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Abstract. Electric Vehicles (EVs) have gained rising popularity and become the
mainstream mode of transportation in urban and rural areas in India and will be globally
pervasive in the next few years. Certain issues should be taken into account in the adoption
of EVs such as proper charging infrastructure, charging time and more signi�cantly, sizing
and siting of the Charging Stations (CSs), particularly in urban areas where the cost
of land and location are of high signi�cance. Therefore, it is important that the CS
location be easily accessible and cost-e�ective for EV users. In this regard, this study
presents an intelligent algorithm-based e�cient planning of Electric Vehicle Charging
Stations (EVCS), considering the geographical information and road network. The cost
function was considered as the sum of the investment, charging station electri�cation,
electric vehicle energy loss, and travel time costs. An intelligent algorithm-based approach
was then employed to solve the planning problem of EVCS. Further, the impact on the
reliability of the grid was evaluated by determining the charging cost loss at each considered
location. The result revealed that the applied method provided better-optimized solutions
that were bene�cial to EV users, CS operators, and utility grid.

© 2023 Sharif University of Technology. All rights reserved.

1. Introduction

In recent years, Electric Vehicles (EVs) have gained
ever-increasing popularity owing to their lower fossil
fuel consumption and higher demand in the power
sector [1,2]. Cost-e�ectiveness and eco-friendly nature
of the EVs are their major superiority, justifying the

*. Corresponding author.
E-mail addresses: bilal 2k17phdee05@dtu.ac.in,
bilal.zhcet01@gmail.com (M. Bilal); rizwan@dce.ac.in (M.
Rizwan)

doi: 10.24200/sci.2021.57433.5238

deployment of EV on a large scale [3,4]. They can be
categorized into two types of battery and hybrid EVs
[5,6]. Electric Vehicle Charging Stations (EVCS) are
installed to supply the needed electricity for charging
EVs. The capacity of the EV battery generally ranges
from 20 to 60 kWh. The number of charging levels
is also available for EV charging based on which three
standard charging levels to be predominantly used have
been developed. Charging level 1 is based on a single-
phase AC system in which a 20 kWh battery is charged
in seven hours, while charging level 2 is based on a
three-phase AC system in which a 20-kWh battery is
fully charged in an hour. In addition, charging level 3,
also known as the fast charging level, is based on a
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DC system in which the battery gets fully charged
in 20 to 30 minutes [7] and for this reason, building
fast-charging stations for vast adoption of EVs has be-
come a necessity [8]. Charging Station (CS) is directly
connected to the power grid. Some equipment such
as transformers and recti�ers are installed to generate
DC voltage in the station. Charging connectors are
placed in the station that use DC voltage to charge the
batteries in 20{30 minutes. Therefore, CS serves the
electric supply to the EVs for charging purposes. The
easy availability of fast CS is the key to the commercial
deployment of EVs [9]. Di�erent issues concerning
the development of fast CS have been discussed in the
literature, among the most prominent of which are the
charging time [7], battery life, accessibility of public
CS [10], and integration to the energy supply grid. In
addition, energy consumption and availability of the
renewable energy sources for fast CS have also been
discussed [11]. Moreover, building EVCSs based on the
renewable energy generated from wind farms has been
speci�cally discussed [12]. Further, recent public sector
funding in the commercial deployment of the fast CS in
the US and Japan have been studied [13]. According to
the literature, a supply of at least 100 kW is necessary
for charging 36 kWh battery-based EVs in 20 minutes.
Therefore, in a practical scenario that simultaneously
considers charging 10 EVs, the CS will require at least
1000 kW from the electric supply grid, which incurs
signi�cant losses [14].

1.1. Related works
Numerous researches have been conducted on the
optimal planning of EVCS and its integration into
the electric power network. In this regard, some
authors have established a spatiotemporal model to
analyze the impact of di�erent EV charging strategies
on the electric grid [15]. According to their studies,
in order to reduce the losses, the CS should be placed
closer to electric substations. However, the substations
are generally located far away from urban areas, and
this long distance will in turn increase the energy
consumption in the EV while traveling to the CS.
Hence, both travel cost and grid losses are critical
while determining the location of the CS. Moreover,
the CS capacity is dictated by the area; in other words,
expanding the land area for CS would increase the
number of EVs that can be simultaneously served as
well as the cost associated with development charges
and land cost. In this regard, placement and sizing of
the CS is a non-trivial problem that necessitates a com-
prehensive study that addresses the aforementioned
issues [16]. A few of the research works have addressed
the placement and sizing problems for the CS [17{24].
In [17], a partitioning-based technique for optimizing
the location of the CS was proposed by minimizing the
tra�c loss. An optimal location for the CS was derived

