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Abstract. The present study aims to present a generalized �nite element approach to
the free vibration analysis of an Axially Functionally Graded (AFG) beam characterized
by non-uniform thickness. Application of the non-uniform beam element and assembling
make the �nite element model a generalized one. The current approach can be applied
to beams with both uniform and non-uniform thicknesses and any of the homogenous and
inhomogeneous material variations. The governing equation for free vibration of beam was
derived from Euler-Bernoulli beam theory as well as Euler-Lagrange equation. As observed
throughout the study, the cross-section of the beam decreased along the length depending
on the exponential function related to variations in thickness. Material inhomogeneity is
determined according to the power and exponential law of material variation along the
axial direction, taken from the literature. Mathematical modeling of the geometric non-
uniformity, material inhomogeneity, and �nite element analysis of the AFG beam was
achieved using MATLAB software. The e�ects of geometric non-uniformity and material
gradient parameters on the fundamental frequencies of vibration in di�erent classical
boundary conditions were also evaluated. A comparison of the results of available literature
can guarantee the e�cacy of the proposed method.

© 2022 Sharif University of Technology. All rights reserved.

1. Introduction

As inevitable parts of any mechanical structure, beams
have numerous applications ranging from micro-beams
used in MEMS devices to those used in large structures
like aircraft carriers. Recent advances in manufacturing
composite materials have made it possible to replace
conventional beam materials with the composite ones
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owing to their high strength-to-weight ratio. Function-
ally Graded Materials (FGMs) are one of the outcomes
of such scienti�c advances in the �eld of composite
materials. The idea of FGM �rst came into picture
in the mid 80's to solve the problem of a space plane
project in Japan, where the capability of material
to remain resistant against the external temperature
of 2100 K and a gradient of 1600 K was needed
for a very small thickness [1]. Since then, FGMs
have gained widespread popularity as thermal barrier
materials in a wide range of engineering applications
such as nuclear reactors, defense systems, automobiles,
aerospace, spacecraft, etc.
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In this regard, FGMs can be de�ned as a relatively
new class of composite materials with a continuous
variation of composition and/or microstructure in a
particular direction; however, unlike conventional lam-
inated composites, they possess no speci�c material
interface, hence less stress concentrations in them [2].
Such variations in composition called grading can be
made for any of the material properties such as poros-
ity, density, elasticity, thermal or electrical conductiv-
ity, etc. Given their wide scope, the present study
is limited to mechanical properties such as density
and elasticity, which directly a�ect the mechanical
behaviors such as bending, buckling, and vibration
of the beams or any other mechanical element of a
structure for that matter.

Given the type of extreme dynamic conditions
present in a wide range of FGM applications like
aerospace and defense, having a better understanding
of the dynamics of any mechanical system made of
FGM gains signi�cance. To this end, to understand
the dynamics better, especially from the design per-
spective, a great deal of attention has been drawn
to the study of natural frequencies. For instance,
Kapuria et al. [3] studied the free vibration responses
of functionally graded beams of a layered type with
two di�erent combinations of aluminum/silicon carbide
and nickel/alumina at the theoretical level using ex-
perimental validation. The response prediction was
performed using the zig-zag theory in conjunction with
the modi�ed rule of mixtures. Yang and Chen [4] in-
vestigated free vibration and buckling behavior of func-
tionally graded beams with open edge cracks through
an analytical approach based on the rotational-spring
model. Alshorbagy et al. [5] evaluated the e�ect of dif-
ferent material distributions on the thickness direction
of a beam of uniform thickness using Finite Element
Method (FEM). Their numerical results revealed that
the material variation parameter in the longitudinal
direction certainly a�ected the natural frequency and
mode shape of the beam. Simsek and Kocaturk [6]
analyzed the free and forced vibration characteristics as
well as the dynamic behavior of a functionally graded
simply supported beam under a concentrated moving
harmonic load. They considered functional grading
along the thickness direction using the power law and
law of exponents and concluded that di�erent material
distributions, velocity of the moving harmonic load,
and excitation frequency played a considerable role in
determining the dynamic behavior of the FG beam.
Pradhan and Chakraverty [7] explored the vibration
characteristics of Euler-Bernoulli FGM beams using
the integral approach of Rayleigh{Ritz method. They
concluded that the frequency parameters in the down-
hill manner with both end �xed supports being the
highest followed by one end �xed and one simply sup-
ported and both the end simply supported FGM beams

