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Abstract. Statistical process monitoring, maintenance policy, and production have
commonly been studied separately in the literature, whereas their integration can lead to
more favorable conditions for the entire production system. Among all studies on integrated
models, the underlying process is assumed to generate independent data. However, there
are practical examples in which this assumption is violated because of the extraction of
correlation patterns. Autocorrelation causes numerous false alarms when the process is in
the in-control state or makes the traditional control charts react slowly to the detection
of an out-of-control state. The Autoregressive Moving Average (ARMA) control chart is
selected as an e�ective tool for monitoring autocorrelated data. Therefore, an integrated
model subject to some constraints is proposed to determine the optimal decision variables
of the ARMA control chart, economic production quantity, and maintenance policy in the
presence of autocorrelated data. Due to the complexity of the model, a Particle Swarm
Optimization (PSO) algorithm is applied to search for optimal decision variables. An
industrial example and some comparisons are provided for more investigations. Moreover,
sensitivity analysis is carried out to study the e�ects of model parameters on the solution
of the economic-statistical design.
© 2024 Sharif University of Technology. All rights reserved.

1. Introduction

The survival of producers in the world of competition
with fast-changing markets and the spread of diversity
in productions necessitates appropriate planning. In
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manufacturing systems, Statistical Process Monitoring
(SPM) and Maintenance Policy (MP) are conventional
tools to decrease the fraction of nonconforming items.
There exist several studies in which these concepts
are treated separately. For instance, the subjects of
SPM, MP, and Economic Production Quantity (EPQ)
were independently studied [1{3]. In recent years, the
integration of production, maintenance, and quality
has also attracted many researchers.

Control charts have gradually been approved in
pioneer industries as e�ective tools used in statistical
quality control to ensure quality and save manufactur-
ing costs. It is mainly used to identify the change
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in the process before manufacturing nonconforming
items in massive amounts. After introducing the basic
theory of process monitoring by Shewhart, numerous
control charts have been developed to achieve partic-
ular objectives under various assumptions [4]. One
of the main assumptions of SPM is that the sampled
observations at di�erent time points must be indepen-
dent. Nevertheless, the independence assumption is
not realistic from two types of practical experiences:
(1) Sampling in high frequency induces autocorrelation
in some processes and (2) sampling from processes,
such as chemical and environmental, that introduce
inherent autocorrelation [5]. In some industrial/non-
industrial processes, such as continuous manufacturing
processes, �nancial processes, health care systems,
environmental phenomena, and network monitoring, a
correlation exists among adjacent observations [6]. The
autocorrelation, if ignored, can lead to a signi�cant
inuence on the statistical performance of traditional
control charts [7].

This has led to the development of various con-
trol charts for autocorrelated data. Two model-based
approaches can be used to treat the process when the
serial correlation exists among observations. These
approaches include the residual control charts and the
modi�ed control charts [8,9]. In the �rst approach,
the control charts are applied to the residuals obtained
after �tting a model to eliminate the correlated struc-
ture. The Special Cause Chart (SCC) was proposed as
an initial study of this approach [10]. In the second
approach, the correlated observations are directly used
on the control charts in which the control limits are
adjusted according to the autocorrelation structure.
The modi�ed control chart was initially proposed
in [11]. In addition to the introduced approaches, neu-
ral network-based control charts can also be categorized
as the third approach in which the data are processed
without the necessity of identifying models or making
adjustments [12]. Some recent studies using di�erent
approaches can be referred to in [13{15].

In SPM, we concentrate on modi�ed control
charts that bene�t from plotting original observations
and more straightforward interpretation by the oper-
ator. Of those, the Autoregressive Moving Average
(ARMA) control chart is selected as a suitable one
to monitor a sequence of autocorrelated data [16].
ARMA control chart considers the autocorrelation
structure of the underlying process and utilizes the
advantages of Exponentially Weighted Moving Average
(EWMA) control chart for stationary processes, known
as EWMAST control chart [17] and SCC. The sample
to be monitored by this chart is based on an ARMA
statistic. It bene�ts from allowing a more exible
choice of parameters. Thus, the performance of this
chart is related to the autocorrelation structure of the
statistic. As was shown for autocorrelated processes, if

appropriate parameter values are chosen for an ARMA
chart, its performance will be superior in comparison
to SCC and EWMAST charts [16]. In this study, the
underlying process is assumed to follow the ARMA
(1,1) model for two reasons: (1) Being stationary,
similar to most statistical process control systems, and
(2) the existence of both autoregressive and moving
average terms that make it possible to examine their
e�ects separately [18]. Since we aim to monitor the
autocorrelation type of ARMA processes, the ARMA
control chart is used in this study to determine its
design parameters via optimizing an integrated model.

Generally, the design of a control chart needs to
optimally specify a set of variables that depends on the
type of the considered chart and provided assumptions.
The design of the ARMA chart requires specifying sam-
ple size (n), sampling interval (h), control limits width
(l), moving average parameter (�), and autoregressive
parameter (�). There can be found only �ve pieces of
research on the design of the ARMA chart according
to the best of our knowledge. Low and Lin [19]
optimally determined the design parameters of the
ARMA chart by minimizing Duncan's cost function.
They used Weibull distribution to present the time
that the process shifts. An Economical Design (ED)
of the ARMA chart was presented in [20] to optimally
determine its design parameters by minimizing the
cost function of Lorenzen and Vance (L&V). Both [19]
and [20] addressed only economic considerations and
used a Genetic Algorithm (GA) for optimizations.
However, EDs have been criticized for poor statistical
properties, such as lower power in detecting shifts
compared to Statistical Designs (SD) that merely
aim to decrease the occurrences of Type-I or Type-
II errors. Based on the idea of Economic-Statistical
Design (ESD) using the L&V cost function, Costa and
Fichera [21,22] optimally designed the ARMA chart
with �xed parameters and Variable Sampling Intervals
(VSI). They devised a modi�ed type of di�erential
evolution for optimization.

Heretofore, we discussed the design and modeling
of control charts with autocorrelated data. However,
since the concepts of SPM, MP, and EPQ can be
de�ned in a uni�ed model, separately modeling them
may provide suboptimal solutions. By realizing such
dependency, it was shown that implementing MP can
result in lower quality costs and the probability of
system failure, as well as increasing the production
of conforming items [23]. Hadidi et al. [24] divided
the literature on such models into two general cat-
egories: (1) Interrelated methods, in which a model
is considered for one function bearing in mind the
others, and (2) integrated models, in which two or
more components are modeled simultaneously. In this
paper, the second category is reviewed according to
the proposed issue of monitoring autocorrelated data.



208 S. Jafarian-Namin et al./Scientia Iranica, Transactions E: Industrial Engineering 31 (2024) 206{227

There are integrated models including double concepts
of SPM, MP, and EPQ in several studies to amend
the performance of manufacturing systems. Since
SPM has been considered the main subject, only its
integrations with MP and EPQ are referred to in double
designs.

In traditional production planning, it is assumed
that the economic value of production is determined
without any defects and associated costs. However,
under real conditions, the process may shift to the out-
of-control state. This, while a�ecting the quality of
products, imposes some costs on the system. This
research gap has attracted the attention of many re-
searchers to link quality and production issues. Among
the double integrations of these issues, the reader can
refer to [25{30].

On the other hand, improving product quality
and reducing downtime and operating costs can be
addressed through two critical issues quality control
and maintenance policies their goals overlap a great
deal. Only using the programs to improve the quality
of products is not enough because the operating con-
ditions of the processes, which are examined based on
the maintenance policies, also a�ect the quality of the
products. Thus, integrating quality control and main-
tenance has been focused on by some researchers [31{
43]. Recently, Farahani and Tohidi [44] reviewed the
literature on this issue.