for the city of Lisbon in [18]. The location of the CS was
optimized for a minimum station development cost in
[19]. The CS location for the driving pattern of the EVs
was optimized in [20]. Graph theory-based study on
optimal placement and sizing of EVCS was carried out
in [21]. Further, a two-step-based technique was pro-
posed in [22] to optimize the location and size of the CS,
while Particle Swarm Optimization (PSO) was used for
�nding the optimal location [23]. A Jaya algorithm
was used in [24] for the optimal placement of EVCS
by optimizing the operating cost, installation cost,
and power grid loss. A hybrid approach to Chicken
Swarm Optimization (CSO) and Teaching-Learning-
Based Optimization (TLBO) was utilized in [25] to
allocate the EVCS, considering various economic and
grid operating issues. Several cost functions including
the operating, investment, and maintenance costs were
considered to optimize the PSO, considering the net-
work operating constraints [26]. The EVCS allocation
in the IEEE-123 bus distribution network was con-
ducted in [27] using Grey Wolf Optimization (GWO)
without violating system constraints. The optimal
placement of EVCS in the IEEE-33 bus radial distribu-
tion system was achieved, considering the uncertainties
related to the quantity of the EVs to be charged [28].
In another study, GWO/WOA was employed to solve
the placement problem. The EVCS planning in a
distribution network superimposed with road network
was done. Uncertainties related to EVs were taken
into account based on 2 m Point Estimate Method
(2 m PEM). Di�erential Evolution (DE) and Harris
Hawks Optimization (HHO) algorithm were used for
optimizing the objectives [29]. Optimal placement of
the EV parking lot was implemented in Beijing district
to minimize the total cost and power loss [30]. In [31],
a two-stage approach to the allocation of EV parking
lot and Renewable Energy Sources (RESs) in a dis-
tribution network was proposed. An appropriate bus
for the EV parking and RESs was selected, considering
the economic objectives in order to reduce the system
loss using Genetic Algorithm (GA) and PSO algorithm.
The results proved the e�ectiveness of the simultaneous
allocations of RESs and EV parking lots over the
independent allocation of distributed energy resources
and EV parking lots. In [32], some improvements in
the voltage pro�le, power loss, and loading capabilities
of the IEEE-69 bus radial distribution system with
PV/Battery Energy Storage System (BESS)-powered
EV charging stations were suggested. An energy
management strategy was then introduced to direct the
power ow among the EVCS, solar panel, BESS, and
utility grid based on the times of using the electricity
price. Multi-Course Teaching-Learning-Based multi-
objective Optimization (MCTLBO) was then employed
to optimize the size of PV/BESS system and locations
of CSs in each zone and minimize the annual CS
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operating costs as well as the system active power
loss. Allocation of EVCS in the presence of capacitors
in a distribution network was done to minimize the
active power losses and maximize the net pro�t without
violating the operational constraints [33]. Optimal
CS planning was done within the tra�c-constrained
framework [34]. Although the CS development is highly
dependent on the public sector policies, not much has
been studied regarding the impact of public policy
on the development of charging infrastructure. The
grid loss and CS construction cost for optimal sizing
and placement of EVCS were discussed in [35]. GA
was then used to solve the optimization problem. In
[36], PSO was used with some applied modi�cations
in the inertia factor for optimal planning of CS. Both
construction and maintenance costs were considered as
an objective function. Proper placement of EVCS was
carried out, considering the cost of installation in the
tra�c network [37]. The cost functions were modeled
for optimal sitting of EVCS, taking into consideration
the tra�c and geographical constraints [38]. The main

emphasis of this article was put on minimizing the
transportation cost. In [39], the power losses were
reduced by optimal sizing of Distributed Generation
(DG) and optimal sitting of EVCS. Initially, DG of the
optimal size was located to reduce the power losses. In
the second step, CS was optimally installed to ensure
a further reduction in power losses. The results were
tested in the IEEE 33-bus radial distribution network.
It was also shown that this approach to the sequential
placement of DG and CS introduced additional new
load to the system. Table 1 provides an insight into
the optimization algorithms used for handling multi-
objective cost-based functions.

To the best of the author's knowledge, numerous
studies have been conducted so far, primarily aiming
at sitting and sizing of EVCS in distribution and
transportation networks. However, a few of them have
addressed the aforementioned problem by taking into
account the realistic data of EVs. In addition, the
impact on the grid reliability in terms of Charging
Cost Loss (CCL) was rarely examined in past research

Table 1. Analysis of various intelligent algorithms used for handling the cost-based objective functions [40].

Ref. Cost functions Algorithm Category Attributes

[36] Minimizing
investment cost

ACO Swarm intelligent Exploitation capability is weak

[37] Minimizing
connection cost

PSO Swarm intelligent
Processing time is longer

for multi-modal problems.

[37] Minimizing EV
energy loss cost

PSO Swarm intelligent

Depending on its

own parameters such

as inertia weight,

social parameters,

and cognitive term.

[35] Minimizing EV
energy loss cost

GA Evolutionary

Issue in tuning

the parameter

due to complex mutation,

speed of convergence,

and crossover operator.

[38] Minimizing
installation cost

TLBO Population-based optimization
Memory required for

computation purpose is low.

[38] Minimizing
travel time cost

TLBO Population-based optimization
Initially, it failed

to solve the problems

continuous in nature
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projects. Reliability evaluation is an important factor
to be incorporated in the optimal planning of EVCS.
In addition, intelligent meta-heuristic technique for
a particular case study has not been applied in the
former works. This research primarily focuses on the
optimal planning of EVCS in di�erent well-known areas
of South Delhi considering the land cost, coordinates
(latitude and longitude), elevation, and population
density of CS location. Moreover, reliability analysis
is carried out to investigate the impact on the grid.
It also employed Grey Wolf Optimization (GWO) to
plan CS in the proposed site. GWO is simple to
implement owing to its simple structure, few storage
and computational requirements, good convergence
due to the continuous search space reduction, fewer
decision variables, and ability to avoid local minima
and search for the global minima over a large search
range.

1.2. Motivations
Availability of charging facilities in public places is
the key prerequisite for adoption and rollout of EVs.
The charging infrastructure must be smart that can be
managed by the government agencies and/or private
organizations. The feasibility studies should be carried
out prior to the installation of CS. The services were
o�ered with the main objective of enhancing the end
user customer experience and further promoting the
charging the ease and convenience of charging EVs.
These could include smart end user applications to
show the location and real-time status of the chargers,
simple methods for payment, expert customer support,
and service and maintenance of the stations.

The main problem arises when several EVs are
plugged into the grid simultaneously that may cause
grid interruptions. Therefore, a proper and robust
battery management system was required to simulta-
neously manage the CS for charging a considerable
number of EVs. In order to adopt the swapping
approach, a greater number of batteries are required
that consequently increase the cost of the system.
Undoubtedly, it is not desirable; hence, the necessity
of the development of charging strategies comes to the
fore.

Given the increase in the EV adoption, it is
expected that the CS infrastructure will keep pace with
the predicted growth scenarios. However, planning the
charging infrastructure is a di�cult task because it
demands simultaneous consideration of a number of
consumer and local constraints. Some of the factors
that will a�ect the EV adoption are EV purchasing ex-
penses, regulations by the government that encourage
applications of the EVs, availability of the electrical
energy, role of renewable energy resources, and con-
cerns about the access and availability of fast-charging
stations. Due to all of these factors, uncertainty

about the rate of EV adoption might increase, thus
posing questions about whether the expected charging
infrastructure supports the demand.

