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Abstract. This paper investigates �xed-time nonsingular terminal sliding mode control of
second-order nonlinear systems in the presence of matched and mismatched disturbances.
Using estimation of the mismatched disturbance estimated by a �xed-time disturbance
observer, a novel nonlinear dynamic sliding surface is designed. The convergence time of
the closed-loop system including disturbance observer and control system is guaranteed
to be uniform with respect to initial conditions. Moreover, the proposed controller avoids
chattering phenomenon by producing a continuous control signal.

© 2023 Sharif University of Technology. All rights reserved.

1. Introduction

Classical Sliding Mode Control (SMC) is a renowned
control method owing to its valued attributes such
as order reduction, computational simplicity, and in-
herent robustness against matched disturbances [1].
Nonetheless, it su�ers from several drawbacks such
as asymptotical stability of the sliding motion and
in�nitely fast switching, better known as chattering [2].
Furthermore, it is a famous fact about classical SMC
that it cannot deal with mismatched disturbances [3,4].

Man and Yu [5] introduced another class of SMC
named Terminal Sliding Mode (TSM) and Terminal
Sliding Mode Control (TSMC) making use of nonlinear
sliding surface to guarantee �nite-time convergence
of the sliding motion. However, the conventional
TSMC causes the singularity problem. This means
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that in some region of the state space, TSM controller
may require to be in�nitely large so as to maintain
the ideal sliding motion [6]. This problem has been
resolved using Nonsingular Terminal Sliding Mode
Control (NTSMC) [6{10]. A chatter-free observer-
based NTSMC [11] has also been proposed for systems
with mismatched disturbances. Though TSMC and
NTSMC ensure �nite-time stability of the sliding mo-
tion, its convergence time depends heavily upon initial
conditions that may be unavailable or unknown. The
�rst e�ort to address this problem of the �nite-time
stability [12] was made in [13]. Thereafter, the notions
of �xed-time stability and control [14{16] are given in
the control community literature. Fixed-time stability
is �nite-time stability whose settling-time function is
uniform with respect to the initial conditions.

The �rst Fixed-Time Nonsingular Terminal Slid-
ing Mode (FTNTSM) and Fixed-Time Nonsingular
Terminal Sliding Mode Control (FTNTSMC) was de-
signed by Zou [17]. In this work, the singularity prob-
lem is avoided using sinusoidal function. Various FT-
NTSM controllers have been proposed in the context
of multi-agent systems [18{21]. Corradini and Cristo-
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faro [22] formulated a class of nonsingular terminal slid-
ing surfaces for designing FTNTSMC of nonlinear pla-
nar systems. Disturbance observer-based FTNTSMC
of second-order uncertain systems was investigated by
Wu et al. [23]. However, all the aforementioned works
su�er from chattering. The chattering phenomenon,
namely high-frequency oscillations, is the unavoidable
result of the classical SMC. Additionally, they con-
sidered only matched disturbances while mismatched
ones widely appear in practical applications [24{28]
and can degrade system performance or even cause
instability. Many practical systems such as electro-
magnetic suspension system, Markovian jump systems,
and exible joint manipulators encounter the issue of
mismatched uncertainties and disturbances. In strict
terms, controller design dealing with the mismatched
uncertainties is technically much more challenging than
the case of the matched uncertainties. The attenuation
of mismatched disturbances was achieved on the basis
of the robust control theory but at a cost of sacri�cing
the control system performance. As against robust con-
trol approach, handling the mismatched disturbances
using disturbance-observer-based control technique not
only eliminates their e�ect but also possesses the capa-
bility of retrieving the nominal system performance.

Nevertheless, contending with the mismatched
disturbances proves to be theoretically much more
demanding than matched ones [24], especially when
�xed-time control of dynamical systems with mis-
matched disturbances is encountered. This di�culty
substantially increases and unprecedented challenges
appear due to the intrinsic complexity of the �xed-
time controller design. Therefore, in recent years,
only the following papers have been published in this
regard. Ni et al. [29] �rst introduced a uniformly �nite-
time exact disturbance observer, which brings about
reconciliation between the uniform �nite-time high-
order sliding mode di�erentiator in [30] and the �nite-
time disturbance observer in [31]. Then, they proposed
a �xed-time observer-based state-feedback controller
for stabilization of high-order nonlinear systems with
mismatched and matched disturbances. An observer-
based FTNTSM controller for reusable launch vehicles
despite matched and mismatched disturbances [32] was
designed in which the �xed-time nonsingular terminal
sliding surface presented in [19] was employed. In
this work, while the mismatched disturbance can only
be estimated while the matched one is countered
by the discontinuous function sign(�), which leads to
chattering. The chattering degrades the performance
of a control system and can excite unmodeled high-
frequency modes of a physical system, which may lead
to instability. Therefore, dealing with the matched
uncertainties without the chattering is of paramount
importance in practise. This can be achieved by
bene�ting from the disturbance-observer-based control

technique. Tian et al. [33] studied the observer-
based �xed-time state-feedback stabilizer of high-order
integrators using bi-limit homogeneous technique.

