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Abstract. Let S be a set of n points in the plane that is in convex position. Using the
well-known path-greedy spanner algorithm, this study presents an algorithm that constructs
a plane 3+4�

3 -spanner G of degree 3 on the point set S. Recently, Biniaz et al. [Biniaz,
A., Bose, P., De Carufel, J.-L., Gavoille, C., Maheshwari, A., and Smid, M. \Towards
plane spanners of degree 3", Journal of Computational Geometry, 8(1), pp. 11{31 (2017).]
proposed an algorithm that constructs a degree 3 plane 3+4�

3 -spanner G0 for S. It was
found that there was no upper bound with a constant factor in the total weight of G0, but
the total weight of G was asymptotically equal to that of the minimum spanning tree of S.

© 2021 Sharif University of Technology. All rights reserved.

1. Introduction

Let S be a set of points in the plane. A weighted graph
G with vertex set S is called geometric if any edge (p; q)
of G is the straight line between p and q and its weight
is jpqj, which is the Euclidean distance between p and
q. The total weight of the graph G is the sum of the
weights of all edges of G and is denoted by wt(G). Let
t > 1 be a real number. The geometric graph G is
called t-spanner for S, if for any two vertices p and q
in G, there exists a path P between p and q in G such
that jP j � tjpqj, where jP j denotes the length of the
path P which is the sum of the weight of all edges on
P . For any two points u and v in a geometric graph G,
let �G(u; v) be the length of the shortest path between
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u and v in G. The stretch factor (dilation) between u
and v is de�ned as the ratio �G(u;v)

juvj and we denote it
by SFG(u; v). The stretch factor SF (G) of a graph G
is de�ned as:

SF (G) = max
u;v2GSFG(u; v):

Note that when a geometric graph G is t-spanner,
clearly SF (G) � t. We refer the reader to the book [1]
and the papers [2{9] for an overview of t-spanners and
the related algorithms.

A plane spanner of bounded degree is a spanner
whose edges do not cross each other and whose maxi-
mum degree is bounded by a constant. In Table 1, some
of the results related to the plane spanner of bounded
degree are summarized. Note that since the stretch
factor of a Hamiltonian path through a set of points
arranged in a grid is 
(

p
n) (see [1]), the lower bound

on the maximum degree of a t-spanner is 3. The points
of the set S are said to be in convex position if all
points of S are the vertices of the convex hull of S.
The lower bound of the maximum degree of t-spanners
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Table 1. Results of bounded degree plane spanners.

Points in non-convex or convex position

Reference Degree
Upper bound

on the
stretch factor

Bose et al. [12] 27 � 8:27
Li and Wang [13] 23 � 6:43
Bose et al. [14] 17 � 23:56
Perkovic and Kanj [15] 14 � 2:91
Bonichon et al. [16] 6 6
Bose et al. [17] 6 � 81:66
Bonichon et al. [18] 4 � 156:82
Kanj et al. [10] 4 20

Points in convex position

Kanj et al. [10] 3 20
Biniaz et al. [19] 3 � 5:19

for points in the convex position is also 3 (see [10]). Das
and He�ernan [11] proved that spanners of maximum
degree 3 always exist.

One of the famous algorithms for constructing a
t-spanner on a given point set S is the path-greedy
spanner algorithm or greedy spanner algorithm for
short. The algorithm is given as follows. First, the
algorithm sorts all pairs of points in nondecreasing
order of their Euclidean distance. Assume that the
sorted data are stored in a list L. Let E be the
edge set of the graph computed by the algorithm.
First, the edge set E is considered empty. Next,
the algorithm processes the pairs of points in L in
order. Suppose that the algorithm wants to process
the pair (p; q) 2 L. If the length of the shortest
path between p and q in the graph computed so far is
greater than tjpqj, the algorithm adds the pair (p; q)
to E; otherwise, the algorithm processes the next
pair of points in L. The computed graph by the
algorithm is called the path-greedy spanner or the greedy
spanner. Algorithm 1, PathGreedy(S; t), shows the

Algorithm 2. ModifiedPathGreedy(S;E;L; t).

pseudocode of the greedy spanner algorithm. Now,
we describe a modi�ed version of the greedy spanner
algorithm that we need later. In PathGreedy(S; t),
the algorithm starts with a sorted list L and empty
edge set E. The modi�ed version of this algorithm,
ModifiedPathGreedy(S;E;L; t) (see Algorithm 2),
takes two extra parameters: an edge set E and a sorted
list L. If E = ; and L is the sorted list of all

�n
2

�
pairs of points of S in non-decreasing order of their
distances, then both algorithms PathGreedy(S; t)
and ModifiedPathGreedy(S;E;L; t) generate the
same graph.