follow the same pattern as that of isotropic beams inde-
pendent of the complexity in material variations. Rao
and Ganesan [8] parametrically evaluated the e�ects
of taper pro�le and taper parameter on the harmonic
response of a beam tapered in several manners. They
concluded that di�erent types of taper provided in the
beam caused inter laminar stress development on the
free edges. Karami et al. [9] employed Di�erential
Quadrature Element Method (DQEM) based on the
theory of shear deformable beams to analyze the free
vibration of beams with non-uniform thickness. They
proved that the di�erential quadrature technique for
beams which were neither uniform nor continuous in
thickness pro�le was proved to be an accurate tool ow-
ing to its viable applicability. Aydogdu and Taskin [10]
analyzed the free vibration response of a simply sup-
ported FGM beam made of material gradient in the
thickness direction and followed the law of exponents,
unlike most of the other studies mentioned above. They
established a system of motion equations based on
Hamilton's principle and o�ered Navier type solution.
In this study, Higher-order Shear Deformation Theory
(HSDT) and Classical Beam Theory (CBT) were used
for analysis. They concluded that CBT could yield
better results than HSDT, and the di�erence between
the results of two theories increased upon increasing
the mode number. Nguyen and Quoc [11] used a new
shear deformation theory to analyze the free vibration
of functionally graded rectangular plates through the
�nite element approach. They evaluated the e�ects
of material gradation and geometric parameters on the
natural vibration frequencies of the functionally graded
plate using the Hamiltonian approach to �nding the
governing equations of motion.

Apparently, despite the great deal e�ort made in
this �eld, a majority of these studies are still con�ned to
the analysis of beams with uniform thickness and grad-
ing along the thickness direction. Recently, a number
of researchers have analyzed FGM in the axial direc-
tion. Huang and Li [12] considered a new approach
to solve the free vibration of AFG Euler-Bernoulli
beams of non-uniform cross-section and focused on
Fredholm's integral approach rather than solving a
relatively complex di�erential equation consisting of
variable coe�cients with the fourth order. Cao et
al. [13] suggested an approximate analytical solution
methodology for power-law-based AFG beam using
Euler-Bernoulli beam theory as well as Asymptotic
Development Method (ADM). Ghayesh [14] assessed
the state of non-linearity in the vibration of tapered
AFG beam using Third-order Shear Deformation The-
ory (TSDT). Huang et al. [15] studied the whirling
frequency and critical speed of a spinning AFG beam
and modeled it according to Timoshenko Beam Theory
(TBT). They used spectral Chebyshev method for the
derivation of governing di�erential equation as well
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as solution and found that the axial grading had a
profound impact on the whirling frequency and critical
speed, speci�cally under cantilever boundary condi-
tions. A new computationally e�cient modi�cation
of the well-known method of Initial Parameters in
Di�erential Form (IPDF) was proposed by Salinic et
al. [16]. The proposed method called the Symbolic
Numeric Method of Initial Parameters (SNMIP) was
used for the vibration analysis of the tapered and
segmented types of Euler-Bernoulli AFG beam. Zheng
et al. [17] opted for a Modi�ed Couple Stress Theory
(MCST) and Euler-Bernoulli beam theory, considering
the geometric nonlinearity of von Karman type for non-
linear �nite element modeling of the axially graded
tapered micro beam undergoing nonlinear vibration.
Sahin et al. [18] selected TBT and completed the
�nite element modeling based on Hamilton principle
for the free vibration investigation of double tapered
Axially Functionally Graded Beam (AFGB). Xie et
al. [19] carried out a dynamic analysis of AFG beam
considering both CBT and TBT. The governing equa-
tion of motion was derived using Lagrange's theorem;
therefore, the longitudinal and transverse coupling
e�ect of vibration can be recognized. The numerical
technique of Newmark as well as the direct iteration
method were used for obtaining the solution. In the
analysis of transverse and longitudinal beam vibrations
under combined axial loads, Sun and Li [20] relied on
TBT, considered it as an initial value problem, and
employed the fourth-order Runge-Kutta method for
solution.

Isogeometric Analysis (IGA) of FGMs is a leap in
the numerical analysis process. It acts like a connection
between the FGM model and Finite Element Analysis
(FEA). Several attempts have been reported in this
domain in the literature. Hughes et al. [21] introduced
the idea of IGA. Nguyen et al. [22] proposed a novel
quasi-3D shear deformation theory in association with
IGA. The proposed approach was successfully used
in the cases of rectangular and circular functionally
graded micro-plates for static bending, free vibration,
and buckling analysis. Thanh et al. [23] proposed a
re�ned MCST based on IGA and Hamilton's principle
to analyze laminated composite micro-plates. Three
material-length scale parameters were considered in-
stead of one using asymmetric couple stress curvature
tensor. The approach was found more accurate. Thanh
et al. [24] analyzed the behavior of porous micro plates
in thermal and post buckling using MCST along with
IGA under di�erent boundary conditions. Thanh et
al. [25] used IGA and MCST in carbon nanotube rein-
forced composite nanoplates. Van et al. [26] proposed
a shear deformation theory in association with IGA
for nonlinear transient analysis of piezoelectric FGM
plates. The proposed methodology was found to be
e�ective compared to the standard ones. Van et al. [27]