Inspired by the above discussion, a complete solu-
tion for resolving all the aforementioned problems and
making up for all the above-mentioned shortcomings
is to reconcile NTSMC with �xed-time stability con-
cept and disturbance observer-based control technique.
This solution opens up the possibility that a system is
stabilized by an NTSMC within a �xed time and in the
presence of the mismatched and matched disturbances
without chattering. It should be noted that achieving
such a solution leads inevitably to a sophisticated
control structure.

This paper investigates observer-based continuous
FTNTSMC of second-order nonlinear systems subject
to mismatched and matched disturbances. To this end,
the uniformly �nite-time exact disturbance observer
introduced by Ni et al. [29] is employed for estimation
of both disturbances. This estimation is utilized
in designing a completely novel nonlinear dynamics
sliding surface whereby the �xed-time convergence of
the sliding motion is guaranteed in spite of mismatched
disturbance. Subsequently, a novel observer-based
FXNTSMC is introduced in which the singularity
problem is avoided using the sinusoidal function. More-
over, the controller is designed in such a way that a
continuous control signal is obtained and, in turn, the
chattering phenomenon does not occur. As mentioned
earlier, this chattering elimination is vital to practical
considerations. It is also proven that the phenomenon
of escape to in�nity in �nite time does not arise from
the closed-loop system's dynamics in the estimation
process during which the observer is trying to converge
to the disturbances. Afterwards, the �xed-time stabil-
ity of the reaching and sliding modes is mathematically
shown on the basis of Lyapunov technique. An
appealing feature of the proposed controller setting this
paper apart the others is that the upper bounds of the
convergence time of the reaching and sliding modes
explicitly exist as independent design parameters in
the control law statement. This o�ers the possibility
that the convergence time of the control system can
be set to any desired value in advance. Finally, the
proposed controller is applied to the Single Inverted
Pendulum (SIP) system in order that the performance
of the composite control scheme can be assessed.

2. Preliminaries and problem statement

2.1. Finite-time and �xed-time stability
Consider the following dynamical system:

_X = f(t;X); X(t0) = X0; (1)

where X 2 Rn, t0 is the initial time, and f : R+�Rn !
Rn is a continuous, nonlinear function. Assume that
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the origin is an equilibrium point of Eq. (1). Hereafter,
without loss of generality it is assumed that t0 = 0.

De�nition 1 [16]. The origin of Eq. (1) is said to be
globally �nite-time stable if it is globally asymptoti-
cally stable and any solutionX(t;X0) of Eq. (1) reaches
the equilibria at some �nite moment, i.e., X(t;X0) = 0,
8 t � T (X0) where T : Rn ! R+ [ f0g is the settling-
time function.

De�nition 2 [16]. The origin of Eq. (1) is said to
be globally �xed-time stable if it is globally �nite-time
stable and the settling-time function T (X0) is bounded,
i.e., 9Tmax > 0 : T (X0) � Tmax, 8 X0 2 Rn.

Theorem 1 [16]. If there exists a continuous radially
unbounded function V : Rn ! R+ [ f0g such that (i)
V (X) = 0 , X = 0, (ii) any solution of X(t) satis�es
the following inequality:

_V (X(t)) � � ��V �(X(t)) + �V �(X(t))
�k
; (2)

where �; �; �; �; k > 0 such that �k < 1 and �k > 1;
then, the origin of Eq. (1) is globally �xed-time stable
and the settling-time function satis�es the following
inequality:

T (X0) � 1
�k(1��k)

+
1

�k(�k�1)
; 8 X0 2 Rn:

(3)

As can be seen from Eq. (3), the upper bound of the
settling-time function is a nonlinear, complex function
of other parameters. This causes the process of tuning
the convergence time to be handicapped. However,
a special selection of the parameters can make this
process e�ortless as far as possible. Let the parameters
be chosen as: k = 3