In 2017, Biniaz et al. [19] presented an algorithm
that constructs a plane 3+4�

3 -spanner of maximum
degree at most 3 for any set S of points in the plane
that is in convex position. Let P be a convex polygon.
If a vertex or a side of P is removed, then the resulting
chain is called a convex chain. The algorithm proposed
by Biniaz et al. [19] works as follows. Let CH (S) be the
boundary of the convex hull of S. At �rst, CH (S) is
added to the spanner. Then, it selects the farthest pair
(p; q) of points of S. Then, it adds a special matching
between two convex chains obtained by removing p and
q from CH (S) (see Algorithm 3). The matching for the
two convex chains is computed as follows. First, they
compute the closest pair between two convex chains
that are separated by a line. Given this closest pair,
we split the two chains and recurse on both sides.

In this paper, we focus on constructing a
bounded-degree plane spanner for points in the convex
position of degree at most 3. Using the algorithm
ModifiedPathGreedy, we propose an algorithm

Algorithm 1. PATHGREEDY(S; t).
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Algorithm 3. Deg3PlaneSpanner(S) [19].

that constructs a plane 3+4�
3 -spanner of degree at most

3 for points in the convex position. Then, it is shown
that the proposed plane spanner can be computed in
O(n2 log n) time. In [19], Biniaz et al. did not mention
the time complexity of their algorithm (Algorithm 3).
In [20], Biniaz and Smid presented an O(n log7 n)-time
algorithm that computes the plane spanner generated
by Algorithm 3. We demonstrate that there is no upper
bound with a constant factor on the total weight of
the spanner proposed by Biniaz et al. [19], but using
the concept of generalized leapfrog property (see [1]),
our study shows that for any set S of points in the
plane that is in convex position, the total weight of our
proposed plane spanner is asymptotically equal to the
weight of the minimum spanning tree of S (MST (S)).

2. Preliminaries

In this section, some de�nitions and notations used in
the following sections are presented. Throughout this
paper, it is assumed that S is a set of n points in the
plane that is in a convex position. The farthest pair
(p; q) of points of S is called a diametral pair, p and q
are called diametral points, and the Euclidean distance
jpqj is called the diameter of S. We assume, without
loss of generality, that the diametral pair (p; q) of S is
horizontal and p is to the left of q. We denote the set of
all points of Snfp; qg, which are above the line segment
pq and below pq by upper and lower, respectively. Let
Dp and Dq be two closed disks with radius jpqj centered
at p and q, respectively. The intersection of Dp and Dq
is denoted by L(p; q) and is called the lune of p and

q. In the following sections, we use the notation G
to refer to the plane spanner proposed in the current
paper and G0 to refer to the plane spanner generated
by Algorithm 3. In the graphs G or G0, an edge (a; b)
is called a shortcut edge if a a 2 upper and b 2 lower
or a 2 lower and b 2 upper.

3. A degree 3 plane spanner for points in
convex position

In this section, an algorithm that constructs a plane
3+4�

3 -spanner G = (S;E) of degree at most 3 for S
is proposed. The idea of the algorithm is as follows.
The algorithm starts with E = CH (S). Then,
we run ModifiedPathGreedy(S;E;L; t), where t =
3+4�

3 and L contains all pairs of points (a; b) with a
a 2 upper and b 2 lower that are sorted by the
non-decreasing function of the Euclidean distance jabj
(see Figure 1). The graph G consists of CH(S) and
the output of ModifiedPathGreedy(S;E;L; t) (see
Algorithm 4).

Now, it is proven that the output of algorithm
GreedyPlaneSpanner(S) is 3+4�

3 -spanner. We start
with the following lemmas, which are needed later:

Lemma 1. Let S be a �nite set of at least two points
in the plane and let (p; q) be any diametral pair of S.
Then, the points of S lie in L(p; q).

Lemma 2 [19]. Let C be a convex chain with endpoints
p and q. If C is in L(p; q), then the stretch factor of C
is at most 2�

3 .