also used IGA for the analysis of porous FG nanoplates.
They observed that the nonlinear response in the form
of deection was a�ected by porosity, material proper-
ties, etc. In addition, IGA and MCST were considered
in the analysis of composite laminate microplates [28]
to study the buckling behavior under thermal loading
conditions. As observed, upon increasing the material
length scale ratio, the values of such parameters as
thermal central deection, shear and axial stresses,
and critical temperature decreased. Nguyen et al. [29]
analyzed a thin walled functionally graded beam with
a non-uniform polygonal cross-section. They consid-
ered HSDT in their analysis to model the complex
geometry and used ABAQUS platform for the FEA.
Finding a computationally e�cient process even after
considering the practical aspects of distortion warping,
they brought light to a new pathway for research in
the area of shell-like structure analysis. Until now, a
majority of the mentioned studies have focused on the
unidirectional variation of properties; however, Nguyen
and Lee considered the variation of the bi-directional
material properties for the exural-torsional vibration
analysis of thin-walled beams. They found that the
location of the center of gravity and shear center
were imperatively sensitive to the type of variation in
geometry as well as material distribution [30,31].

In this regard, the current study aims to present a
simpli�ed �nite element approach to the free vibration
of non-uniform AFG beam. The analysis of non-
uniform beams faced a di�culty, i.e., the de�nition
beam element which itself changes every time and
causes a major problem while assembling the ele-
ments. Hence, the problems of di�erent kinds of non-
uniformity as well as material gradation schemes were
acknowledged, and results were conformed to those of
the existing literature.

2. Mathematical modelling of FGB

2.1. Geometry of the FGB
In the present analysis of free transverse vibration,
a beam with length L, width b, and thickness g(x)
was taken into account, as shown in Figure 1. Here,
g(x) is regarded as an exponential function of the axial
location `x' with respect to the original at O making

Figure 1. The non-uniform geometry of the beam with
variable thickness g(x).



R.P. Sahu et al./Scientia Iranica, Transactions B: Mechanical Engineering 29 (2022) 556{571 559

the thickness and the cross-section variable along the
axial direction of the beam.

In the problem, xz-plane is referred to as the plane
of vibration. Therefore, g(x) can be obtained as:

g(x) = h0e��
x
L : (1)

2.2. Material gradation
The material properties of the beam such as Young's
Modulus E(x) and mass density �(x) vary axially based
on the exponential law of gradation used by Cao et
al. [13] as well as the power law of material gradation
proposed by Rajasekaran and Khaniki [32]. The
e�ective material property P (x) at a certain distance x
from the origin along the axial direction is determined
by the rule of mixture [33], as shown in the following:

P (x) = PLVL + PRVR; (2)

For VL + VR = 1; (3)

where VL is the volume fraction of the material used
in the left most interface of the beam, i.e., at x = 0,
and VR the volume fraction of the material used in the
right most part of the beam, i.e., at x = L. PL and
PR present the material properties of the left and right
most surfaces of the beam.
P (x) = PL + (PR � PL)VR: (4)

For exponential law of grading [13], we have:

VR =
e� xL � 1
e� � 1

when � 6= 0; (5)

VR =
� x
L

�
when � = 0: (6)

For power law of grading [32], we have:

VR =
� x
L

�n
where n > 0: (7)

A graphical representation of the variation in the
material properties along the beam length is given
for di�erent values of the gradient parameters `�' for
exponential law and `n' for the power law of grading
in Figures 2 and 3, respectively. For the exponential
law of variation, with an increase in `�', the richness of
the property of the right end material would decrease.
The same happens with an increase in the power law
exponent `n'.

3. The Finite Element Formulation (FEA)

3.1. Beam element description
In order to carry out the FEA, a two-node non-uniform
beam element with two degrees of freedom at node, i.e.,
displacement along the z-direction and rotation in the
xz-plane, was used, as shown in Figure 4. In this �gure,
while W1 and W2 are the transverse displacements of
Nodes 1 and 2, �1 and �2 are the rotations at Nodes 1
and 2, respectively.

Figure 2. Exponential property variation with respect to
beam length for PR = 5PL.

Figure 3. Property variation based on power law with
respect to beam length for PR = 5PL.

Figure 4. A two-node non-uniform beam element.

3.2. Derivation of governing dynamic equation
In this problem, the transverse displacement, W , can
be formulized as follows:

w = [N(�)]fdg; (8)

where [N(�)] is the shape function vector that depends
only on the local co-ordinate �, and fdg is the vector
containing the nodal variables that is dependent only
on time. For a beam element, the local co-ordinate �
is de�ned as follows:
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� =
x� li
li+1 � li =

x� li
s

; (9)

where x is the axial co-ordinate in the global co-
ordinate system and li the axial distance of the ith
node from the origin. Now, s is constant for the
same element spans which depends upon the number
of elements measured through the analysis. Hence, the
value of � varies from 0 to 1 for a given element.