1.3. Contributions
Inspired by the current research on the planning of
EVCS, this research work contributes to the overall
planning of EVCS around the world by putting its main
focus on the di�erent most populated areas of New
Delhi. To this end, various intelligent algorithms have
been employed to deal with this planning problem. Few
of these algorithms search for the optimum solution
only in the neighborhood space and do not pay much
attention to the global area. Such techniques are
susceptible to getting trapped in a local optimum
solution only. On the contrary, some other techniques
are good enough to achieve the global solution, but
they cannot explore the local solution. Due to these
shortcomings, more e�cient algorithms are required
for premature concurrence and must have a good
exploration capability. In this respect, GWO was
utilized owing to its ability to make a good balance
between the local and global search spaces.

The main contributions of the proposed work are
summarized in the following:

� This research work emphasizes the planning of
EVCS in the most populated areas of South Delhi,
India. Allocation of the EVCS is done based on
minimizing the overall cost, which includes the
investment, CS electri�cation, EV energy loss, and
travel time costs;

� Reliability evaluation is one of the major concerns
in the location planning of EVCS. Hence, Charging
Cost Loss (CCL) as an important measure for
determining the impact on reliability of grid was
investigated. CCL refers to the cost of EV which
remains uncharged because of improper functioning
of the grid or grid failure. It was evaluated for each
CS site for reliability evaluation;

� The proposed algorithm relies on the hunting be-
havior of the grey wolves, balancing the exploration
and exploitation capability. The performance and
stability of the proposed algorithm were examined
by implementing it on various objective functions
considered for the optimal planning of EVCS in the
most populous areas of South Delhi, India. The
supremacy of the proposed technique was veri�ed by
comparing the obtained results with other existing
methods discussed in the literature. The GWO
results con�rmed the e�ectiveness of the proposed
technique in determining the global solution in
terms of the quality of solution and computational
burden.

This paper is organized in six sections. Section 2 fo-
cuses on the modeling of optimization problem. Section
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3 discusses the constraints and adopted methodology.
Section 4 shows the applied intelligent algorithm, i.e.,
GWO and its ow chart. Section 5 presents the
obtained results and simulation analysis. Section 6
concludes the study.

2. Components and models of electric vehicle
charging station

Figure 1 shows the interaction among the CSs, EVs
and electric substation in which CS is connected to the
electric substation and EV takes power from CS.

Figure 2 depicts the single-line diagram of the
interconnection of the charging station (m) and substa-
tion (x) based on feeder (Fm). High- and low-voltage
bus bars of the electric substation are denoted by D6x
and D4x, respectively. Two transformers are assumed
to be connected in parallel in the electric substation.
In addition, D4i indicates the incoming bus bar of the
CS.

2.1. Investment Cost (IC)
The investment cost can be divided into three parts.
The �rst part is the cost incurred by establishing the
equipment and facilities for CS. The second part is the
rental cost of land, and the third part is the cost needed
for developing the connectors. Investment cost can be
mathematically formulated as follows [37]:

IC =
XNCS

i=1
(Cinitial +B:Cland:NCi

+ Ccon:CP:(NCi � 1)); (1)

where NCS is the number of CSs, Cinitial the initial
�xed cost of CS, B the area requirement per connector
in m2, Cland the rental cost of land for di�erent sites
in areas of South Delhi, NCi the number of charging
connectors in the ith CS, Ccon the development cost of
connector, and CP the rated power of the connector.

Figure 2. Single-line diagram for station connection to
the electric grid [35].

In the current study, it is assumed that the land
is rented for �ve years; therefore, the operational and
maintenance cost was ignored. In addition, area re-
quirement per connector is considered to be 25 m2 [41].

The cost of equipment depends on the CS capac-
ity. The rental cost of land depends on the quality
of land and varies in di�erent city locations. In the
proposed methodology, CS is installed at locations with
di�erent land costs. Given that the development cost of
the charging connectors will decrease in the future with
technological advancement, a considerable portion of
the investment cost depends on it. Figure 3 shows the
typical layout of the EVCS per connector. As shown
in this �gure, the minimum width and length of the
connector should be 2.74 m and 5.28 m, respectively.
In addition, the minimum clearance of 0.92 m is needed
between the two connectors in the case of using more
than one connector.

Figure 1. Interaction among the CSs, EVs, and electric substation.
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Figure 3. General CS station layout per connector [42].

It should be noted that the CS capacity is a
function of the number of charging connector (NCi)
and the rated power of connector (CP).

Based on the following equation, the capacity of
the ith CS can be measured as [42]:

CSc (i) = CP �NCi: (2)

2.2. CS electri�cation cost (CSEC)
The overall connection cost strongly depends on the
separation between the CS and the nearest electric
substation as well as the connection technology. The
CS and electric substation are assumed to be directly
connected by dedicated overhead lines. Table 2 lists
some conductors that are easily available and fre-
quently used for overhead lines. In addition, it presents
the rated current for di�erent types of conductors used
for overhead lines in the cross-section area.

The transmission cost of the overhead line de-
pends on the cross-section area of the line and can be
measured through the following equation [35]:

CTi = 8000 + 65:7 w; (3)

where w denotes the cross-section area of the transmis-
sion line in mm2. The overall connection cost of the
ith CS can be determined as [37]:

CSEC =
NCSX
i=1

(CTi �Di): (4)

Di represents the distance of the ith CS from the
nearest electric substation in Km, CTi the transmission

Table 2. Conductor used for dedicated overhead line [45].

Name Cross section
area in mm2

Rated current
in ampere

FOX 42.77 192
MINK 73.6 288
DOG 118.5 380

PARTRIDGE 156.9 460

cost of the ith CS in per km, and the matrix that cal-
culates the distance of the ith CS from the nth electric
substation in Km. The matrix di;n can be accurately
determined using the geographic information.