Figure 1. (a) The points with red color forming U , and the points with blue color forming L, and the yellow region as
L(p; q). (b) Illustrating the proof of Theorem 2. (c) Illustrating the proof of Theorem 3.
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Algorithm 4. GreedyPlaneSpanner(S).

Theorem 1. The graph G generated by Greedy
PlaneSpanner(S) is a 3+4�

3 -spanner for S.

Proof. Let t = 3+4�
3 and let a and b be two arbitrary

distinct points in S. To prove the theorem, it is
su�cient to prove that SFG(a; b) � t. Let (p; q)
be a diametral pair of points selected in Line 1 of
Algorithm 4. We consider two cases:

{ Case 1. a; b 2 upper [ fp; qg or a; b 2 lower [
fp; qg. We prove this case for a; b 2 upper [ fp; qg
(the other case is symmetric). Let Cu be the convex
chain connecting p to q obtained by removing all
points lower from CH(S). By Lemma 1, Cu lies in
L(p; q). Then, by Lemma 2, SFCu(a; b) � 2�

3 . Since
G contains CH(S), SFG(a; b) � SFCu(a; b). Hence,
SFG(a; b) � 2�

3 � t;
{ Case 2. a2upper and b2 lower, or a2 lower and
b 2 upper. Suppose, w.l.o.g., that a 2 upper and
b 2 lower. Consider the edge set E in Algorithm 4.
If (a; b) 2 E, then clearly SFG(a; b) = 1 � t. Now,
suppose that (a; b) 62 E. Then, according to the
construction of G, there is a path between a and b of
length at most t�jabj and, therefore, SFG(a; b) � t.
This proves the theorem. �

Theorem 2. The graph G, generated by Greedy
PlaneSpanner(S), is plane.

Proof. According to the construction of G, any two
edges (a; b) and (c; d) in G with a; b; c; d 2 upper or
a; b; c; d 2 lower do not cross each other. Then, to
prove the theorem, it is su�cient to prove that any
two shortcut edges (a; b) and (c; d) in G do not cross
each other. Suppose, for contradiction, that (a; b) and
(c; d) cross each other. Suppose, w.l.o.g., that the pair
(a; b) is processed before the pair (c; d) by the algorithm
ModifiedPathGreedy. Hence, jabj � jcdj. Suppose,
w.l.o.g., that a; c 2 upper and b; d 2 lower. Let u be
the intersection of (a; b) and (c; d) (see Figure 1). Then,
based on triangle inequality, we have jcaj � jauj+ jucj
and jbdj � jbuj+ judj. Hence, we have:

jacj+ jbdj � jauj+ jucj+ jbuj+ judj = jabj
+ jcdj � 2jcdj: (1)

Let Pca be the convex path between c and a on CH (S)
using the points on upper, and let Pbd be the convex
path between b and d on CH (S) using the points on
lower. By Lemma 2, jPcaj � 2�

3 jcaj and jPbdj � 2�
3 jbdj.

Now, consider the path Q := Pca [ (a; b) [ Pbd. Then,
we have:

jQj = jPcaj+ jabj+ jPbdj � 2�
3
jcaj+ jabj+ 2�

3
jbdj

=
2�
3

(jcaj+ jbdj) + jabj:
Since jabj � jcdj and using Eq. (1), we have:

jQj � 2�
3

(jcaj+ jbdj) + jabj � 4�
3
jcdj+ jcdj

=
3 + 4�

3
jcdj = tjcdj:

Hence, the algorithm does not add the edge (c; d) to G,
which is a contradiction. Then, (a; b) and (c; d) do not
cross each other. Hence, G is plane. �

Now, we prove that the maximum degree of the
graph G is at most 3.

Theorem 3. The maximum degree of the graph G
generated by GreedyPlaneSpanner(S) is at most 3.