According to the Euler-Bernoulli beam theory,
the bending moment M is related to the transverse
displacement W (x; t) of the beam, as observed in the
following:

M = E(x)I(x)
@2w
@x2 ; (10)

where E(x) is Young's modulus and I(x) the area
moment of inertia of the beam cross located at a
distance x from the origin O. Considering the local
co-ordinate, Eq. (10) can be written as follows:

M = E(�)I(�)
1
s2

�
@2w
@�2

�
: (11)

Strain energy `U ' of beam element can be obtained in
the following:

U =
LZ

0

M2

2E(x)I(x)
dx: (12)

Now, using the value of M from Eq. (10), we can obtain
the strain energy:

U =
LZ

0

1
2
E(x)I(x)

�
@2w
@x2

�2

dx: (13)

Considering �, strain energy can be expressed as
follows:

U =
1

2s3

1Z
0

E(�)I(�)
�
@2w
@�2

�2

d�: (14)

Now, we have [N(�)] =
�
N1 N2 N3 N4

�
and fdg =�

w1 �1 w2 �2
�T . Here, Ni is called the shape

function, and these values are de�ned based on Hermite
polynomials, as shown in the following:

N1 = 1� 3�2 + 2�3; N2 = s
�
� � 2�2 + �3� ;

N3 = 3�2 � 2�3; N4 = s
�
�3 � �2� : (15)

Then, we have:

@2w
@�2 =

h
@2N1
@�2

@2N2
@�2

@2N3
@�2

@2N4
@�2

ifdg=[N;�� ]fdg;
(16)

and:

�
@2w
@�2

�2

= fdgT [N;�� ]T [N;�� ] fdg: (17)

Therefore, Eq. (14) is written as follows:

U =
1

2s3 fdgT
1Z

0

E(�)I(�) [N;�� ]T [N;�� ] d�fdg: (18)

The strain energy of the beam element is expressed as
follows:

U =
1
2
fdgT [k]fdg; (19)

where [k] is the element sti�ness matrix de�ned as:

[k] =
1
s3

1Z
0

E(�)I(�) [N;�� ]T [N;�� ] d�: (20)

In a similar manner, the consistent element mass
matrix [m] of the beam is obtained. The kinetic energy
T of the beam can be calculated as:

T =
1
2

LZ
0

�(x)A(x) _w2dx: (21)

Now:

_w = [N(�)]
n

_d
o
;

and:

_w2 =
n

_d
oT

[N ]T [N ]
n

_d
o
: (22)

The kinetic energy of the beam element is de�ned as
follows:

T =
1
2

n
_d
oT

[m]
n

_d
o
: (23)

Hence:

[m] = s
1Z

0

�(�)A(�)[N ]T [N ]d�: (24)

Given that both strain energy and kinetic energy of the
beam element are known, the Euler-Lagrange equation
of motion [6] of the form is used in the following:

@Lg
@fdg �

d
dt

0@ @Lg
@
n

_d
o1A = 0; (25)

where the Lagrangian functional Lg is de�ned as:

�Lg = T � V: (26)

Now, by substituting Eqs. (19), (23), and (26) into
Eq. (25), the transverse motion of the beam element
can be obtained:
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[m]
n

�d
o

+ [k]fdg = 0: (27)

Given that fdg is a function of time only, it can be
expressed as follows:

fdg =

8>><>>:
w1
�1
w2
�2

9>>=>>; =

8>><>>:
d1
d2
d3
d4

9>>=>>; ei!t = fDgei!t; (28)

where ! is the fundamental frequency of the beam
element undergoing transverse vibration. Now, by
substituting fdg into Eq. (27), an eigenvalue problem
can be obtained:�

[k]� !2[m]
� fDgei!t = 0: (29)

3.3. Assembly of elements
Eq. (29) is used for a single element; however, the
number of elements in the FEA should increase to
obtain more accurate results; yet, all other factors are
considered �xed. Hence, the need for an increase in the
number of elements is inevitable. However, given that
each of these elements is di�erent in terms of geometry
and material properties, another problem arises which
is assembling the elements.

In order to solve the problem, before assembling,
it is of signi�cance to measure the sti�ness and mass
matrix of each element by solving Eqs. (20) and
(24), respectively, unlike the assembly of homogeneous
uniform beam elements.

For a single element problem, the material prop-
erties are:

E(x) = EL + (ER � EL)VR; (30)

�(x) = �L + (�R � �L)VR; (31)

where the value of VR can be calculated using Eqs. (5),
(6), and (7). The geometric properties are given below:

A(x) = b:g(x); (32)

I(x) =
bfg(x)g3

12
; (33)

where the value of `g(x)' is measured using Eq. (1).
Here, as the number of elements increased, the global
co-ordinate `x' in each of the above four equations
should be replaced by the expression given below and
then, the element sti�ness and mass matrices can be
determined for the assembly.

x = li + s�; (34)

where all the symbols have the same meaning that has
been de�ned earlier. Given the tedious calculations,
integration, etc., MATLAB coding platform was used
to solve the problem.

Figure 5. Flowchart of the steps involved in
mathematical modeling and �nite element analysis.

Details of the steps involved in the mathematical
modeling and FEA are presented in Figure 5. In case
unsatisfactory results are obtained from the FEA, the
process for the natural frequency repeats until reaching
the satisfactory results.