Although simultaneously considering the triple
concepts plays an essential role in reducing the costs
of manufacturing systems, few scholars have already
studied this subject. Among them, Ben-Daya and
Makhdoum [45] introduced an integrated model to
specify the EPQ and SPM parameters under sev-
eral Preventive Maintenance (PM) rules. Lam and
Rahim [46] presented an integrated model of EPQ,
SPM, and MP for a deteriorating manufacturing sys-
tem. Pan et al. [47] proposed a joint model of EPQ
and MP for an imperfect production process based
on a Shewhart control chart to minimize the cost
function. Salmasnia et al. [48] modeled the integration
of production run length, MP, and SPM in the presence
of multiple assignable causes. Recently, new integrated
models of triple concepts have been proposed, such as
ESD under a Variable Parameter (VP) control chart
for monitoring multivariate quality characteristics [49],
under non-uniform sampling by considering the time
value of money and the stochastic shift size [50], under
adaptive control chart [51], and under an adaptive non-
central chi-square control chart [52].

The properties of the existing studies in the
literature are briey listed in Table 1. It is observed
that there are not any studies on triple integrated
models in which the independence assumption for the
data being monitored is violated. To bridge the existing
gaps in the literature:

� This study presents a model by integrating the
concepts of SPM, MP, and EPQ;

� In contrast to most of the studies in the literature
that consider independence assumption for the un-
derlying process, this study uses a control chart to
monitor autocorrelated data of type ARMA and its
special cases as autoregressive (AR) and Moving
Average (MA) processes;

� The proposed method aims to optimally determine
the decision variables by minimizing the constrained
cost function.

The rest of this paper is organized as follows. In
Section 2, the structure of the ARMA control chart to
monitor an autocorrelated process is briey described.
The integrated model is described in detail in Section 3,
and the proposed model is formalized according to a
cost objective function subject to some constraints.
In Section 4, the solution approach based on Particle
Swarm Optimization (PSO) is explained. Then, in Sec-
tion 5, an industrial example is provided to illustrate
the solution procedure and indicate the applicability of
the proposed model. Furthermore, some comparative
studies and sensitivity analyses are presented in this
section. Finally, conclusions and further perspectives
are presented in Section 6.

2. ARMA control chart

The e�ectiveness of the ARMA control chart has
been proved for monitoring autocorrelated data [16].
Suppose that the measured variable at time t, normally
distributed with mean � and variance �2

X , is mathemat-
ically expressed by:

Xt = uXt�1 + at � vat�1; at 2 N(0; �2
a); (1)

where the measurement at time t � 1, and the noise
factors at t and t� 1, characterized by at and at�1 re-
spectively, are linearly combined to present the current
measurement Xt. The constants u and v are the AR
and the MA coe�cients, respectively, with conditions
juj < 1 and jvj < 1. The variance of this process is
shown as:

�2
X =

1� 2uv + v2

1� u2 �2
a: (2)

The sample statistic to be monitored by the ARMA
control chart at time t is represented by:

Zt = �Zt�1 + �0Xt � �Xt�1; �0 = 1 + � � �; (3)

where � and � are the AR and the MA parameters,
respectively. Note that the conditions j�j < 1 and
j�j < 1 must be satis�ed to guarantee the reversibility
and stationary of the process being monitored. The
mean of the sample statistic in Eq. (3) is �, and the
corresponding steady-state variance is as follows:
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Table 1. Summarized literature review.

References Integrated concepts Design method Structure of data
SPM Inventory Maintenance ED ESD Independent Correlated
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�2
Z =

�
2(� � �)(1 + �)

1 + �
+ 1
�
�2
X : (4)

Accordingly, the upper and lower control limits of the
ARMA chart are calculated by (l is the control limit
coe�cient):

[LCL;UCL] = [�� l�Z ] : (5)

In this research, the data monitored by this control
chart follow the ARMA process. Since the existence of
autocorrelation, the ARMA Simulation (AS) procedure
is applied to approximately calculate Average Run
Length (ARL) values when the process states are
in-control and out-of-control, respectively indicated
by ARL0 and ARL1. In each simulation run, M
measurements in S = 500 columns are generated based
on a set of design parameters (n, h, l, �, �). By
considering �0 = 100 and �2

X = 10, the steps of AS
procedure can be summarized below:

Step 1. Calculate �a from Eq. (2) by selecting u
and v.

Step 2. Generate series ai;j , Xi;j , and X 0i;j of size
M in S columns by (� is the coe�cient of the mean
shift):

ai;j � N(0; �2
a); a0;j = 0; X0;j = �0;

Xi;j = C + uXi�1;j + ai;j ;

X 0i;j = C +Xi;j + ��X ; 8i = 1; :::;M;

8j = 1; :::; S: (6)

Step 3. Set independent variables: n, h, l, �, �.

Step 4. Obtain the value of steady-state variance
from Eq. (4) by replacing the estimation of �X .
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Step 5. Calculate control limits using Eq. (5).
Step 6. Compute the Run Length (RL) values for
j = 1; � � � ; S:

Step 6.1. Compute RL0j until LCL � Zi;j �
UCL, where Zi;j is obtained by replacing Xi;j
in Eq. (3),
Step 6.2. Compute RL1j until LCL � Zi;j �
UCL, where Zi;j is obtained by replacing X 0i;j
in Eq. (3).

Step 7. Calculate ARL0 and ARL1 by averaging
them for S = 500 times from Step 6.

3. Model description

In real production environments, the process possibly
deteriorates over time due to a variety of speci�c causes.
Such so-called imperfect manufacturing systems are
in contrast to previous classical perfect systems that
assume faultless production. In this study, an imper-
fect production process including quality, maintenance,
and production concepts investigated that operates in
the in-control or out-of-control states. Accordingly, a
model is proposed to optimize the cost function of the
imperfect manufacturing system subject to some statis-
tical constraints. Moreover, to be adapted to situations
in which the independence assumption has deteriorated
and the underlying process is autocorrelated, this study
applies the ARMA control chart for the �rst time to
notify the operators when the process shifts to the out-
of-control state.

In the rest of this section, the main assumptions
of modeling are �rst introduced. In the following
subsection, di�erent scenarios for the proposed model
are de�ned. Then, the structure of the cost function
is described. The proposed mathematical model is
presented in the last subsection.

3.1. Notations and assumptions
The notations applied in this study can be seen in
Table 2, which is categorized into �ve sets, including
decision variables, indicators, time parameters, cost
parameters, and process parameters. To simplify the
mathematical modeling, some assumptions are listed
to be held as follows:

1. The quality characteristic follows a normal distri-
bution, and its autocorrelation structure is of the
type ARMA, including the cases ARMA (1,1), AR
(1), and MA (1).

2. The cycle always begins from the in-control state
(i.e., � = �0).

3. The in-control time of process follows a truncated
Weibull distribution with scale parameter � > 0
and shape parameter � > 0 as (if � = 1, it changes
to truncated exponential distribution):

f(tj(k + 1)h) =
�(�t)�1e�(�t)

1� e�(�(k+1)h) : (7)

4. Only one type of assignable cause exists. When it
occurs, the process state shifts to the out-of-control
as �1 = �0 + ��X . Note that the variance remains
unchanged.