2.3. EV energy Loss Cost (EVLC)
For charging the batteries of EV, the de�nite path must
be followed by EV to reach the nearest charging station.
For the jth EV, the charging loss can be determined as
follows [42]:

PEV L =
NEVX
j=1

(SEC � Sj); (5)

where SEC is the speci�c electricity consumption of the
EV in kWh/Km, Sj the distance between the EV and
CS in Km, and PEV L the EV energy loss.

Thus, the EV energy loss cost can be calculated
as follows:

EV LC = PEV L � PE � TD: (6)

Here, PE denotes the electricity price and TD the total
number of days in �ve years.

In this study, Sj is assumed to be the distance
travelled between the EV and CS that can be measured
considering the urban roads. The values of Sj are
calculated using the geographic information.

2.4. Travel Time Cost (TTC)
Travel time cost is the cost required for reaching the
nearest CS from the point of charging demand. It
depends on the distance between the EV position and
the nearest CS as well as the cost of travelling per
Km of EV. According to [38], it can be mathematically
written as:

TTC = Sj � CEV=Km; (7)

where TTC is the travel time cost, Sj the distance be-
tween the EV position and CS location, and CEV/Km
the cost of traveling of EV per Km.
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3. Optimization problem

This section describes the optimization model based
on the minimization of the aforementioned objective
functions, associated constraints, and methodology in
order to assign the EVs to the nearest CS.

3.1. Aim of the optimization
The aim of the optimization problem is to minimize the
total cost related to the charging demand of EV.

minF =
NCSX
i=1

(ICi + CSECi) +
NEVX
j=1

EV LCj

+
NEVX
j=1

TTCj ; (8)

where NCS indicates the number of CSs and NEV the
number of EVs charged in a day.

3.2. Constraints
The optimization problem for CS optimal sizing and
placement is subjected to some existing constraints
associated with CS and EVs, as shown in the following:

(a) Each CS must have at least one charging connec-
tor.

NCi � 1 i = 1; 2; 3 � � �NCS ; (9)

(b) The connector must be able to charge all EVs.

NCSX
i=1

(NCi �DE) � NEV ; (10)

where DE denotes the maximum number of EVs
that can be charged by a connector in one day.

(c) The trajectory length of each EV to the CS can
be determined as follows:

Sj = min (Si;j) ; (11)

where si;j is the trajectory length of the jth EV
to the ith CS.

(d) The maximum number of EVs that can be charged
in one CS is limited by:

NCi �DE � NEVi : (12)

(e) The number of EVs charged by each CS is deter-
mined based on the following equation:

NEVi =
NEVX
j=1

(1 + sgn (Sj � Si;j)) =2: (13)

3.3. Assumptions
Various assumptions were made in this work that are
listed in the following:

� The positions of EVCS and EV are considered to be
distributed normally;

� The number of EVs in a given area decides the
number of EVCS in that area;

� EV owner charges their EVs in a �xed CS.

3.4. Methodology
3.4.1. Determination of S and D matrices
Two matrices are modeled that indicate the distance
between the CS and electric substation, and the CS and
EV locations. Here, D matrix shows the distance of
each CS from every substation, and S matrix indicates
the distance of each EV from every CS.

Matrix D describes the distance between the ith
CS and nth electric substation. Therefore, the order of
matrix D would be (i� n).

D = [di;n]NCS�NES ;

where:

di;n =
q

(xCSi � xESn)2 + (yCSi � yESn)2: (14)

Here, i indicates the number of CSs, and n the number
of electric substations: i = 1; 2; 3 � � � � � �NCS and n =
1; 2; 3 � � � � � �NES .

Matrix S represents the distance between the jth
EV and ith CS. Thus, the order of matrix L is (j � i).
S = [Si;j ]NEV �NCS ;

where:

Si;j =
q�

xCSi � xEVj�2 +
�
yCSi � yEVj�2

j = 1; 2; 3 � � � � � �NEV : (15)

The values of x and y are computed based on the
geographical information in the area under study.

3.4.2. Implementation of the proposed approach
The main objective of the EVCS optimal sitting and
sizing is to determine the location of CS installation
in order to minimize the investment and electri�cation
costs for CS and minimize the energy loss and travel
time costs for the EVs. The ow chart of the proposed
approach is shown in Figure 4 based on the following
steps:

Step 1. De�ne the input data such as the �xed cost,
connector development cost, and other parameters;
Step 2. Position EVCSs along the main urban
roads in South Delhi and generate locations of EVs
randomly based on the normal distribution functions;
Step 3. Select each charging station and assign EV
to each CS based on the minimum distance criterion;
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Figure 4. Flowchart of the proposed approach.

Step 4. Calculate various objective functions, i.e.,
investment, CS electri�cation, EV energy loss, and
travel time costs;
Step 5. Check the subjected constraints using Eqs.
(9){(13). If satis�ed, print the results for each cost
function; otherwise, go to Step 2.

4. Proposed algorithm for optimization
problem

4.1. Brief overview of GWO
Syedali Mirjalili and Lewis [43] (2014) proposed a
novel meta-heuristic-based intelligent algorithm called
GWO. Grey wolves prefer to live in a pack of 5{12
members. They follow a dominant social hierarchy
level in which alphas (�) and betas (�) occupy the �rst
and second levels of hierarchy, respectively. Delta (�)
wolves follow alphas and betas. The omega (!) wolves
are the lowest level wolves that act as a scapegoat for
the pack. Figure 5 shows the grey wolf hierarchy.

Figure 5. Social hierarchy in the grey wolves.

4.2. Mathematical Modeling of GWO
The major steps involved in the mathematical model-
ing of GWO include the social hierarchy of GWO, prey
encircling, and prey hunting.

4.2.1. Social hierarchy of GWO
In this algorithm, alpha (�) and beta (�) are considered
the best and the second best solutions, respectively. In
addition, delta (�) is considered the third best solution,
followed by omega (!).