Proof. Let a be a point in S. We show that the degree
of a inG is at most 3. Note that if a = p or a = q, where
(p; q) is the diametral pair of points which is selected
by the algorithm, then clearly the degree of a is 2 since
CH (S) � G and p; q 62 upper [ lower. Now, suppose
that a 6= p; q. Suppose, w.l.o.g., that a 2 upper. Since
G contains CH (S), then the degree of a is at least
two. Suppose, for contradiction, that the degree of
a is greater than 3. Hence, there exist two shortcut
edges adjacent to point a. Now, suppose that (a; b)
and (a; c) are two edges of G such that b; c 2 lower (see
Figure 1). Suppose, w.l.o.g., that the algorithm adds



3328 D. Bakhshesh and M. Farshi/Scientia Iranica, Transactions D: Computer Science & ... 28 (2021) 3324{3331

the edge (a; b) before the edge (a; c). Then, jabj � jacj.
Now, let Pbc be the convex path between b and c on
CH (S) using the points of lower. By Lemma 2, we
have: jPbcj � 2�

3 jbcj. Let Q = (a; b) [ Pbc. Then, we
have jQj = jabj+ jPbcj � jacj+ 2�

3 jbcj. By the triangle
inequality, we have jbcj � jabj + jacj � 2jacj. Hence,
by combining the two previous inequalities, we have
jQj � 3+4�

3 jacj. Then, the algorithm does not add the
edge (a; c) to G, which is a contradiction. Hence, the
degree of a is at most 3. �

4. Time complexity

We know that the running time of Dijkstra's single-
source shortest paths algorithm for a weighted graph
is O(n logn + m), where n is the number of vertices
and m is the size of the graph. Moreover, sorting the
list L in Algorithm 4 takes O(n2 logn) time. Hence, a
direct implementation of Algorithm 4 using Dijkstra's
single-source shortest paths algorithm has the running
time O(n3 logn). In this section, we show that the
proposed plane spanner G computed by Algorithm 4
can be computed in O(n2 log n) time.

The main idea to reduce the running time is
that we do not use Dijkstra's single-source shortest
paths algorithm and, instead, by a quadratic-time
preprocessing of S, we use an algorithm whose running
time is O(log n) for each pair. Since there are O(n2)
pairs, the overall running time will be O(n2 log n).
Note that in [21], Bose et al. demonstrated how to
compute the greedy spanner on a given point set in the
plane in O(n2 logn) time. We could not apply their
algorithm here. We think that the application their
algorithm might not give the desired results. Now, the
algorithm is described in detail.

We number the points of S in the clockwise
direction, as depicted in Figure 2. Let x and y be
the numbers assigned to p and q, respectively. Let T
be a Binary Search Tree (BST) that is initially empty.
During the running of the algorithm, upon the addition
of an edge (i; j) to the graph, the numbers i and j
are added to T . For two numbers i; j 2 upper (or
i; j 2 lower) with i < j, let Pij be the path from i

Figure 2. Numbering the point set S.

to j on CH (S) in the clockwise direction. Let A be
an n � n array. For two numbers i and j with i < j
and i; j 2 upper (or i; j 2 lower), A[i; j] is equal to
the length of the path Pij and for other values of i and
j, A[i; j] is equal to zero. Since the points of S are
in convex position, it is not di�cult to know that the
array A can be computed in O(n2) time. Now, it is
time to express the algorithm. The algorithm initially
adds CH (S) to the edge set E and computes the list
L. Suppose that the algorithm wants to process a pair
(i; j) (i and j are numbers). Note that i 2 upper
and j 2 lower. The algorithm searches in T to �nd
the smallest number k, which is greater than i and
the greatest number h, which is smaller than i. Note
that the number k(h) may not be found in T , in which
case, for the sake of simplicity, we assume that k = 0
(h = 0). It is not surprising that we can determine
in O(log n) time whether the numbers k and h are
found in T or not. Suppose that k 6= 0 and h 6= 0.
Then, there exist two numbers k0; h0 2 lower such that
(k; k0) 2 E and (h; h0) 2 E. Now, consider two paths
P := Pik [ (k; k0) [ Pk0j and Q := Phi [ (h; h0) [ Ph0j .
We claim that one of the two paths P and Q is the
shortest path between i and j. To prove the claim, we
�rst present the following theorem.

Theorem 4 [22]. If C1 and C2 are convex polygonal
regions with C1 � C2, then the length of the boundary
of C1 is at most the length of the boundary of C2.

According to Theorem 2, the graph G is plane.
Hence, through the selection of the numbers k and h,
for every convex path C between i and j, we have P � C
or Q � C. Then, by Theorem 4, P or Q is the shortest
path between i and j. This proves the claim. Now,
using the array A, we have jP j = A[i; k]+ jkk0j+A[k0j]
and jQj = A[h; i] + jhh0j+A[h0; j]. Then, to determine
whether the pair (i; j) should be added to the edge
set E, it is su�cient to check if jP j > t � jijj and
jQj > t�jijj. In the case of k = 0 and h 6= 0, it su�ces
to consider P := Piy[Pyj and Q := Phi[(h; h0)[Ph0j .
In the cases of k 6= 0, h = 0, and k = h = 0, the paths
P and Q are de�ned similarly.