5. Two types of maintenance policies may happen,
including PM and Reactive Maintenance (RM).

6. If after the kth sampling interval, no signal is
detected due to falling a point outside the control
limits, PM is performed when the (k+1)th interval
is terminated.

7. When the process shifts to the out-of-control state
during the sampling intervals between 0 and k, the
search for the assignable cause begins. At that
time, RM is performed to restitute it to the initial
condition.

8. The production cycle terminates when either RM is
performed after a true signal from the control chart
or if the (k + 1)th sampling is implemented (each
one occurs earlier).

9. The time required to run the reactive or the
PM, detection of the false signal, and sampling is
considered negligible compared to the time of the
production cycle.

3.2. Scenarios description
The production process begins from the in-control
state, and when an assignable cause occurs, it shifts to
the out-of-control state. Figure 1 shows three possible
scenarios that may occur in an imperfect production
process [49].

Scenario 1 occurs when the state of the process
stays in control for the whole time of the cycle. To
ensure the reliability of the manufacturing process,
PM is implemented when the production cycle is
terminated. If the process shifts to an out-of-control
state and then this deviation is detected before the
end of the cycle, Scenario 2 occurs. In this case, RM
is implemented to restore the process situation to the
initial condition. Scenario 3 di�ers from Scenario 2 only
in the disability of detecting the shift until the end of
the cycle. In this case, PM is switched to RM when
the shift is identi�ed at the end. Here, each scenario is
assumed to happen with probability [47]:

Pr(Sc1) = 1� F ((k + 1)h) = e�(�(k+1)h) ; (8)

Pr(Sc2) =

F (kh)Pr(signaling jout�of�control state); (9)

Pr(Sc3) = F ((k + 1)h)� F (kh)

Pr(signaling jout�of�control state); (10)
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Table 2. Applied notations and abbreviations in the current paper.

Set Notation Description

Decision variables

n Sample size

h Sampling interval

l Control limit parameter

k Number of samplings in the monitoring period

� Autoregressive parameter of ARMA chart

� Moving average parameter of ARMA chart

Index and indicator

i Index of measurements in each column (i = 1; � � � ;M)

j Index of generated columns (j = 1; � � � ; S)

r Index of scenario (r = 1; 2; 3)

t Index of time

y Index of number of sampling intervals (y = 1; � � � ; k)

Time parameters

E Time to sample and chart one item

E(TinjScr) Expected value of in-control time under rth scenario

E(ToutjScr) Expected value of out-of-control time under rth scenario

f(tj(k + 1)h) The probability density function of truncated Weibull distribution

F (t) The cumulative function of truncated Weibull distribution

T Process cycle time

T1 Time to detect the assignable cause

Tin In-control time

Tout Out-of-control time

 Shape parameter of truncated Weibull distribution

� Scale parameter of truncated Weibull distribution

� Expected time between an assignable cause and the next inspection

Cost parameters

A Set up cost per production

B Inventory holding cost per unit per time unit

Cf Fixed cost of sampling

Cin Quality loss cost during in-control state

Cout Quality loss cost during out-of-control state

Cpm Preventive maintenance cost

Crm Reactive maintenance cost

Cv Variable cost of sampling

CY Cost of false alarm inspection

E(CM jScr) Expected maintenance cost for each scenario

E(CQjScr) Expected quality loss cost for each scenario

E(CS jScr) Expected sampling cost per cycle time for each scenario

E(I) Expected summation of inventory holding and ordering costs

E(M) Expected maintenance cost

E(Q) Expected quality loss cost

E(S) Expected sampling cost

ETC Expected Total Cost

IHC Inventory Holding Cost

SUC Set Up Cost
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Table 2. Applied notations and abbreviations in the current paper (continued).

Set Notation Description

Process parameters

at Noise factor (independent, identically distributed (iid) process)

ARL0 Average run length during the in-control period

ARL1 Average run length during out-of-control period

d Daily demand rate

D Annual demand rate

LCL Lower Control Limit of ARMA chart

p Production rate

Pr(Scr) Occurrence probability of rth scenario

Q Economic production quantity

sr Expected number of samplings in the in-control state under the rth scenario

u The autoregressive coe�cient of the underlying process

UCL Upper control limit of ARMA chart

v Moving average coe�cient of the underlying process

Xt The variable of the underlying process

Zt ARMA statistic corresponding to Xt

� Probability of false alarm or Type I error

� Probability of Type II error

� The magnitude of a shift in process mean

�0 Mean of ARMA sample statistic in state 0

�1 Shifted mean value in state 1

�a The standard deviation of the noise factor

�X The standard deviation of the underlying process

�Z The standard deviation of ARMA sample statistic

Figure 1. Graphical representation of scenarios.
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where F (:) is the cumulative function of the truncated
Weibull distribution and Pr (signalingjout-of-control
state) as the probability of triggering an alarm when
the process shifts to out-of-control state, is expressed
as (assuming that � = 1� (1=ARL1)):

Pr(signaling jout�of�control state)

= 1� �k�1: (11)

Moreover, the expected values of in-control time (Tin)
and out-of-control time (Tout) in each scenario are
calculated as follows [47]:

E(TinjSc1) = (k + 1)h; E(ToutjSc1) = 0; (12)

E(TinjSc2) =
Z kh

0
t� f(tj(k + 1)h) dt;

E(ToutjSc2) = h�ARL1 � � + nE + T1; (13)

E(TinjSc3) =
Z (k+1)h

0
t� f(tj(k + 1)h) dt;

E(ToutjSc3) = (k + 1)h� E(TinjSc3); (14)

where E indicates the time to sample and chart one
item, T1 is the time to detect the assignable cause, and
� , denoting the expected time between the assignable
cause occurrence and the next inspection, is written as:

� =

(k+1)hZ
0

t� f(tj(k + 1)h) dt

� h
 

kX
y=1

e�(�yh) � ke�(�(k+1)h)
!
: (15)

3.3. Structure of cost function
At the beginning of this section, the expected values
of the in-control time and the out-of-control time, as
well as the occurrence probability of each scenario, were
expressed. In this subsection, constituents of the cost
function, including the quality loss cost, the sampling
cost, the maintenance cost, and inventory-related costs,
are described.

3.3.1. Quality loss cost
The expected quality loss cost is expressed by:

E(Q) =
3X
r=1

E(CQjScr)Pr(Scr): (16)

The expected quality loss cost for each scenario is as
follows:
E(CQjScr) =(
Cin � E(TinjScr); r = 1
Cin�E(TinjScr)+Cout�E(ToutjScr); r=2; 3

(17)

where Cin indicates the quality loss cost in the in-
control state, and Cout shows the quality loss cost in
the out-of-control state.