4.2.2. Grey wolves encircling prey
The hunting process starts with the encircling of prey.
The steps of encircling are listed in [43] as:

�!
M =

����!C :���!Zp (t)���!Z (t)
��� ; (16)

�!
Z (t+ 1) =

�!
Zp (t)��!N:�!M; (17)

where t indicates the current iteration number; ~N
and ~C represent the coe�cient vectors; ~Z and

�!
ZP

denote the position vector of the prey and grey wolf,
respectively, determined by the following equations:

�!
N = 2n:�!r1 ��!a ; (18)

�!
C = 2:�!r2 ; (19)

where r1 and r2 are random numbers with values
between 0 and 1 and a decreases linearly from 2 to
0 over the course of iterations.

4.2.3. Hunting prey
In order to simulate the hunting process of the grey
wolves in a mathematical form, it is assumed that �,
�, and � can provide more detailed information about
the position of the prey. In addition, �, �, and �
are the best three solutions o�ered so far and saved
while other search agents update their positions at
each iteration with respect to their best position. The
following mathematical equations [37] were developed
in this context:

�!
M� =

����!C :�!Z� ��!Z (t)
��� ; �!

M� =
����!C :�!Z� ��!Z (t)

��� ;
�!
M� =

����!C :�!Z� ��!Z (t)
��� ; (20)
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Figure 6. Flowchart of GWO algorithm for the proposed
approach.

�!
Z1 =

�!
Z� ��!N:�!M�;

�!
Z2 =

�!
Z� ��!N:�!M� ;

�!
Z3 =

�!
Z� ��!N:�!M�; (21)

�!
Z (t+ 1) =

�!
Z1 +

�!
Z2 +

�!
Z3

3
: (22)

The GWO exploration ability represents the search
process of grey wolves, while the exploitation ability
indicates the attacking process of grey wolves.

4.3. GWO algorithm for the optimal sitting
and sizing of EVCS

A series of steps were adopted for implementing GWO
to minimize the multi-objective cost-based functions.
The procedure is explained based on the owchart
given in Figure 6. The initially chosen number of
iterations, problem dimension, and Number of Search
Agents (NSA) were also taken into account.

Step 1: Initialization. The driving source of the
algorithm including NSA, max iteration, dimension
and boundaries of the problem is �rst initialized.
In this study, NSA is assumed to be 30 while the
maximum number of iterations is 100;
Step 2: Grey wolf positions generation. Popu-
lation of all search agents is randomly generated using
GWO and the �rst three positions are initialized as
alpha, beta, and delta. Then, the objective function
values for each search agent are calculated;
Step 3: Quality solution. The constraints are
checked next to determine the quality solution. If
the constraints are satis�ed, the objective function
is calculated and if the constraints are violated, the
results are discarded;
Step 4: Selecting the best positions of search
agent. The positions of alpha, beta, and delta wolves
are updated, excluding the omega wolf. Eqs. (20){
(22) are utilized to select the best solution;
Step 5: Determining the new positions of
search agents. The new positions of all search
agents are determined, and the whole process is
repeated;
Step 6: Termination criteria. The termination
criteria are set as the maximum number of iterations
in the proposed work. In case the number of
iterations exceeds the assigned number of iterations,
the simulation will be stopped, and the optimized
value of objective functions will be displayed.

5. Result and discussion

This section provides an explanation of the planning
region, reliability analysis, simulation results, and main
�ndings.

5.1. Description of system under study
The approach was applied to an area of 218.5 km2 in
South Delhi, New Delhi, India. The coordinates, eleva-
tion, and population density of di�erent CS locations
are provided in Table 3.

There are 15000 vehicles assumed to be EVs in the
study zone out of which only three percentages of the
total EVs are considered for daily charging. Around
500 EVs were assumed to be charged every day, and
their positions were generated randomly based on the
Cartesian geographic system, as shown in Figure 7.
In this study, 11 substations are located near 20 CSs
that can provide the required electric supply for the
nearby CS. In Figure 7, green circle, red star, and
blue diamond represent the EVs, CSs, and electric
substations, respectively.

A total of 20 CSs were placed in di�erent well-
known areas of South Delhi and located on Google
Map, as shown in Figure 8. In addition, the input
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Table 3. Charging station information [45].

Charging station location Coordinates Elevation
(m)

Population density
(people per Km2)

Latitude Longitude

Saket 28.5221 77.2012 240 20110
Shivalik 28.5340 77.2053 227 19557
Greater Kailash 28.5555 77.2337 224 26450
Lajpat Nagar 28.5649 77.2403 211 34599
New friends Colony 28.5675 77.2691 208 8956
Kalkaji 28.5400 77.2592 239 24803
Hauz Khas 28.5479 77.2031 223 7974
Safdarjung 28.5647 77.1949 221 29682
Vasant Vihar 28.5603 77.1617 240 17475
Green Park 28.5584 77.2029 218 35903
Panchsheel 28.5415 77.2161 224 11576
Defence Colony 28.5734 77.2326 212 16837
Nehru Place 28.5503 77.2502 231 24036
Chanakyapuri 28.5972 77.1904 220 7498
Chirag Delhi 28.5376 77.2283 225 22552
Vasant Kunj 28.5293 77.1484 264 10536
Chhatarpur 28.4959 77.1848 261 13101
RK puram 28.5660 77.1767 229 14620
Golf Links 28.5973 77.2323 209 5919
Malviya Nagar 28.5342 77.2094 226 29945

Figure 7. Positions of EVs, charging stations and electric
substations.

parameters required for solving the objective functions
are listed in Table 4.

5.2. Impact on reliability of utility grid
Reliability impact of the electric grid is an important
factor that must be taken into account in the optimal
planning of EVCS [47]. Deterioration of the electric
substation components such as substation transformer
and line causes disruption in providing electric supply
to the CSs. Of note, EV charging loss may cause
some problems for the CS operators and EV owners
economically. The number of models and reliability
indices should address the reliability issue of the utility
grid for the EVCS optimal planning.