4. Numerical results and discussion

This section is mainly devoted to the numerical results
of the natural frequencies for free transverse vibration
of uniform and non-uniform beams under di�erent
boundary conditions. Firstly, the results related to
uniform and non-uniform beams were obtained. To
this end, aluminum (Al) and zirconia (ZrO2) were used
as the metal and ceramic constituents, respectively,
as shown in Table 1. In the required calculations,
b = 0:02, h0 = 0:001, and L = 0:2 were taken into
account for the uniform beam from [13] to compare the
results from the present method. In the case of non-
uniform beam, we have L = 1, b = 0:02, h0 = 0:01. In

Table 1. Properties of the constituent materials used
in [13].

Properties Unit Aluminum Zirconia (ZrO2)

E GPa 70 200

� Kg/m3 2702 5700
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this study, Al and ZrO2 were the materials used at the
left most surface (at x = 0) and the right most surface
(at x = L), respectively.

To calculate the non-dimensional natural fre-
quency (�), the following formula was used in com-
paring the obtained result with that obtained by [13]
as follows:

� = !L2
r
�LAL
ELIL

;

where ! is the angular natural frequency and depends
on the mode of vibration (rad/s), �L the density of
the material used at the left most surface of the beam
(kg/m3), AL is the area of cross-section of the beam
at the left most part of the beam (m2), EL Young's
modulus of the material present at the left most part

of the beam (Pa), IL the area moment of inertia at the
left most part of the beam (m4), and L the length of
the beam (m).

Followed by considering all the similar conditions
discussed in [13], the results of the present method were
found to be in good agreement with similar results,
as shown in Table 2. Present results were found to
be well in agreement in-between the ADM and the
FEM of [13], as their values were found to be slightly
higher than the FEM results and slightly below the
ADM results. The mass of uniform beam in both
exponential and power laws with the same dimensions
was compared, and � = 3 yielded the same amount
of mass in the exponential grading as that of power
law grading when n = 2:5. According to Table 3, the
uniform beams of the same mass in both exponential

Table 2. Comparison of non-dimensional fundamental frequencies (�) of uniform AFG (Al-ZrO2) beam in di�erent
boundary conditions for � = 3.

Boundary condition Method used Mode 1 Mode 2 Mode 3 Mode 4

C-F
Present 2.854463 21.4957915 63.68948972 126.7057
Ref. [13] 2.863 21.394 63.712 127.21
FEM [13] 2.852 21.494 63.673 126.575

H-H
Present 10.36696 41.9729437 94.5556821 168.2817
Ref. [13] 10.5 42.376 95.525 169.937
FEM [13] 10.368 41.973 94.51 167.997

C-H
Present 15.71721 52.8117755 110.689377 189.7663
Ref. [13] 15.952 53.417 111.903 191.646
FEM [13] 15.718 52.807 110.611 189.356

C-C
Present 24.93755 67.1232031 130.3613409 214.8374
Ref. [13] 25.625 68.537 132.592 217.742
FEM [13] 24.942 67.113 130.236 214.258

Table 3. Comparison of non-dimensional fundamental frequencies of uniform AFG (Al-ZrO2) beam for power law and
exponential law of gradation in di�erent boundary conditions for � = 3 and n = 2:5.

Boundary conditions Gradation scheme Mode 1 Mode 2 Mode 3 Mode 4

C-F Power law [21] 2.788372 21.46919 63.90569 126.9603
Exponential law [13] 2.854463 21.49579 63.68949 126.7057

H-H Power law [21] 10.32393 41.95427 94.46947 168.0887
Exponential law [13] 10.36696 41.97294 94.55568 168.2817

C-H Power law [21] 15.68958 52.92778 110.7761 189.7579
Exponential law [13] 15.71721 52.81178 110.6894 189.7663

C-C Power law [21] 24.96248 67.07427 130.1854 214.5121
Exponential law [13] 24.93755 67.1232 130.3613 214.8374
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law grading and power law grading produced more
or less the same natural frequencies under di�erent
boundary conditions.

In the case of non-uniform beam, the fundamental
frequency was lower than that of the uniform beam, as
observed in Table 4. This �nding was already expected
because the beam with exponentially decreasing thick-
ness had been taken into account. In this situation,
given that zirconia with higher sti�ness was the mate-

rial used at the right most surface of the beam, with
a decrease in the thickness, the beam would lose some
material, hence a decrease in its mass and sti�ness.
As a result, this can be referred to as the cause of
decrement in the fundamental frequencies. According
to Table 5, there is no considerable di�erence between
the results of power law gradation and exponential law
of gradation provided that same mass is considered.

According to Table 1, the numerical outcomes

Table 4. Comparison of non-dimensional fundamental frequencies of AFG (Al-ZrO2) uniform beam vs. non-uniform beam
in di�erent boundary conditions for � = 3 and � = 0:1.