2 , � = 2
3 (1� q

p ), � = 2
3 (1� q

p ) + 2q
p ,

and � = � = ( p
qT ) 2

3 . Then, we have:

_V (X(t)) � � ��V �(X(t)) + �V �(X(t))
�k

=�
 �

p
qT
� 2

3

V
2
3 (1� qp )(X(t))

+
�
p
qT
� 2

3 �
V

q
p (X(t))

�2
V

2
3 (1� qp )(X(t))

! 3
2

=� p
qT
�

1 +
�
V

q
p (X(t))

�2
� 3

2

V 1� qp (X(t)); (4)

where p and q are positive, odd integers such that 0 <
q=p < 1 and T > 0. Khanzadeh and Pourgholi [18]
proved that the settling-time function of _V � � p

qT (1+
(V

q
p )2) 3

2V 1� qp would satisfy T (X0) � T , 8 X0 2 Rn.

2.2. Problem formulation
Consider the following dynamical system under mis-
matched and matched disturbances described by:8><>: _x1 = x2 + d1

_x2 = f(X) + g(X)u+ d2

y = x1

(5)

where X = [x1x1]T 2 R2 is the state vector, u 2 R
is the control input, y 2 R is the controlled output,
and f(X) 2 R and g(X) 2 R are smooth nonlinear
functions such that g(X) 6= 0 for all X 2 R2.
d1 2 R and d2 2 R denote matched and mismatched
disturbances, respectively. It is assumed that the mis-
matched disturbance d1 is second-order di�erentiable
and d001 has a certain Lipschitz constant.

The goal is to design a continuous FTNTSM
controller whereby the output y converges to zero
before a prescribed time despite the matched and
mismatched disturbances. To this end, a uniformly
�nite-time exact disturbance observer [29] is initially
utilized in order to estimate the disturbances in the
system (5) as follows:

_z0i = v0i + hi; _zji = vji; � � � ; _znii = vnii;

v0i =� k0i�jz0i � xijni=(ni+1)sign(z0i � xi)
� k0i(1� �)jz0i � xij(ni+1+�)=(ni+1)

sign(z0i � xi) + z1i;

vji =� kji�jzji � v(j�1)ij(ni�j)=(ni�j+1)

sign(zji � v(j�1)i)

� kji(1� �)jz0i � xij(ni+1+(j+1)�)=(ni+1)

sign(z0i � xi) + z(j+1)i;

vnii =� knii�sign(znii � v(ni�1)i)

� knii(1� �)jz0i � xij(1+�)sign(z0i � xi); (6)

where i = f1; 2g, h1 = x2, h2 = f(X) + g(X)u, n1 = 3
and j = 1; � � � ; n1 � 1, n2 = 2, � is a su�ciently small
positive constant, and z0i; z1i; � � � ; znii are estimation
for xi; di; � � � ; d(ni�1)

i , respectively. The observer co-
e�cients kji are selected according to the condition
jd(ni)
i j < Li such that the following matrix be Hurwitz.26664
�k0i 1 0 � � � 0
�k1i 0 1 � � � 0

...
...

...
. . . 0

�knii 0 0 � � � 0

37775 : (7)

The function � is de�ned as follows:
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�(t) =

(
0 if t � Tu
1 if t > Tu

(8)

where Tu is a design parameter.
By de�ning the observer error variables as e0i =

z0i � xi, e1i = z1i � di; � � � ; enii = znii � d(ni�1)
i , the

observer error dynamics is governed by:8>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>:

_e0i =� k0i�je0ijni=(ni+1)sign(e0i)
� k0i(1� �)je0ij(ni+1+�)=(ni+1)sign(e0i)
+ e1i

_e1i =� k1i�je1i � _e0ij(ni�1)=nisign (e1i � _e0i)
� k1i(1� �)je0ij(ni+1+2�)=(ni+1)sign(e0i)
+ e2i

...
_e(ni�1)i =� k(ni�1)i�

��e(ni�1)i � _e(ni�2)i
��1=2

sign
�
e(ni�1)i � _e(ni�2)i

�
� k(ni�1)i(1� �)je0ij(ni+1+ni�)=(ni+1)

sign(e0i) + enii
_enii =� knii�sign

�
enii � _e(ni�1)i

�
� knii(1� �)je0ij(1+�)sign(e0i)

(9)

Ni el al. [29] proved that the observer error dynamics
(9) was �xed-time stable. This implies that eji for all
i's and j's is bounded.