3.3.2. Sampling cost
The expected sampling cost per cycle time is presented
by the following formula:

E(S) =
3X
r=1

E(CS jScr)Pr(Scr); (18)

where the conditionally expected sampling cost per
cycle time for each scenario is calculated as by (Cf
and Cv are �xed and variable costs of sampling):

E(CS jScr)

=

(
(Cf + Cvn)k; r = 1; 3
(Cf+Cvn)(E(TinjScr)+E(ToutjScr))=h; r=2

(19)

3.3.3. Maintenance cost
The expected maintenance cost per production cycle is
computed as follows:

E(M) =
3X
r=1

E(CM jScr)Pr(Scr); (20)

where the expected maintenance cost per production
for each scenario is as follows:

E(CM jScr) =

(
k�CY
ARL0

+ Cpm; r = 1
sr�CY
ARL0

+ Crm; r = 2; 3
(21)

where CY is the false alarm cost, Cpm and Crm respec-
tively represent PM and RM costs, and s indicates the
expected number of samples obtained when the state
of the process is in-control:

s2 =
k�1X
y=1

y � [Ft((y + 1)h)� Ft(yh)

=
k�1X
y=1

e�(�yh) � (k � 1)e�(�kh) ; (22)

s3 = E [number of samples taken while in�control

jSc3] =
kX
y=1

e�(�yh) � ke�(�(k+1)h) : (23)

3.3.4. Inventory holding and setup costs
The Inventory Holding Cost (IHC) and setup cost
(SUC) are respectively expressed by:

IHC =
B �Q

2

�
1� d

p

�
=
B � T � (p� d)

2
; (24)

SUC =
D �A
p� T ; (25)

where B is the IHC per unit time, d is the daily
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demand, A is the SUC per production, and T charac-
terizes the process cycle time. Since the process cycle
operates for the (k + 1)h time units, the value of T is
de�ned as equal to it [47]. Afterward, the summation
of inventory costs is de�ned as E(I) = IHC + SUC.

According to the concepts mentioned above, the
Expected Total Cost (ETC) is given by:

ETC = E(Q) + E(S) + E(M) + E(I): (26)

Moreover, the EPQ can be computed by:

Q = p� T: (27)

3.4. Proposed model
To achieve an ESD, Eq. (26) is used as the objective
function by employing some constraints. The proposed
model, called the integrated-QIM model, is explained:

Min ETC;

s.t.:

ARL0 � ARLmin
0 ; ARL1 � ARLmax

1 ;

kh � RInt; nE � h;
nmin � n � nmax; hmin � h � hmax;

lmin � l � lmax; kmin � k � kmax;

�min � � � �max; �min � � � �max;

n; k 2 N+; h; l > 0; �; � 2 R; (28)

where a minimum value for ARL0 is considered that
maintains a reasonable ARL when a false alarm occurs.
Moreover, a maximum value is dedicated to ARL1 to
provide an appropriate ARL for a shifted process. To
ensure the continuity of the process, the interval for the
PM policy is regulated by kh � RInt. Constraint nE �
h guarantees the applicability of obtained solutions
by declining sets of design parameters that the time
required to take and chart samples of size n goes outside
the sampling interval. Moreover, the design parameters
n, h, l, k, �, and � are set between lower and upper
bounds (note that n and k are discrete positive values
and the others are continuous). These extreme values
may be determined as desired bounds by the Decision-
Maker (DM) or quality engineers. Briey speaking, we
altered the model in [49] by:

1. Using the ARMA control chart;
2. Considering ARL0 and ARL1 as statistical con-

straints;
3. Ensuring the continuity of process and applicability

of solutions respectively by de�ning two constraints;

4. Adding constraints for the AR and the MA co-
e�cients. Through optimization of the proposed
model, six decision variables (i.e., n, h, l, k, �, and
�) are determined.

As shown in the model, there exist four constraints.
To transform the model into an unconstrained one,
an appropriate penalty function can be de�ned to
converge to the best solutions through optimization.
Any violation of the constraints must be added to the
objective function such that the solution is pushed back
toward the feasible region. The penalized objective
function is de�ned for solution S as follows:

fp(S) = ETC(S)� (1 + viol0(S)

+ viol1(S) + viol2(S) + viol3(S)); (29)

where viol0(S)=max(0, 1�(ARL0=ARLmin
0 )), viol1(S)

= max(0, (ARL1/ARLmax
1 ) � 1), viol2(S)=max(0,

1� (kh/RInt)), and viol3(S)=max(0, (nE=h)� 1) are
the violations from the corresponding constraints in
Eq. (28). In the next section, an approach to optimize
the model is provided.

4. Solution approach

By considering the proposed mathematical model
in the previous section, a Non-Linear Programming
(NLP) model under four constraints is solved. In
the model, three decision variables, including l, �,
and �, are only used for computing ARL values, and
the objective function is indirectly a�ected by these
variables. Moreover, solution space is non-convex
because both continuous and discrete decision variables
exist in the model. According to the mentioned
reasons, exact methods cannot be helpful because the
model is not solvable or its run requires much more
time. Thus, meta-heuristic algorithms can be applied
to obtain near-optimal solutions in a reasonable time
for such complicated models. Among those, GA and
PSO have already been used to solve similar models.
Some applications of the GA to solve similar models
can be found for ED of the ARMA control chart [20],
ED of the VSI control chart [53], and robust ESD of
the acceptance control chart [54].

Swarm Algorithms (SAs) are stochastic
population-based meta-heuristic algorithms that
utilize and imitate the processes of decentralized,
self-organized systems. The most successfully applied
SAs for solving the models of the control chart
design is PSO [55]. It is a stochastic, population-
based algorithm with unique searching ability
by incorporating local and global searches. The
optimization approach in PSO stems from the social
behavior of birds, �shes, and so on. In addition to the
powerful searching mechanism, some other advantages
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of its wide applications include computational
e�ciency and easy execution.

PSO has shown good performance in discontinu-
ous space to solve the non-linear mathematical models
of control chart design. For the ESD of the X-
bar control chart, Chih et al. [56] optimized their
proposed model by adapting PSO to cope with mixed
continuous-discrete variables. Moreover, they found
PSO more suitable and faster in convergence to the
optimality compared to GA for designing the chart.
Morabi et al. [57] solved the multi-objective model
of this control chart using a hybrid epsilon constraint
PSO. Salmasnia et al. [49] utilized PSO to optimize the
cost function of integrating EPQ, MP, and VP-T2 chart
design subject to statistical constraints. In another
study of integrating MP and control chart design for
series systems, a robust optimization approach was
presented utilizing PSO to minimize model costs under
uncertain parameters [58]. Since the proposed model is
also of non-linear type in the presence of both discrete
and continuous variables, we employ PSO to optimize
our proposed model according to the following steps:

Step 1. Initialization: Set the bounds on decision
variables according to DM's considerations and
the PSO parameters. Represent each solution as
a particle by position xti = [n; h; l; k; �; �] and
velocity V ti in the iteration t. Then, for each
particle i = 1; � � � ; N :
� Based on Uniform distribution, generate the

initial value of position for each particle using
a random vector xi � U(bl; bu) and the initial
value of velocity according to Vi � U(�jbu �
blj; jbu � blj), where bl and bu are indications
of lower and upper limits of the search space,
respectively;

� Initialize the pbest of each particle equal to
its initial position as pbesti ! xi (note that
pbest, called personal best, is the best value
experienced by the ith particle);

� By calculating the penalized objective function
according to Eq. (29), if fp(pbesti) � fp(gbest),
update gbest ! pbesti (the best solution found
so far, called global best, is indicated by gbest).

Step 2. Repetition: Since the behavior of any
particle is a�ected by the current velocity, the
personal best, and the global best, it is necessary
to update the velocity and the position in each
iteration (note that we have i = 1; � � � ; N for
each particle (N indicates the population size) and
di = 1; � � � ; ndi for the dimension of each particle):
� Generate random numbers rp and rg from
U(bl; bu);

� Update the particle velocity by V ti = wV t�1
i +

c1rp(pbestt�1
i � xt�1

i + c2rg(gbestt�1
i � xt�1

i ),

where c1 and c2 are respectively cognition and
social learning factors, and w is an inertia
weight;

� Update the particle position by xti=x
t�1
i + V ti ;

� If fp(xi) � fp(pbesti), update pbest of each
particle;

� If fp(pbesti) � fp(gbest), update gbest.
Step 3. Stopping: If a predetermined number of
iterations (m) is achieved or a solution with an
acceptable objective function amount is attained,
stop. The latest gbest holds the best solution
achieved. Otherwise, go to Step 2.