Boundary condition Method used Mode 1 Mode 2 Mode 3 Mode 4

C-F
Present 2.89199 20.8508 60.97785 120.9449

Ref. [13] 2.863 21.394 63.712 127.21

H-H
Present 9.894899 39.92297 89.94498 160.0938

Ref. [13] 10.5 42.376 95.525 169.937

C-H
Present 15.17266 50.42204 105.4868 180.7283

Ref. [13] 15.952 53.417 111.903 191.646

C-C
Present 23.65832 63.78144 123.9482 204.3266

Ref. [13] 25.625 68.537 132.592 217.742

Table 5. Comparison of non-dimensional fundamental frequencies of AFG (Al-ZrO2) non-uniform beam in di�erent
boundary conditions for � = 3, n = 2:5, and � = 0:1.

Boundary condition Gradation type Mode 1 Mode 2 Mode 3 Mode 4

C-F
Exponential law 2.89199 20.8508 60.97785 120.9449

Power law 2.824893 20.8322 61.18508 121.1914

H-H
Exponential law 9.894899 39.92297 89.94498 160.0938

Power law 9.849662 39.86223 89.78602 159.7856

C-H
Exponential law 15.17266 50.42204 105.4868 180.7283

Power law 15.14726 50.49737 105.495 180.5936

C-C
Exponential law 23.65832 63.78144 123.9482 204.3266

Power law 23.68861 63.71877 123.7262 203.9088
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Figure 6. Comparison of the non-dimensional natural frequencies (�) for di�erent modes of vibration for (a)
Clamped-free, (b) hinged-hinged, (c) clamped-hinged, and (d) clamped-clamped boundary conditions.

of the present method were reasonably convergent to
those of ADM and software package-based FEM in [13].
To better understand the mentioned convergence, a
graphical comparison between the results of the current
method and average of ADM and FEM results of [13]
was simultaneously made, the outcome of which is
presented in Figure 6 for each boundary condition.
Figure 7 depicts the Absolute Mean Deviation (AMD)
for di�erent boundary conditions, derived from the
suggested average value result of [13].

Tables 6{9 elaborate the e�ects of geometry and
gradation parameters on the fundamental frequency
of non-uniform beam under di�erent boundary con-
ditions. As clearly observed in Tables 6 and 7,
with an increase in the geometry parameter, the non-
dimensional frequencies would decrease. Figure 8 also
illustrates a graphical representation of monotonously
decreasing characteristics of fundamental frequencies

Figure 7. Absolute mean deviation percentage of
non-dimensional natural frequency (�) from [13] under
respective di�erent boundary conditions.
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Table 6. Variation of the non-dimensional fundamental frequencies of AFG (Al-ZrO2) non-uniform beam with respect to
changes in the geometry parameter (�) with power law grading (n = 2:5) under di�erent boundary conditions.

Boundary condition Mode Exponential geometry parameter (�)
0.1 0.2 0.4 0.6 0.8 1

C-F

1 2.8 2.9 2.9 3 3 3
2 20.8 20.2 19 17.8 16.6 15.6
3 61.2 58.6 53.6 49 44.8 40.9
4 121.2 115.6 105.2 95.6 86.8 78.7
5 201.4 192 174.2 157.9 142.9 129.2

H-H

1 9.9 9.4 8.5 7.7 6.9 6.2
2 40 38 34.3 30.9 27.9 25.1
3 90.5 86.1 77.7 70.2 63.3 57
4 163.1 155 140.2 126.9 115 104.1
5 276.7 263.4 237.7 213.1 190.1 169.1

C-H

1 15.2 14.6 13.6 12.652 11.7531 10.9143
2 50.7 48.3 44 40.1055 36.5207 33.2545
3 106.6 101.6 92.2 83.6131 75.8374 68.7797
4 184.2 175.6 159.9 145.8132 133.019 121.1962
5 308.6 292.1 261 232.6496 207.2354 184.8249

C-C

1 23.7 22.5 20.3 18.3 16.6 15.1
2 63.8 60.6 54.7 49.4 44.7 40.4
3 124.2 118 106.6 96.3 86.9 78.5
4 205.6 195.5 176.6 159.5 144 129.8
5 309.3 294.2 265.9 240 216.5 195.4

Table 7. Variation of non-dimensional fundamental frequencies of AFG (Al-ZrO2) non-uniform beam with respect to
change in geometry parameter (�) with exponential law of grading (� = 3) under di�erent boundary conditions.