Table 4. Input parameter required for objective function
calculation [37,38].

Parameter Value Unit

NEV 500 {

NCS 20 {

NS 11 {

SEC 7 Km/kWh

PE 90.48 $

Cinitial 72204.52 $

Ccon 214.89 $/kW

CP 96 kW

DE 30 {

TD 1825 Days

w 156.9 Mm2

T 0.5 hr

CEV=Km 0.34 $/Km

Availability (�) of a basic element can be de-
scribed in terms of the rate of failure as well as the
rate of repair of the basic component of substation,
i.e., transformer and lines [46]. In the following, the
availability (�) can be given as:
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Figure 8. Location of CS in South Delhi areas in Google map [44].

Table 5. Data required for determining the
reliability [46].

Value Unit

Line Failure rate 0.1 Failure/Km/year
Repair time 4 Hour

Transformer Failure rate 0.1 Failure/year
Repair time 100 Hour

ICC 0.90 $/kWh

� =
 

 + �
; (23)

where � represents the failure rate (failure per year),
	 the repair rate (repair per year), and r = 8760	 the
repair time in hour. Table 5 presents the failure and
repair rates for the substation transformer and lines.

One of the important indices that measures the
reliability impact of utility grid is Charging Cost Loss
(CCL). It refers to the cost of EVs that remain
uncharged due to the collapse in the utility grid.

CCL may be de�ned in terms of the operating
hours of each CS, CS capacity, unavailability of the
electric supply for the ith CS, and uninterrupted
charging cost. CCL can be calculated as:

CCL (i) = 1825 � � (i) � C (i) � �i � ICC; (24)

where 1825 represent the number of days in �ve years,
�(i) the average operating hours of each CS, �i the
unavailability of electric supply at the ith CS, and ICC
the uninterrupted charging cost in $/kWh.

Average operating hours, i.e., �(i), of each CS can
be determined as follows:

� (i) =
NEVi
NCi

� T; in hours; (25)

where NEVi represents the total number of eVs charged
at the ith CS, NCi the number of charging connectors
required at the ith CS, and T the average charging time
of an EV in hour.

ICC refers to the cost paid by CS operator and
EV owner due to disruption in EV charging because of
collapse in grid.

Unavailability of electric supply for the ith CS can
be calculated as follows:

�i = 1� �i; (26)

�i = �f i � �D4x; (27)

where �fi denotes the station feeder availability of
feeder fi, and �D4x the availability of electric supply
on bus D4x. Availability of electric supply on bus D4x
can be calculated as follows:

�4x = �6x
�

1� (1� �T )2
�
; (28)

where �T is the availability of power transformer in
substation, and �D6x the availability of electric supply
on bus D6x.

Calculation of �D6x depends on the nature of
substation, i.e., whether or not it is PQ bus.

�6x =
�

1� (1� �T )2
�
: (29)
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5.3. Simulation results and main achievements
The optimized value of the objective function strongly
depends on the CS capacity, number of EVs charged at
each CS, and number of charging connectors utilized to
recharge the EVs. For charging, EV will follow the path
of minimum distance to reach the CS. Number of EVs
charged at each CS can be approximately determined
by Eq. (13). Figure 9 shows the number of EVs
assigned at each CS.

Thus, the number of charging connectors installed
at each CS can be obtained as follows:

NCi =
NEVi �NC (max)

NEV
; (30)

where NEVi shows the number of EVs charged at
CS(i), and NC(max) the maximum limit of the charg-
ing connectors. Therefore, the number of charging
connectors used at each CS for feeding the assigned
number of EVs is displayed in Table 6. In this regard,
di�erent cost functions considered in this paper can be
evaluated.

Investment cost mainly depends on the land cost
and number of charging connectors. The areas under
study in Delhi are divided into categories A to H based
on the land cost. In the study zone, di�erent areas
belong to di�erent categories. Table 7 shows the land
cost of di�erent considered areas.

The investment cost for di�erent CS sites was
evaluated using the proposed GWO. The overall invest-
ment cost incurred by utilizing GWO was 8657600 $.
The e�ectiveness of the proposed GWO was con�rmed
by comparing the results with those from other intel-
ligent techniques such as PSO (9143400 $). According
to �ndings, the investment cost calculated using GWO
was 5.3% less than that of PSO. This comparison
shows the preeminence of GWO over PSO. Figure 10
shows the comparative analysis of the investment cost
based on di�erent intelligent algorithms. Of note, the
investment costs are high in areas with high land costs,
thus needing larger numbers of charging connectors.
CSs that demand a greater number of connectors have
higher setup costs, hence a substantial increase in the

Figure 9. Number of EVs charged at each CS.

Table 6. Optimized number of charging connectors
required at di�erent CS installed in South Delhi areas.

Charging station location
Number of used

charging
connectors

Saket 3
Shivalik 4
Greater Kailash 3
Lajpat Nagar 4
New Friends Colony 3
Kalkaji 2
Hauz Khas 2
Safdarjung 5
Vasant Vihar 2
Green Park 2
Panchsheel 3
Defence Colony 3
Nehru Place 2
Chanakyapuri 2
Chirag Delhi 2
Vasant Kunj 4
Chhatarpur 3
RK puram 3
Golf Links 2
Malviya Nagar 5

Table 7. Land cost of areas in South Delhi [48].

Charging station location Land cost ($/m2)

Saket 2178.77
Shivalik 3349.87
Greater Kailash 3349.87
Lajpat Nagar 2178.77
New Friends Colony 10539.82
Kalkaji 2178.77
Hauz Khas 3349.87
Safdarjung 3349.87
Vasant Vihar 10539.82
Green Park 3349.87
Panchsheel 3349.87
Defence Colony 3349.87
Nehru Place 10539.82
Chanakyapuri 10539.82
Chirag Delhi 3349.87
Vasant Kunj 2178.77
Chhatarpur 3349.87
RK puram 3349.87
Golf Links 10539.82
Malviya Nagar 2178.77
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Table 8. Investment cost and CS electri�cation cost of each CS installed in South Delhi areas.