Besides continuous decision variables in this study,
there are discrete variables including n and k. To
transform the discrete variables to the continuous, it is
assumed that Rv1 and Rv2 are respectively two random
digits that belong to the interval (0, 1) corresponding
to n and k. Thus, the selected continuous values are
transformed into discrete values by using the following
formulas:

n = min(nmin +
�
Rv1(nmax � nmin + 1)

�
; nmax); (30)

k=min(kmin+
�
Rv2(kmax�kmin + 1)

�
; kmax): (31)

The values of cognition and social learning factors are
usually considered so that their summation is equal to
c1 + c2 = 4. Costa and Fichera [21] calibrated the
factors of PSO for ESD of the ARMA control chart. We
also tune the most suitable factors of PSO in Section 5
to better �t the problem at hand.

5. Experimental results

As pointed out earlier, it is aimed to optimize the
proposed mathematical model with the cost function
of the production cycle subject to some statistical con-
straints. To indicate the applicability and validate the
e�ectiveness of the proposed model, several numerical
examples are studied in this section. In Subsection 5.1,
an industrial example is extended for the current
study. Then, numerous comparisons are represented
in Subsection 5.2 for performance evaluations. In
Subsection 5.3, a sensitivity analysis is implemented
to investigate the e�ects of some parameters on the
solutions.

5.1. Numerical example
To illustrate the determination of decision variables
via optimizing the proposed model, an industrial
example is investigated. Consider a company with
125 working days/year, which sells a certain food
product to a wholesaler in packages marked with a
de�nite weight. Table 3 shows the nominal values
of parameters adapted from [47] and those related
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Table 3. Values of the parameters in the numerical example.

Parameter � �2
X u v � � 

Value 100 10 0.475 0.00 2 0.01 1
Parameter Cin Cout Cf Cv CY Cpm Crm
Value 115 950 1 0.2 200 2400 5000
Parameter E T1 p d D A B
Value 0.01 1 100 80 10000 60 10

to the ARMA control chart according to [21]. Since
u = 0:475 and v = 0:00, the autocorrelation structure
is ARMA (1,0) or AR (1). Moreover, the truncated
exponential distribution is investigated as a special case
of truncated Weibull by setting  = 1. This example
is simpli�ed accordingly (the general assumptions are
investigated in Subsections 5.2 and 5.3). The number of
simulations is set to 500 to calculate ARLs according to
the AS procedure. In real applications, some priorities
necessitate assigning limits on the decision variables
and bounds on constraints to determine feasible space.
Bearing in mind such circumstances, the integrated-
QIM model is rewritten as follows:

Min ETC;

s.t.:
ARL0 � 200; ARL1 � 10;

kh � 5; nE � h;
1 � n � 20; 0:01 � h � 6;

0:001 � l � 5; 1 � k � 70;

0:001 � � � 0:999; 0:001 � � � 0:999:

Once the PSO algorithm is implemented, an appro-
priate con�guration of its inuencing factors should
be predetermined. We employed the L9 orthogonal
array experimental design to specify the factors of PSO
for the current minimization problem, in which the
characteristic of ETC is of type the smaller-the-better.
As shown in Table 4, three levels of each factor must
be planned. For the L9 orthogonal array experimental
design, nine distinct level con�gurations of assigning
the factors are provided as individual trials according
to Table 5. For the ith trial, three optimal objective
functions, including ETCi1, ETCi2, and ETCi3, are
obtained using the PSO. Then, these outcomes are
converted into a Signal-to-Noise (S=N) ratio via the
following equation [56]:�
S
N

�
i

=� 10 log

0@1
3

3X
j=1

ETC2
ij

1A ;

i =1; 2; � � � ; 9: (32)

Table 4. Calibration of PSO: Plan of factors and levels
adapted from Chih et al. (2011) [56].

Factor Level 1 Level 2 Level 3

w 0.8 1 1.2

(c1; c2) (1.5, 2.5) (2.0, 2.0) (2.5, 1.5)

N 20 50 80

m 50 100 150

Table 5. Experimental design of L9 orthogonal array for
PSO factors.

Trial w (c1; c2) N m S=N

1 1 1 1 1 {74.0990

2 1 2 2 2 {73.9585

3 1 3 3 3 {73.9114

4 2 1 2 3 {73.9548

5 2 2 3 1 {73.9706

6 2 3 1 2 {74.0323

7 3 1 3 2 {73.9554

8 3 2 1 3 {73.9654

9 3 3 2 1 {73.9998

Table 6. S/N ratios for di�erent levels of PSO factors
(the best level for each factor was bolded).

Factor Level 1 Level 2 Level 3

w {73.99 {73.99 {73.97

(c1; c2) {74.00 {73.96 {73.98

N {74.03 {73.97 {73.95

m {74.02 {73.98 {73.94

The results of calculating S/N ratios using Minitab 18
software are recorded in the last column of Table 5. For
di�erent levels of PSO factors, Table 6 is constructed by
computing S/N ratios. The best level con�guration of
the factors is speci�ed based on a maximal S/N ratio at
each level for each factor since the characteristic of the
S/N ratio is of type the-larger-the-better. Considering
the main factors plot for S/N ratios from Figure 2
accompanied by the results of Table 6, the best level of
each factor is set at w = 1:2, (c1; c2)=(2, 2), N = 80,
and m = 150. Afterward, this con�guration is used
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Figure 2. Main factors plot for S/N ratios.

Table 7. Comparison between integrated-QIM and joint-QIM models.

Model E(Q) E(S) E(M) E(I) ETC ARL0 ARL1

Integrated-QIM 690.63 26.28 2547.59 1669.63 4934.12 279.12 5.02

Joint-QIM 1236.75 5.31 2595.86 1549.19 5387.12 212.44 6.27

to optimally specify the values of decision variables by
minimizing the model.

The proposed model, by considering the nominal
values of parameters mentioned earlier and the best
con�guration of PSO factors, is solved by the PSO
algorithm under a program coded using MATLAB
(R2016b). The optimal solution is attained as follows:

fn; h; l; k; �; �g = f1; 0:227; 2:738; 22; 0:000; 0:617g ;
ETC�QIM = 4934:12; EPQ = Q� = 523:50:

Accordingly, it is suggested to set the control limits at
2.738. Moreover, a sample size of 1 should be inspected
every 0.227 hours (i.e., 817 seconds). After inspecting
22 samples consecutively, PM should be employed if
the process remains under control during the whole
cycle. Also, ARL0 and ARL1 values are respectively
obtained as 279.12 and 5.02 which indicate the proper
performance of the ARMA chart. In this model, with
an ETC of 4934.12, the EPQ of 523.50 is optimally
obtained. The total demand for 10000 can be produced
after about 20 production cycles (10000 divided by
523.50 equals 19.10).

5.2. Comparisons
To validate the e�ectiveness of our model for the
problem of having the autocorrelation structure among
data, extensive comparisons are presented here based
on di�erent aspects: (1) Comparison between models

with and without integrating quality, inventory, and
maintenance concepts, and (2) comparison the control
charts for monitoring ARMA process including its
special cases.