Boundary condition Mode Exponential geometry parameter (�)
0.1 0.2 0.4 0.6 0.8 1

C-F

1 2.9 2.9 3 3 3.0723 3.0909
2 20.9 20.2 19 17.8 16.6391 15.5417
3 61.2 58.6 53.6 49 44.8122 40.9153
4 122.4 116.7 106.1 96.3 87.35 79.1836
5 203.8 193.9 176.1 160.4 146.4825 133.9566

H-H

1 9.9 9.4 8.5 7.7 6.9 6.1
2 40 38 34.3 31 27.9 25.2
3 90.6 86.1 77.8 70.3 63.4 57.1
4 163.2 155.2 140.4 127.2 115.2 104.4
5 277.1 263.8 237.9 213.2 190.2 169.2

C-H

1 15.2 14.6 13.6 12.6668 11.7702 10.9362
2 50.5 48.3 44 40.0451 36.4733 33.2177
3 106.5 101.5 92.1 83.5308 75.7661 68.7225
4 184.3 175.8 160.1 145.9887 133.1571 121.2849
5 308.8 292.2 261 232.6166 207.2262 184.8701

C-C

1 23.7 22.5 20.3 18.3 16.6 15.1
2 63.8 60.7 54.8 49.5 44.7 40.4
3 124.3 118.2 106.8 96.4 87 78.5
4 205.9 195.7 176.9 159.7 144.1 129.9
5 309.8 294.6 266.1 240.1 216.6 195.5
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Table 8. Variation of non-dimensional fundamental frequencies of AFG (Al-ZrO2) non-uniform beam (� = 0:1) with
respect to power law exponent (n) under di�erent boundary conditions.

Boundary condition Mode Power law exponent (n)
0.1 0.2 0.5 1 2 5 10

C-F

1 3.9 3.7 3.3 3 2.9 2.9 3.1
2 24.2 23.6 22.5 21.7 21 20.3 20
3 67.8 66.9 65 63.6 62 59.2 57.6
4 134 132.6 129.8 127.1 123.8 118.8 115.5
5 222.9 221.2 217.2 212.5 206.1 197.5 192.9

H-H

1 10.9 10.8 10.6 10.4 10 9.6 9.4
2 43.5 43.3 42.6 41.6 40.4 38.8 38.1
3 98.5 98 96.3 94.1 91.3 88.2 86.5
4 177.8 176.7 173.8 169.9 164.7 158.7 155.9
5 300.9 298.8 293.5 287.1 279.2 270.2 265.9

C-H

1 16.8 16.4 15.7 15.3 15.2 15 14.9
2 54.6 53.9 52.4 51.6 50.9 49.4 48.4
3 114.7 113.4 111 109 106.9 103.6 101.6
4 198.2 196.4 192.6 188.9 184.4 178.6 175.2
5 307.5 305 299.4 292.8 284.2 274.6 270.6

C-C

1 24.3 23.9 23.2 23.1 23.5 23.9 23.6
2 67.3 66.5 65 64.3 63.9 63.4 63.1
3 132.7 131.3 128.8 126.8 124.8 122.5 121.9
4 221.1 219.1 215.1 211.3 207 202.1 200.7
5 334 331.4 325.5 319.2 311.6 303.8 300.6

Table 9. Variation of non-dimensional fundamental frequencies of AFG (Al-ZrO2) non-uniform beam (� = 0:1) with
respect to exponential law parameter (�) in di�erent boundary conditions.

Boundary condition Mode Exponential law parameter (�)
{10 {5 {3 0 3 5 10

C-F

1 3.6 3.3 3.2 3 2.9 2.9 3.1
2 23.1 22.7 22.4 21.7 20.9 20.5 20.1
3 65.9 65.4 65 63.6 61.2 59.8 57.9
4 131.8 130.9 130.1 127.1 122.4 119.7 116
5 221.3 220.1 218.4 212.5 203.8 199.2 193.5

H-H

1 10.9 10.8 10.7 10.4 9.9 9.7 9.5
2 43.5 43.1 42.7 41.6 40 39.2 38.2
3 98.4 97.6 96.7 94.1 90.6 88.9 86.8
4 177.4 176.1 174.6 169.9 163.2 160 156.4
5 298.7 296.5 294.3 287.1 277.1 272.2 266.7

C-H

1 15.9 15.6 15.5 15.3 15.2 15.1 15
2 52.9 52.5 52.2 51.6 50.5 49.8 48.7
3 113 112.3 111.7 109.7 106.5 104.7 102.3
4 198.9 197.6 196.1 191.2 184.3 181 177.4
5 331.3 329.9 327.9 320.3 308.8 302.8 295.6

C-C

1 22.9 22.7 22.7 23.1 23.7 23.8 23.6
2 65 64.6 64.5 64.3 63.8 63.5 63.1
3 129.7 129 128.5 126.8 124.3 123.1 122
4 217.7 216.5 215.2 211.3 205.9 203.3 201
5 330.8 328.6 326.3 319.2 309.8 305.6 301.2
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Figure 8. E�ect of geometric non-uniformity parameter � on the fundamental frequencies of the AFG beam considering
n = 2:5 in di�erent boundary conditions: (a) Clamped-free boundary condition, (b) hinged-hinged boundary condition, (c)
clamped-hinged boundary condition, and (d) clamped-clamped boundary condition at the left and right ends of the AFG
non-uniform beam.