Charging station
location

Investment cost ($) CS electri�cation cost ($)

GWO PSO GWO PSO
Saket 284200 298200 227.36 241.5
Shivalik 481600 509600 220.864 232.218
Greater Kailash 373800 387800 266 278.572
Lajpat Nagar 361200 389200 221.424 232.246
New Friends Colony 928200 1083600 181.44 208.026
Kalkaji 207200 221200 204.064 213.696
Hauz Khas 267400 281400 164.752 176.092
Safdarjung 589400 617400 526.288 545.398
Vasant Vihar 637000 651000 462.896 485.8
Green Park 267400 281400 46.704 50.05
Panchsheel 373800 376600 242.032 278.558
Defence Colony 373800 387800 134.4 136.556
Nehru Place 637000 651000 134.064 135.492
Chanakyapuri 637000 665000 618.24 654.92
Chirag Delhi 267400 273000 54.656 57.988
Vasant Kunj 361200 375200 696.416 720.398
Chhatarpur 267400 281400 118.832 120.568
RK puram 267400 281400 375.872 391.384
Golf Links 637000 651000 241.136 262.43
Malviya Nagar 438200 480200 281.792 300.412
Total 8657600 9143400 5419.232 5722.304

Figure 10. Investment cost for di�erent CS in South
Delhi areas.

investment costs mainly because the connector setup
costs account for a signi�cant portion of the total cost.
This is the reason why some areas such as New Friends
Colony, Vasant Vihar, Chanakyapuri, and Golf Links
have high investment costs due to their high land cost
and ample quantity of connectors required to serve the
EVs in these regions. On the contrary, Saket, Hauz
Khas and Kalkaji, etc. have lower investment costs due
to lower land costs and a limited number of charging
connectors.

Table 8 makes a comparison of the investment
costs for each CS site considering both GWO and
PSO. Further improvement in the investment cost can

Figure 11. CS electri�cation cost for di�erent CS in
South Delhi area.

be made when the government and public sector unit
cooperate in developing the charging stations and using
available public lands for their installation.

It should be noted that CS electri�cation cost
is highly a�ected by the separation between the CS
and electric substation. The distance of each CS from
every substation was evaluated using the Cartesian geo-
graphic information. Accordingly, electri�cation cost of
each CS site was determined using the proposed GWO.
Table 8 shows the CS electri�cation cost using GWO
and PSO. The performance of the GWO technique was
evaluated by comparing the obtained results with those
from PSO. Application of the GWO would result in
noticeable improvement in the CS electri�cation cost
by 5.2% less than that of PSO. Figure 11 makes a
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comparison of the CS electri�cation cost obtained from
GWO and PSO. The greater the distance between the
CS and the electric substation, the higher the cost of
CS electri�cation, and vice versa. Table 8 shows that
CSs in Safdarjung, Chanakyapuri, and Vasant Kunj
areas have high CS electri�cation costs due to their
remote location from the electric substation; however,
due to their close proximity to the substation, the
Chirag Delhi and Green Park charging station sites
have low costs. As a result, in order to ensure lower
CS electri�cation costs, the CS operator must choose
the location wisely. Even when the electric utility is
obligated to electrify the stations at no cost to the
station owners, the cost of CS electri�cation can be
reduced.

Further, EV energy loss or energy consumption
cost depends on the distance between the EV position
and CS. Here, CS in the neighborhood of the electric
substation may be at a far distance from the EV
position. Hence, it results in increase in energy
loss cost. The distance between each EV (i.e., 500
EVs in this work) and CS is calculated based on
the geographic information. EVs are assigned to
the nearest charging station based on the minimum
distance criterion. In this respect, energy loss cost of
500 EVs was calculated by optimizing the distance to
the nearby charge stations. The proposed GWO leads
to a considerable reduction in energy loss cost, i.e.,
15.5% less than that in the PSO. The obtained results
using GWO prove its superiority over other algorithms.
The varying behaviors of EV energy loss cost obtained
using algorithms considered in this work are shown in
Figure 12. It is reported that the smaller the distance
between the EV location and the CS site, the lower the
EV energy consumption, and vice versa. If the needs
of EV owners are neglected, the cost of EV energy loss
may be reduced.

Travel time cost depends on the distance between
the charging station and the location, where the need
for charging EV arises, as well as the cost of EV
travelling per Km. The smaller the distance between
the EV and CS, the lower the travel time cost paid
by the EV owner. Hence, the travel time costs of all

Figure 12. EV energy loss cost for 500 EVs.

500 EVs to reach the nearby charging station were
calculated using the proposed GWO and compared
with PSO to prove its dominance. It is observed that
GWO results in a signi�cant reduction in travel time
cost as compared to the results attained via PSO.
GWO provides an optimized value of travel time cost,
i.e., 280.43 $ which is 9.1% less than that of PSO
(308.72 $). This proves the supremacy of the proposed
GWO algorithms over PSO. The travel time cost of
each EV (i.e., 500 EVs) is determined using GWO and
its comparison with PSO is portrayed in Figure 13.
The cost of travel time can be reduced further by
placing more charging stations along EV routes, as
this decreases the distance that EVs would travel for
charging.

The impact of placing charging station on relia-
bility of grid is investigated in terms of CCL. The avail-
ability of electric components in electric substation is
calculated using Eqs. (26)-(29). CS capacity, e�ective
operating hours, and electric supply availability at each
CS site are presented in Table 9.

CCL di�ers for each CS as it depends on CS
capacity, e�ective operating hours, and electric supply
availability. The optimized values of CCL for each CS
site are obtained via GWO and its comparison with
PSO is shown in Figure 14.

Eqs. (26){(29) introduce the impact on grid reli-
ability in optimal planning of EVCS. Basic parameters
required for the evaluation of reliability are listed in

Figure 13. Travel time cost for 500 EVs.