5.2.1. Comparison between integrated and joint
models

This subsection is dedicated to the performance com-
parison of the integrated-QIM model with a model
called joint-QIM. Quality, inventory, and maintenance
decision variables are separately optimized according
to this model. The procedure for calculating ETC for
the joint-QIM is presented in the following steps:

1. The summation of inventory costs, i.e. IHC and
SUC, is minimized to obtain an optimal value of
process cycle time (T );

2. The decision variables of the ARMA chart, i.e. n,
h, l, �, and �, are optimally attained by minimizing
the summation of quality loss cost and sampling
cost;

3. Using the values of T and h obtained previously, k
is calculated as k = (T=h)� 1;

4. Finally, all six decision variables are embedded in
the integrated objective function to calculate ETC
for the joint-QIM.

Table 7 shows the obtained results of comparing the
models. It can be seen that the value of ETC is
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Table 8. Comparison between integrated and joint models by considering di�erent ARMA parameters.

ARMA Parameters ETC
u v Joint-QIM model Integrated-QIM model Cost saving

0.00 0.00 5195.48 4909.58 285.90
0.25 5179.58 4900.18 279.40
0.50 5169.65 4896.91 272.74
0.75 5159.44 4890.90 268.54

0.25 0.00 5208.04 4922.18 285.86
0.25 5192.36 4912.05 280.31
0.50 5177.88 4899.11 278.77
0.75 5169.26 4894.53 274.73

0.50 0.00 5378.22 4936.36 441.86
0.25 5368.91 4923.15 445.76
0.50 5196.26 4909.78 286.48
0.75 5176.31 4903.75 272.56

0.75 0.00 5388.57 5055.66 332.91
0.25 5382.90 4957.23 425.67
0.50 5372.82 4940.58 432.24
0.75 5195.48 4910.47 285.01

decreased using the integrated model. Moreover, ARL
values are improved in comparison to those of the
joint-QIM. We also provided the details of the cost
function. The total expected costs of quality loss and
maintenance are decreased using the integrated model.
Instead, the joint-QIM provides lower costs of sampling
and inventory.

For more investigations, we compare these models
by considering di�erent AR and MA parameters for
the numerical example presented previously. The
underlying process includes AR (1) when u 6= 0 and
v = 0, MA (1) when u = 0 and v 6= 0, and
ARMA (1,1) when u 6= 0 and v 6= 0. Accordingly,
16 trials were performed. As shown in Table 8, the
results of cost savings con�rm that the integration
of quality, inventory, and maintenance concepts leads
to lower ETC than the joint-QIM. The lowest cost-
saving, i.e. 272.56, is experienced in the 12th trial
where ETC values by integrated and joint models are
respectively 4903.75 and 5176.31. Investigating the
e�ects of ARMA parameters indicates that increasing
u and decreasing v lead to higher ETC values.

5.2.2. Comparison among monitoring techniques
The better statistical performance of the ARMA con-
trol chart for monitoring autocorrelated data was
con�rmed in [16] compared to EWMAST and SCC
charts. However, it is necessary to investigate their
performance in the framework of ESD. These moni-
toring techniques have di�erent mechanisms, and their
performance depends on the chosen values of the design
parameters. We previously described how to design
the ARMA control chart. Designing SCC needs to

Table 9. Comparison among various control charts using
ETC values of the integrated-QIM.

ARMA parameters Control charts
u v SCC EWMAST ARMA

{0.950 0.000 4902.24 4888.26 4884.49
{0.475 0.000 4927.20 4902.41 4896.43
0.475 0.000 5031.38 4941.31 4938.07
0.950 0.000 5153.89 5118.12 5076.99
0.475 {0.900 5014.58 4956.94 4952.35
0.950 0.450 5186.57 5026.22 4988.05
0.950 {0.900 5802.70 5035.80 4999.65

�t a model on a series of data to obtain uncorrelated
ones. Then, the traditional monitoring technique
under the independence assumption is applied to the
uncorrelated data [10]. Using SCC in the framework
of the integrated-QIM model, the decision variables
include n, h, l, and k. The design of EWMAST requires
setting an integerm for approximating the variance and
a smoothing coe�cient �E as well as n, h, l, and k. We
set m = 25 and �E = 0:2 as suggested in [17].

To con�rm the economic and statistical perfor-
mance of our model, the results of applying ARMA,
EWMAST, and SCC monitoring techniques are com-
pared. We use the information presented in Table 3
by considering di�erent combinations of ARMA co-
e�cients from [16] to include AR (1) and ARMA
(1,1). For the 6th and 7th combinations of [u; v],
infeasible solutions are obtained since the constraint
of ARL1 is not satis�ed. Therefore, we relaxed the
second constraint in the proposed model to get feasible
solutions. Table 9 shows the results. The lowest ETC
is bolded for di�erent comparisons. It can be deduced
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Table 10. Levels plan of factors for the sensitivity analysis.

Factor A B C D E F G H

Notation � u v �  Cin Cout Cf

Level 1 1 0.00 0.00 0.01 0.5 50 100 0.5

Level 2 4 0.25 0.25 0.03 1.0 115 950 1.0

Level 3 { 0.75 0.75 0.05 2.0 700 1500 4.0

Factor J K L M N O P Q

Notation Cv Cpm Crm CY E T1 A B

Level 1 0.2 1000 2500 50 0.01 0.1 30 5

Level 2 0.5 2400 5000 200 0.05 1 60 10

Level 3 2.0 4000 7500 500 0.20 2 120 20

that using the ARMA monitoring technique in the
proposed model generally results in the lowest ETC.
For [u; v]=[0.95, 0.45], the optimal solutions of ARMA,
EWMAST, and SCC control charts are respectively
attained in detail as follows:

fn; h; l; k; �; �g = f1; 0:11; 2:39; 46; 0; 0:01g ;
ETC�QIM = 4988; EPQ = Q� = 517;

ARL0 = 206; ARL1 = 10;

fn; h; l; k; �E ;mg = f1; 0:2; 2:01; 25; 0:2; 25g ;
ETC�QIM = 5026; EPQ = Q� = 520;

ARL0 = 202; ARL1 = 16;

fn; h; l; kg = f1; 0:1; 2:83; 50g ;
ETC�QIM = 5187; EPQ = Q� = 510;

ARL0 = 206; ARL1 = 136:

5.3. Sensitivity analysis
The e�ects of various parameters on the solution of
the proposed model are studied via sensitivity analysis.
This is performed using the orthogonal-array Taguchi
design and multiple regression. ETC is considered a
dependent variable, and sixteen independent variables
are treated as factors. Their level plans are shown in
Table 10.

Table 11 shows how independent variables are
assigned to the trials of the L54 array. For each trial,
the PSO is used to obtain the optimal solutions of the
model. We changed the upper bound of the second
constraint from 10 to 40 in the proposed model to
get feasible solutions in all trials. The output of the
optimizations is recorded in Table 12. Minitab 18

software is used to analyze the results. Table 13 shows
the output for ETC. Assuming a signi�cance level of
0.1, the parameters �, �, , Cin, Cpm, Crm, A, and
B are signi�cant. For each factor in Table 14, the
di�erence between the two levels with the highest and
lowest values is calculated and recorded in the delta
row. These values indicate how much the change in
the levels a�ects ETC values on average. Accordingly,
the ranking is done from the largest delta value to the
smallest. Among the signi�cant factors, the greatest
impact on ETC can be expected by changing Cin levels.

The e�ects of di�erent levels of factors on ETC
on average are also shown in Figure 3. Since ETC
is of type the-smaller-the-better, the levels that result
in the lowest mean of ETC are preferred. A larger �
generally reduces ETC because it can be easily detected
by the control chart and thus can be �xed just in time.
Similarly, a higher value of  causes a reduction in ETC
. In contrast, larger values of �, Cin, Cpm, Crm, A, and
B lead to higher ETC values.