5. Weight of the spanner

Now, we show that there is no upper bound with a
constant factor on the total weight of the plane spanner
G0 proposed by Biniaz et al. [19]; however, the total
weight of the plane spanner G proposed in the current
paper is asymptotically equal to the wt(MST (S)).

Let S be a set of n points placed at vertices of a
regular n-gon. Assume that n is su�ciently large. It
is clear that the convex hull edges, except one edge,
represent a minimum spanning tree of S. Consider the
plane spanner G0 on the point set S. According to
Algorithm 3, the graph G0 is similar to the one shown
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Figure 3. The plane spanner G0 on a regular 30-gon.

in Figure 3. Since G0 contains many shortcut edges,
it is clear that limn!1 wt(G0) = 1. This shows that
the weight of the proposed plane spanner by Biniaz et
al. [19] is unbounded.

Now, we will analyze the total weight of the plane
spanner G. First, the generalized leapfrog property is
de�ned, to be needed later.

De�nition 1 (generalized leapfrog property [1]).
Let t1 and t2 be real numbers, such that 1 < t1 < t2.
A set E of undirected edges in Rd is said to sat-
isfy the (t1; t2)-leapfrog property, if for every fp1; q1g;fp2; q2g; : : : ; fpk; qkg of k pairwise distinct edges of E:

t1jp1q1j<
kX
i=2

jpiqij+ t2

 
jp1p2j+

k�1X
i=2

jqipi+1j+jqkq1j
!
:

Now, the Generalized Leapfrog Theorem is presented.

Theorem 5 (generalized leapfrog theorem [1]).
There exists a constant � with 0 < � < 1, such that
the following holds. Let t1 and t2 be real numbers such
that 1 < 1� �+ �t2 < t1 < t2. let S be a set of points
in Rd and let E be a set of edges, whose endpoints are
from S, and that satis�es the (t1; t2)-leapfrog property.
Then:

wt(E) � cdt1t2 � wt(MST (S));

where cdt1t2 is a real number that depends only on d,
t1, and t2.

According to a graph, the length of the second
shortest path between two vertices p and q in the graph
is denoted by �2(p; q). If there is only one path between
p and q in the graph, then we assume that �2(p; q) =1.
In the following, a su�cient condition for the leapfrog
property is given.

Theorem 6 [23]. Let S be a set of n points in Rd,
let t > 1 be a real number, and let G = (S;E) be

an undirected t-spanner for S. Assume that �2(p; q) >
tjpqj, for every edge (p; q) in E. Then, the edge set E
satis�es the (t; t2)-leapfrog property.

Let G = (S;E) be an undirected t-spanner for
S and F be a subset of E. By carefully studying the
proof of Theorem 6, we �nd that the proof is correct
even when we replace E by F in Theorem 6. Hence,
the following result is obtained.

Theorem 7. Let S be a set of n points in Rd, let t > 1
be a real number, and let G = (S;E) be an undirected
t-spanner for S and F be a subset of E. Assume that
�2(p; q) > tjpqj, for every edge (p; q) in F . Then, the
edge set F satis�es the (t; t2)-leapfrog property.

Let S be a set of points in the plane that is
in a convex position. Consider the plane spanner
G = (S;E) computed by the algorithm Greedy
PlaneSpanner(S). Now, we prove the following
result.

Lemma 3. The set of all shortcut edges in G satis�es
the ( 3+4�

3 ; ( 3+4�
3 )2) leapfrog property.

Proof. Let t = 3+4�
3 and F is the set of all shortcut

edges in G. By Theorem 7, to prove Lemma 3, it
is su�cient to prove that for every edge (a; b) 2 F ,
�2(a; b) > tjabj. Let P be a path between a and b in G
having length �2(a; b).

Suppose that all edges of P are on CH (S). Notice
that, in this case, the path P passes through one of the
diametral points. Since G initially includes the convex
hull edges and (a; b) is added to the edge set of G,
jP j > tjabj according to the construction of G.

