player, thereby a�ecting the local market price. In
addition, the implementation of demand response pro-
grams was found successful in providing the retailer
with the ability to control the local market price and
deal with the associated risks.
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