The adequacy of the model can be visually
checked from Figure 4. Figure 4(a) is a graphical plot
of normal probabilities versus residuals. It is seen that
the points appropriately �t on the line. The p-value for
the Anderson-Darling (AD) test of residuals is 0.177.
This value is greater than the signi�cance level of 0.05.
Thus, there is no evidence to reject the normality
assumption. It appears from Figure 4(b) that the
residuals are randomly scattered around zero. In other
words, there is no evidence of non-constant variance
or missing terms in the model. However, residuals
related to trials 16, 20, and 41 are outliers since their
standardized values, respectively 2.52, 3.05, and �2:23,
are out of the bounds of [�2;+2] in the signi�cance
level of 0.05. We left it without more investigations.
From Figure 4(c), the symmetry of the distribution is
inferred to some extent. Figure 4(d) shows no evidence
that the residuals are correlated with one another.
Therefore, the adequacy of the model is con�rmed.
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Table 11. Levels of factors for generated trials with the Taguchi L54 design.

Trial A B C D E F G H J K L M N O P Q

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2
3 1 1 1 1 1 1 1 1 3 3 3 3 3 3 3 3
4 1 1 2 2 2 2 2 2 1 1 1 1 1 1 2 3
5 1 1 2 2 2 2 2 2 2 2 2 2 2 2 3 1
6 1 1 2 2 2 2 2 2 3 3 3 3 3 3 1 2
7 1 1 3 3 3 3 3 3 1 1 1 1 1 1 3 2
8 1 1 3 3 3 3 3 3 2 2 2 2 2 2 1 3
9 1 1 3 3 3 3 3 3 3 3 3 3 3 3 2 1
10 1 2 1 1 2 2 3 3 1 1 2 2 3 3 1 1
11 1 2 1 1 2 2 3 3 2 2 3 3 1 1 2 2
12 1 2 1 1 2 2 3 3 3 3 1 1 2 2 3 3
13 1 2 2 2 3 3 1 1 1 1 2 2 3 3 2 3
14 1 2 2 2 3 3 1 1 2 2 3 3 1 1 3 1
15 1 2 2 2 3 3 1 1 3 3 1 1 2 2 1 2
16 1 2 3 3 1 1 2 2 1 1 2 2 3 3 3 2
17 1 2 3 3 1 1 2 2 2 2 3 3 1 1 1 3
18 1 2 3 3 1 1 2 2 3 3 1 1 2 2 2 1
19 1 3 1 2 1 3 2 3 1 2 1 3 2 3 1 1
20 1 3 1 2 1 3 2 3 2 3 2 1 3 1 2 2
21 1 3 1 2 1 3 2 3 3 1 3 2 1 2 3 3
22 1 3 2 3 2 1 3 1 1 2 1 3 2 3 2 3
23 1 3 2 3 2 1 3 1 2 3 2 1 3 1 3 1
24 1 3 2 3 2 1 3 1 3 1 3 2 1 2 1 2
25 1 3 3 1 3 2 1 2 1 2 1 3 2 3 3 2
26 1 3 3 1 3 2 1 2 2 3 2 1 3 1 1 3
27 1 3 3 1 3 2 1 2 3 1 3 2 1 2 2 1
28 2 1 1 3 3 2 2 1 1 3 3 2 2 1 1 1
29 2 1 1 3 3 2 2 1 2 1 1 3 3 2 2 2
30 2 1 1 3 3 2 2 1 3 2 2 1 1 3 3 3
31 2 1 2 1 1 3 3 2 1 3 3 2 2 1 2 3
32 2 1 2 1 1 3 3 2 2 1 1 3 3 2 3 1
33 2 1 2 1 1 3 3 2 3 2 2 1 1 3 1 2
34 2 1 3 2 2 1 1 3 1 3 3 2 2 1 3 2
35 2 1 3 2 2 1 1 3 2 1 1 3 3 2 1 3
36 2 1 3 2 2 1 1 3 3 2 2 1 1 3 2 1
37 2 2 1 2 3 1 3 2 1 2 3 1 3 2 1 1
38 2 2 1 2 3 1 3 2 2 3 1 2 1 3 2 2
39 2 2 1 2 3 1 3 2 3 1 2 3 2 1 3 3
40 2 2 2 3 1 2 1 3 1 2 3 1 3 2 2 3
41 2 2 2 3 1 2 1 3 2 3 1 2 1 3 3 1
42 2 2 2 3 1 2 1 3 3 1 2 3 2 1 1 2
43 2 2 3 1 2 3 2 1 1 2 3 1 3 2 3 2
44 2 2 3 1 2 3 2 1 2 3 1 2 1 3 1 3
45 2 2 3 1 2 3 2 1 3 1 2 3 2 1 2 1
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Table 11. Levels of factors for generated trials with the Taguchi L54 design (continued).

Trial A B C D E F G H J K L M N O P Q
46 2 3 1 3 2 3 1 2 1 3 2 3 1 2 1 1
47 2 3 1 3 2 3 1 2 2 1 3 1 2 3 2 2
48 2 3 1 3 2 3 1 2 3 2 1 2 3 1 3 3
49 2 3 2 1 3 1 2 3 1 3 2 3 1 2 2 3
50 2 3 2 1 3 1 2 3 2 1 3 1 2 3 3 1
51 2 3 2 1 3 1 2 3 3 2 1 2 3 1 1 2
52 2 3 3 2 1 2 3 1 1 3 2 3 1 2 3 2
53 2 3 3 2 1 2 3 1 2 1 3 1 2 3 1 3
54 2 3 3 2 1 2 3 1 3 2 1 2 3 1 2 1

Figure 3. Main e�ects of sixteen independent factors on ETC .

Figure 4. Residual plots: (a) Normal probability plot, (b) residuals versus �tted values, (c) histogram, and (d) residuals
versus observation order
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Table 12. Optimal values of functions and parameters for the generated trials with the Taguchi L54 design.