Figure 14. Charging cost loss for CS installed in South
Delhi areas.
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Table 9. Average working hours, unavailability of
electricity and capacity of each CS.

Charging
station

capacity (kW)

E�ective
operating
hours of
each CS,
�(i) in hr

Unavailability of
electric supply
(�i) (�10�3)

288 3.66 0.2750

384 4 0.1060

288 5 0.1523

384 4.25 0.4343

288 4.33 0.0967

192 3 0.1050

192 5 0.0640

480 4.2 0.2131

192 3.5 0.1347

192 5 0.1267

288 5 0.1004

288 4.66 0.0828

192 4.5 0.0820

192 3.5 0.0929

192 4 0.2333

384 4 0.1015

288 5 0.3271

288 3.66 0.1006

192 3.5 0.3752

480 4.4 0.1024

Table 5. Comparison of the value of CCL for each
CS site obtained using GWO and PSO considering
the impact on the grid reliability network is shown
in Table 10. Moreover, the values of CCL are highly
dependent on the availability of electric supply at a
particular CS, as shown in Table 10. The CCL value is
high for those CSs where the unavailability percentage
of electric supply is high, and vice versa.

As seen in Table 5, the ICC is considered to be
10 times the electricity price, indicating the loss due to
the power outage.

The objective functions represented by Eqs. (1){
(7) and a set of technical constraints, i.e., Eqs. (9){
(13), were solved using grey wolf optimization.

The optimized values of all the objective functions
considered for the optimal planning of EVCS and
their impact on the grid reliability are summarized in
Table 11. It can be seen in Table 11 that CCL is
smaller than the other cost functions, although CCL
is of signi�cant value when EV loss is ignored in the
optimization problem.

Table 10. Charging Cost Loss (CCL) of each charging
station.

Charging station location
Charging cost

loss ($)
GWO PSO

Saket 0.272104 0.3255
Shivalik 0.152124 0.18564
Greater Kailash 0.204904 0.23996
Lajpat Nagar 0.662242 0.7021
New Friends Colony 0.112672 0.17612
Kalkaji 0.056504 0.08568
Hauz Khas 0.057484 0.0721
Safdarjung 0.401408 0.44492
Vasant Vihar 0.084574 0.1183
Green Park 0.113638 0.14294
Panchsheel 0.135086 0.16646
Defence Colony 0.103824 0.13412
Nehru Place 0.066192 0.0791
Chanakyapuri 0.058324 0.0903
Chirag Delhi 0.167412 0.18592
Vasant Kunj 0.14567 0.18046
Chhatarpur 0.440104 0.51184
RK puram 0.099078 0.13692
Golf Links 0.235578 0.25858
Malviya Nagar 0.202062 0.2135
Total 3.770984 4.45046

Table 11. Optimized values of objective functions.

Objective functions Cost ($)
GWO PSO

Investment cost 8657600 9143400
CS electri�cation cost 5419.232 5722.304
EV energy loss cost 9:51� 108 11:26� 108

Travel time cost 280.4305 308.7251
Charging cost loss 3.770984 4.45046

6. Conclusion

In this paper, a new approach to solving the multi-
objective optimization problems for optimal sitting and
sizing of EVCS in di�erent areas in South Delhi, New
Delhi, India was proposed. Grey wolf optimization
was utilized to solve the multi-objective cost functions
and the obtained results were compared with particle
swarm optimization for validation purposes. The cost
function included investment cost, CS electri�cation
cost, EV energy loss cost, and travel time cost. In-
vestment and CS electri�cation costs of all CSs were
calculated, and it was found that the investment cost
strongly depended on the land cost and number of
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connectors used in each CS. CS electri�cation cost
depended on the distance between the CS and electric
substation. On the other hand, EV energy loss cost
and travel time cost were evaluated for all EVs. It
was revealed that travel time cost and EV energy loss
cost depended on the distance between the CS and EV
location. Based on the results obtained from GWO
and PSO, it was revealed that GWO was more e�ective
than PSO in the considered case study. Furthermore,
reliability index, i.e., CCL, was an important index,
promoting the idea about the reliability of a system.
CCL was a function of CS capacity, e�ective working
hours of CS, and unavailability of electric supply at
each CS. CCL was determined for each CS, and the
results revealed that CCL would be high for each CS
with low availability of electric supply, and vice versa.

Nomenclature

IC Investment Cost
CSEC Charging Station Electri�cation Cost
EVLC Electric Vehicle Energy Loss Cost
TTC Travel Time Cost
CCL Charging Cost Loss
SEC Speci�c Electricity Consumption of EV
EP Electricity Price
TD Total Number of days in 5 years
ICC Uninterrupted Charging Cost
Cinitial Initial �xed cost of charging station
Cland Rental cost of land
B Area requirement per connector
NCS Number of charging station
NEV Number of electric vehicles
i Charging station index
j Electric vehicle index
NCi Number of charging connectors at the

ith CS
CP Rated power of connectors
CSC(i) Capacity of the ith CS
w Area of cross section of transmission

line
CTi Transmission cost of the ith CS
Sj Trajectory length to the charging

station
si;j Trajectory length of the jth EV to ith

CS
D Distance between the ith CS and the

nearest electric substation
PEV L EV energy loss
DE Maximum number of EVs that can be

charged by a connector
CEV=Km Cost of EV traveling per Km

ES Electric Substation
NES Number of electric substations
xCS Abscissae of charging station
yCS Ordinate of charging station
xEV Abscissae of electric vehicle
yEV Ordinate of electric vehicle
xES Abscissae of electric substation
yES Ordinate of electric substation
� Availability of electric supply
� Failure rate
	 Repair rate
r Repair time
�(i) Average operating hours of the ith CS
�(i) Unavailability of electric supply at the

ith CS
T Average charging time of an EV
�fi Station feeder availability of feeder fi
�D4x Availability of electric supply on bus

D4x.
�T Availability of power transformer in

substation
�D6x Availability of electric supply on bus

D6x
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