Now, suppose that one of the edges of P is not
on CH (S). In other words, P contains a shortcut
edge. Let C1 and C2 be two convex chains obtained by
removing the points p and q from CH (S). Since G is
plane and the points of S are in convex position, the
path P consists of some edges on C1, a shortcut edge
(r; s), and some edges on C2 (see Figure 4). Suppose,
w.l.o.g., that r 2 C1 and s 2 C2. Note that since G is
plane, it is not di�cult to see that in the quadrilateral
abrs, there are no shortcut edges except two edges (a; b)
and (r; s). Now, we show that jP j > tjabj. If the

Figure 4. The path P with the gray color in the proof of
Lemma 3.
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algorithm adds the edge (r; s) before the edge (a; b),
then jP j > tjabj according to the construction of G.
Now, suppose that (r; s) is added to G after the edge
(a; b). Then, jrsj � jabj. Let Car be the part of the
path P that is on C1 and Cbs be the part of P that
is on C2. Consider the path Q := Car [ (a; b) [ Cbs
between r and s. Since jrsj � jabj, jP j � jQj. Since
(r; s) is an edge of G and Q is a path between r and
s, which is created before processing the pair (r; s),
jQj > tjrsj. Hence, we have:

jP j � jQj > tjrsj � tjabj:
This completes the proof. �

By Theorem 5 and Lemma 3, wt(F ) = O(1):wt
(MST (lower [ upper)). Now, in the following, we
show that wt(MST (lower[upper)) � 2wt(MST(S)).

Lemma 4. wt(MST(lower[upper))�2wt (MST(S)).

Proof. Let TSP(S) be the traveling salesperson tour
on the point set S. It is clear that wt(TSP (lower [
upper)) � wt(TSP (S)) (see Exercise 1.7 in [1]). Since
wt(MST(lower[upper)) � wt(TSP(lower[upper)),
we have wt(MST(lower[upper)) � wt(TSP(S)). On
the other hand, it is well known that wt(TSP (S)) �
2wt(MST (S)) (see [1]). Hence, by combining two
previous inequalities, wt(MST (lower [ upper)) �
2wt(MST (S)). �

Now, we conclude this section with the following
result.

Theorem 8. For any set S of points in the plane that
is in convex position, we have:

wt(G) = O(1) � wt(MST (S));

where G = (S;E) is the plane spanner computed by
GreedyPlaneSpanner(S) .

Proof. Let F be the all-shortcut edges in E. Let F 0
be the set of all edges on CH (S). Clearly, E = F [F 0.
By Lemma 4, we have wt(F ) = O(1) � wt(MST (S)).
Now, since TSP(S) only contains the convex hull edges
(see [24]), we have wt(F 0) = wt(TSP (S)). Since
wt(TSP (S)) � 2wt(MST (S)) (see [1]), wt(F 0) �
2wt(MST (S)). Now, we conclude that wt(E) =
wt(F ) + wt(F 0) = O(1) � wt(MST (S)). �

Whether the size (number of the edges) of the
proposed plane spanner G is less than or equal to the
size of the plane spanner G0 proposed by Biniaz et
al. [19] or not is an interesting question.

To tackle this problem, one direction is to show
that the graph G is a subgraph of G0. We found the
following counterexample for this. Assume the points
of P placed on the sides of the rectangle pdqe such
that jqdj = jcdj= jpej = 1, jdcj = jqbj = 2�=3 and jabj=

Figure 5. The point set P .

0.4 (see Figure 5). It is quite clear that the graph
G contains the edge (a; c), while G0 does not contain
(a; c), and contains the edge (b; c) instead.

6. Conclusion

This study presented an algorithm that constructs
a plane 3+4�

3 -spanner of degree at most three in
O(n2 logn) time for any set of n points in the plane that
is in convex position. It was found that the total weight
of the proposed plane spanner was asymptotically equal
to the total weight of the minimum spanning tree of the
points.

We conclude the paper with the following open
problems:

1. Is the size (number of the edges) of the proposed
plane spanner G less than or equal to the size of the
plane spanner G0 proposed by Biniaz et al. [19]?

2. Does the algorithm PathGreedy(S; 3+4�
3 ) output

a plane spanner of degree at most three for any set
S of points in the plane that is in convex position?

We think that this problem may have a yes-
answer. An attempt was made to demonstrate this,
but we did not succeed.
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