Trial n h l k � � ETC ARL0 ARL1

1 18 0.36 2.82 14 0.00 0.67 2504.11 263.43 9.75
2 3 0.71 2.81 7 0.09 0.83 4962.00 272.84 10.51
3 1 2.50 2.85 2 0.00 0.80 8425.27 362.29 9.41
4 1 0.16 2.82 31 0.03 0.80 4159.14 239.96 6.21
5 1 0.13 2.91 53 0.01 0.83 6120.72 371.11 6.47
6 1 0.25 2.90 20 0.14 0.77 6812.36 281.70 7.82
7 3 0.24 2.83 21 0.00 0.70 7675.94 223.35 3.13
8 1 0.10 3.52 50 0.00 0.91 8025.83 938.37 3.60
9 1 0.33 3.01 15 0.14 0.63 9778.77 381.78 6.67
10 10 2.51 3.27 2 0.08 0.56 3515.04 744.80 37.65
11 9 0.37 2.75 14 0.29 0.67 5454.65 207.03 16.53
12 1 0.12 2.73 46 0.03 0.86 8310.50 340.80 13.51
13 3 1.10 3.42 5 0.20 0.61 7966.69 850.76 37.11
14 1 0.10 3.68 50 0.10 0.85 8742.72 1076.67 18.75
15 2 0.32 2.89 16 0.38 0.76 8863.57 243.40 17.58
16 12 2.51 3.14 2 0.31 0.60 8709.08 555.68 20.34
17 1 0.10 3.20 50 0.00 0.89 6494.10 613.84 4.10
18 1 0.13 3.01 48 0.00 0.86 5589.80 384.61 3.81
19 1 0.10 2.08 50 0.07 0.95 7793.65 212.03 29.69
20 11 5.01 2.45 1 0.10 0.75 13801.74 201.48 39.69
21 1 0.10 2.25 50 0.12 0.92 10824.46 207.06 31.98
22 4 0.36 2.34 14 0.10 0.91 7074.87 232.68 28.41
23 3 0.63 2.60 8 0.15 0.81 9194.70 286.59 34.49
24 1 0.10 2.27 50 0.10 0.94 5154.64 213.40 27.55
25 9 2.54 3.33 2 0.24 0.75 5620.90 757.60 23.07
26 1 0.34 3.58 15 0.32 0.81 6287.75 1018.91 34.61
27 9 1.68 3.26 3 0.13 0.78 3089.80 692.93 15.28
28 1 0.10 3.61 50 0.00 0.22 5700.61 1006.24 1.44
29 1 0.28 3.14 18 0.95 0.63 3557.90 495.52 4.77
30 1 0.36 3.54 14 0.12 0.38 6689.60 956.43 1.71
31 1 0.10 3.43 50 0.00 1.00 10125.33 898.60 1.30
32 1 0.20 3.05 25 0.72 0.54 7619.16 410.48 3.14
33 1 0.36 2.91 14 0.16 0.28 8049.21 261.20 1.38
34 1 1.45 3.22 4 0.00 0.58 7434.74 618.33 1.02
35 1 5.00 4.46 1 0.28 0.27 4261.63 1200.19 3.92
36 1 1.00 2.80 5 0.36 0.39 4486.87 209.59 1.70
37 1 0.22 3.11 23 0.18 0.35 3706.19 488.52 1.74
38 1 1.01 2.93 5 0.03 0.00 5992.26 303.96 1.14
39 1 0.56 3.22 10 0.00 0.17 4708.67 627.35 1.29
40 1 0.31 2.84 16 0.49 0.39 7211.32 208.91 2.05
41 1 1.08 2.93 10 0.00 0.29 5817.19 287.44 1.15
42 1 0.33 3.33 15 0.53 0.66 4270.00 755.27 3.16
43 2 0.63 3.69 8 0.00 0.59 9316.07 1039.87 1.21
44 1 0.10 3.88 50 0.00 0.56 9170.05 1145.71 1.25
45 1 0.20 3.78 25 0.36 0.62 6265.97 1089.08 2.59
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Table 12. Optimal values of functions and parameters for the generated trials with the Taguchi L54 design (continued).

Trial n h l k � � ETC ARL0 ARL1

46 5 0.28 3.34 18 0.68 0.56 8372.14 835.32 4.39
47 1 0.33 3.01 15 0.23 0.08 7495.27 450.49 1.47
48 1 0.26 3.21 19 0.46 0.44 9043.79 722.90 2.94
49 1 0.56 3.70 9 0.51 0.44 6522.14 1069.69 4.09
50 1 2.46 2.74 3 0.00 0.02 3314.77 213.47 1.05
51 1 1.67 3.21 3 0.37 0.51 3881.96 710.71 2.93
52 1 0.13 3.35 54 0.00 0.23 8081.50 749.39 1.28
53 1 0.10 2.99 50 0.00 0.30 6265.11 367.65 1.16
54 1 0.20 2.94 31 0.00 0.27 4610.97 334.92 1.18

Table 13. ANOVA for ETC.

Source D.F. Adj. S.S. Adj. M.S. F P -value

Model� 8 206518199 25814775 18.48 0.000

A 1 6672799 6672799 4.78 0.034

D 1 5003314 5003314 3.58 0.065

E 1 12282596 12282596 8.79 0.005

F 1 88713102 88713102 63.52 0.000

K 1 51177437 51177437 36.64 0.000

L 1 5289052 5289052 3.79 0.058

P 1 19539063 19539063 13.99 0.001

Q 1 17840836 17840836 12.77 0.001

Residual error 45 62852438 1396721 { {

Total 53 269370637 { { {
�ETC=�0:974� 703A+ 373D � 584E + 1570F + 1192K + 383L+ 737P + 704Q

Table 14. E�ects of independent parameters on ETC.

Factor A B C D E F G H

Level 1 7072 6466 6714 6246 7286 5690 6381 6808

Level 2 6369 6672 6717 6924 6758 5643 6929 6555

Level 3 { 7024 6731 6992 6118 8829 6852 6799

Delta 703 558 17 746 1168 3186 548 253

Rank 8 10 16 7 5 1 11 12

Factor J K L M N O P Q

Level 1 6749 5631 6197 6829 6516 6686 6063 5901

Level 2 6810 6516 7002 6675 6552 6644 6564 6952

Level 3 6603 8016 6964 6659 7094 6832 7536 7309

Delta 207 2385 805 170 579 188 1473 1408

Rank 13 2 6 15 9 14 3 4

6. Conclusions

In this study, we aimed to bridge the gap between tradi-
tional perfect production models and real production
conditions. Therefore, we proposed a model for the

imperfect production process by integrating the triple
concepts of Statistical Process Monitoring (SPM),
Maintenance Policy (MP), and Economic Production
Quantity (EPQ). In some processes, the assumption
that the data derived from the process are independent
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may not be true. The existence of autocorrelation
among those data can lead to signi�cant e�ects on the
statistical performances of control charts if ignored.

Therefore, in contrast to most of the research in
the literature, we considered the �rst-order Autore-
gressive Moving Average (ARMA) structure for the
underlying process as well as its special cases, i.e.
AR and MA. Since Jiang et al. [16] showed that the
ARMA control chart, compared to EWMAST, and
Special Cause Chart (SCC) charts, was more e�ective
for monitoring a process with autocorrelated data, we
also applied the ARMA chart in this study.

For optimizing the proposed integrated economic-
statistical model, a Particle Swarm Optimization
(PSO) algorithm was used to determine decision vari-
ables. Finally, this procedure was illustrated through
an industrial example, some comparisons were made for
validation, and the sensitivity analysis was �nally im-
plemented to distinguish the e�ects of the parameters
on the objective function.

The results of comparative studies indicated that:
(1) the integration of quality, inventory, and main-
tenance concepts leads to the signi�cantly reduced
Expected Total Cost (ETC) in comparison to the
joint-QIM model, (2) using the ARMA chart as a
monitoring method in the proposed model generally
results in the lowest ETC in comparison to EWMAST
and SCC control charts, and (3) increasing AR and
decreasing MA constants of the underlying ARMA
process have adverse e�ects on the values of ETC.
Besides, the results of sensitivity analysis con�rmed
that the shift magnitude in the process mean and the
shape parameter of the truncated Weibull distribution
have inverse relationships with ETC, whereas larger
values of the scale parameter of that distribution, the
quality loss cost in the in-control state, the preventive
maintenance cost, the reactive maintenance cost, the
setup cost, and the inventory holding cost per unit time
lead to the higher ETC values.

In future research, it is suggested to investi-
gate other monitoring charts reviewed by Thaga and
Sivasamy [9] for similar models. Designing attribute
control charts with di�erent sampling schemes, similar
to [59], can be extended under the integrated model.
Uncertainty in the model can be treated using a
robust optimization approach applied in [54] and [60].
Recently, the ARMA control chart was applied to a
ten-scenario model [61]. For the time being, we are
trying to extend the Acceptance Control Chart (ACC)
for autocorrelated processes.
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