2.3. Mathematical preliminaries
Lemma 1 [11]. If � 2 R and 0 < � < 1, it follows:

j�j� � 1 + j�j: (10)

Lemma 2 [19]. If xi 2 R+[f0g for i = 1; � � � ; n and
p > 1, then:

n1�p
 

nX
i=1

xi

!p
�

nX
i=1

xpi : (11)

3. Main results

A novel dynamic nonlinear sliding surface is proposed
below:

s =
�
x2 + d̂1

� p
p�2q

+
�

p
2Tsq

� p
p�2q

 �
1 +

�
(x2

1)
q
p

�2
� 3

2
! p
p�2q

x1;
(12)

where p and q are positive odd integers such that p >
8q, Ts > 0, and d̂1 = z11. The derivative of the sliding
surface (12) along the system dynamics (5) is:

_s =
p

p� 2q

�
_x2 + _̂d1

��
x2 + d̂1

� 2q
p�2q

+
�

p
2Tsq

� p
p�2q

 �
1 +

�
(x2

1)
q
p

�2
� 3

2
! p
p�2q

(x2 + d1)

+
6q

p� 2q

�
p

2Tsq
� p
p�2q

�
1 +

�
(x2

1)
q
p

�2
� p+4q

2(p�2q)

(x2
1)

2q
p (x2 + d1); (13)

where _̂d1 = z21. This paper also proposes the following
continuous FXNTSMC law:

u =� 1
g(X)

�
f(X) + d̂2 + _̂d1

+
p� 2q
p

�
p

2Tsq
� p
p�2q �

x2 + d̂1

�(1� 2q
p�2q )

�
24 �1 +

�
(x2

1)
q
p

�2
� 3

2
! p
p�2q

+
6q

p� 2q

�
1 +

�
(x2

1)
q
p

�2
� p+4q

2(p�2q)

(x2
1)

2q
p

#
+
�

1
2

�1�QP p�2q
p

p
2P
QTr � ��

��
x2+d̂1

� 2q
p�2q

�
�
x2 + d̂1

��( 2q
p�2q )

 
1 +

�
1
2
s2
� 3QP

!
s1� 2QP

+	�

��
x2 + d̂1

� 2q
p�2q

��
; (14)

where P and Q are positive, odd integers such that
P > 2(pq � 2)Q, Tr > 0, and d̂2 = z12. The function
�� (�) [19] is de�ned for � > 0 as follows:

�� (x) =

(
sin
�
�
2
x2

�2

�
; jxj � �

1; otherwise
(15)

Since �� (x)=x ! 0 as x ! 0, the control signal (14)
is bounded even when x2 ! 0. This guarantees that
the control signal is always well-de�ned. The function
	� (�) is also de�ned as:

	� (x) =

(
 sign(s); jxj � �; s 6= 0
0; otherwise

(16)

where  > 0.

Theorem 2. Consider the second-order dynamical
system (5). If the control law is established as Eq. (14),
then the system output y = x1 will converge to zero
within a �xed time and settling-time function T (X0)
satis�es:
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T (X0) � Tobs + Ts + Tr; (17)

where Tobs is assumed to be the upper bound of
convergence time of observer, Tr is that of the reaching
mode, and Ts is that of the sliding mode.

Proof. First, it is necessary to prove that during
the process of disturbances estimated by the system
of Eqs. (6), the closed-loop system will not escape in a
�nite time horizon.

Substituting the control law (14) into Eq. (13)
yields:

_s =
�p

p� 2q
e2~x

2q
p�2q
2 �

�
p

2Tsq
� p
p�2q

 �
1 +

�
(x2

1)
q
p

�2
� 3

2
! p
p�2q

e1 � 6q
p� 2q�

p
2Tsq

� p
p�2q

�
1 +

�
(x2

1)
q
p

�2
� p+4q

2(p�2q)

(x2
1)

2q
p e1

�
�

1
2

�1�QP p2P
QTr��

�
~x

2q
p�2q
2

� 
1+
�

1
2
s2
�3QP

!
s1� 2QP

� p
p� 2q

�
x2 + d̂1

� 2q
p�2q

	�

�
(x2 + d̂1)

2q
p�2q

�
; (18)

where e1 = d̂1 � d1, e2 = d̂2 � d2, and ~x2 = x2 + d1.
Multiplying both sides of Eq. (18) by s results in:

s _s =
�p

p� 2q
se2~x

2q
p�2q
2 �

�
p

2Tsq
� p
p�2q

 �
1 +

�
(x2

1)
q
p

�2
� 3

2
! p
p�2q

se1 � 6q
p� 2q�

p
2Tsq

� p
p�2q

�
1 +

�
(x2

1)
q
p

�2
� p+4q

2(p�2q)