with respect to an increase in the geometric parameter
�. Followed by a careful observation of the results with
di�erent values of �, it was concluded that � should
be less than 0.1 for comparable frequency results with
the uniform AFG beam. To evaluate the e�ect of
gradient parameters on the fundamental frequencies,
the value � was assumed to be 1. Some unpredictable
trends were observed mainly because with an increase
in �, the beam became softer and its mass also
decreased; this made it di�cult to recognize the trend
in a usual manner. As observed in Figures 2 and 3,
upon increasing the gradation parameters, the overall
material quantity would decrease even if it keeps its
dimensions same. This in turn leads to a reduction
in the sti�ness and mass of the beam. Therefore, it
can be naturally expected that these parameters have
a direct impact on the fundamental frequencies of the
beam. In case of power law grading, the fundamental
frequencies followed a decreasing trend continuously
up to n = 5 (Figure 9) and then, they remain
constant, implying that further increase in the power

law exponent will have no e�ect on the fundamental
frequencies, which is unlike the case of exponential
law of grading where the changes mostly occur nearby
� = 0 and remain constant all the time (Figure 10).
According to Tables 8 and 9, upon increasing the values
of gradation parameters � and n, the fundamental
frequencies may decrease, with the exception of the
1st mode under clamped-free and clamped-clamped
boundary conditions. Although an increase in the
constraint results in higher fundamental frequencies,
the trend is of non-decreasing nature under these two
boundary conditions.

5. Conclusion

The present study aimed to analyze a generalized
�nite element approach based on Euler-Bernoulli beam
theory to solve free vibration problems of beams with
non-uniform thickness and inhomogeneous material
distribution along its axis. The proposed approach
is, in fact, a generalized one because it can solve
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Figure 9. E�ect of power law exponent n on the fundamental frequencies of the AFG beam in di�erent boundary
conditions: (a) Clamped-free boundary condition, (b) hinged-hinged boundary condition, (c) clamped-hinged boundary
condition, and (d) clamped-clamped boundary condition at the left and right ends of the AFG non-uniform beam,
respectively.

free vibration problems of beams with di�erent types
of non-uniformities in thickness and inhomogeneity in
the material distribution, with only requirement of
being a function of axial distance from the origin.
In order to validate the e�ectiveness of the proposed
approach, the fundamental frequencies were compared
with those of uniform inhomogeneous beams in the
analysis done by Cao et al. [13] who assumed the
geometry parameter as 0 for the non-uniform beam
model under the respective boundary conditions. After
�nding a decent level of conformation, the present
method was employed to evaluate the e�ect of vari-
ations in exponential geometric parameter on the
fundamental frequencies of the non-uniform Axially
Functionally Graded (AFG) beam. It was found that
the fundamental frequency results depended directly
on the geometric non-uniformity parameter. Following
a careful review the impact of variations in material

gradient parameters on the numerical outcomes of the
analysis, the following concluding remarks were made:

� Upon increasing the material gradient parameters,
the fundamental frequencies in each mode decreased
under di�erent boundary conditions. This happened
mainly because with an increase in these parame-
ters, the dominance of aluminum would increase in
the volume fraction over zirconia, thus making the
system more exible. In addition, the lower values
of overall sti�ness would result in lower fundamental
frequency. Both the gradation schemes yielded
almost equal results when considered in the equal
masses;

� As expected, an increase in the boundary constraints
led to an increase in the values of fundamental
frequencies because the initial modes of less con-
strained systems were suppressed upon increasing
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Figure 10. E�ect of the exponential law parameter � on the fundamental frequencies of the AFG beam in di�erent
boundary conditions: (a) Clamped-free boundary condition, (b) hinged-hinged boundary condition, (c) clamped- hinged
boundary condition, and (d) clamped-clamped boundary condition at the left and right ends of the AFG non-uniform
beam.

the constraints. Therefore, in order to vibrate
naturally, a higher value of frequency would be
required even if the system was to vibrate in the
�rst mode.

Nomenclature

L Axial length of the beam
b Width of the beam
x Axial distance from the origin
g(x) Exponentially variable thickness

function
h0 Thickness of the beam at the origin
� Exponential geometry parameter
E(x) Young's modulus function
�(x) Mass density function

A(x) Cross-sectional area function
I(x) Area moment of inertia function
P (x) E�ective material property function
PL E�ective material property at the left

end of the beam
PR E�ective material property at the right

end of the beam
VL Volume fraction at the left end of the

beam
VR Volume fraction at the right end of the

beam
� Exponential law parameter
n Power law exponent
w Transverse displacement function
� Local co-ordinate for an element
s Span of an element
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M Bending moment
U Strain energy of the beam element
T Kinetic energy of the beam element
Lg Lagrangian function
! Fundamental angular frequency of the

beam element
� Non-dimensional natural frequency of

the beam
E Young's modulus of the material
� Mass density of the material
C{F Clamped-Free boundary condition
H{H Hinged-Hinged boundary condition
C{H Clamped-Hinged boundary condition
C{C Clamped-Clamped boundary condition
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