(x2
1)

2q
p

se1 �
�

1
2

�1�QP p2P
QTr ��

�
~x

2q
p�2q
2

�
 

1 +
�

1
2
s2
� 3QP

!
(s2)1�QP � p

p� 2q
s~x

2q
p�2q
2

	�

�
~x

2q
p�2q
2

�
� p
p� 2q

jsjje2j~x
2q
p�2q
2

+
�

p
2Tsq

� p
p�2q

 �
1+
�

(x2
1)

q
p

�2
� 3

2
! p
p�2q

jsjje1j

+
6q

p� 2q

�
p

2Tsq
� p
p�2q

�
1 +

�
(x2

1)
q
p

�2
� p+4q

2(p�2q)

(x2
1)

2q
p jsjje1j: (19)

From Lemma 1 and since p > 8q, it follows ~x
2q
p�2q
2 <

1 + j~x2j: �
1 +

�
(x2

1)
q
p

�2
� 3

2
! p
p�2q

<
�

1 + x
4q
p

1

� 3p
2(p�2q)

<
�

1 + x
4q
p

1

�2

=1 + 2x
4q
p

1 +x
8q
p

1 <4+3jx1j; (20)

and:�
1 +

�
(x2

1)
q
p

�2
� p+4q

2(p�2q)

(x2
1)

2q
p <

�
2 + x

4q
p

1

�
x

4q
p

1

= 2x
4q
p

1 + x
8q
p

1 < 3(1 + jx1j): (21)

Thus, we have:

s _s � p
p� 2q

jsjje2j (1 + j~x2j)

+
�

p
2Tsq

� p
p�2q

(4 + 3jx1j)jsjje1j

+
18q
p� 2q

�
p

2Tsq
� p
p�2q

(1 + jx1j)jsjje1j: (22)

Given that jajjbj � a2+b2
2 yields:

s _s � p
p� 2q

�
e2

2 + s2

2
+ je2j ~x

2
2 + s2

2

�
+
�

p
2Tsq

� p
p�2q

�
4
e2

1+s2

2
+3je1jx

2
1 + s2

2

�
+

18q
p�2q

�
p

2Tsq
� p
p�2q

�
e2

1+s2

2
+je1jx

2
1+s2

2

�
= �1 + �2

x2
1

2
+ �3

~x2
2

2
+ �4

s2

2
; (23)

where:

�1 =
1
2

 
p

p�2q
e2

2+
�

p
2Tsq

� p
p�2q

�
4+

18q
p�2q

�
e2

1

!
;

�2 =
�

p
2Tsq

� p
p�2q je1j

�
3 +

18q
p� 2q

�
;

�3 =
p

p� 2q
je2j;

and:
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�4 =
p

p� 2q
(1 + je2j) +

�
p

2Tsq
� p
p�2q

 
(4 + 3je1j)

+
18q
p� 2q

(1 + je1j)
!
:

The dynamics of ~x2 is given by:

_~x2 = f(X) + g(X)u+ d2
_̂d1: (24)

Substituting the control law (14) into Eq. (24) yields:

_~x2 =� e2 � p� 2q
p

�
p

2Tsq
� p
p�2q

 �
1 +

�
(x2

1)
q
p

�2
� 3

2
! p
p�2q

~x(1� 2q
p�2q )

2

� 6q
p

�
p

2Tsq
� p
p�2q

�
1 +

�
(x2

1)
q
p

�2
� p+4q

2(p�2q)

(x2
1)

2q
p ~x(1� 2q

p�2q )
2 �

�
1
2

�1�QP p� 2q
p

p
2P
QTr

��
�

~x
2q
p�2q
2

�
~x
�( 2q

p�2q )
2

 
1+
�

1
2
s2
� 3QP

!
s1� 2QP

�	�

�
~x

2q
p�2q
2

�
: (25)

Multiplying both sides of Eq. (25) by ~x2 results in:

~x2 _~x2 =� e2~x2 � p� 2q
p

�
p

2Tsq
� p
p�2q

 �
1 +

�
(x2

1)
q
p

�2
� 3

2
! p
p�2q �

~x2
2
�(1� q

p�2q )

� 6q
p

�
p

2Tsq
� p
p�2q

�
1 +

�
(x2

1)
q
p

�2
� p+4q

2(p�2q)

(x2
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It follows from Lemma 1 that j~x2j1�( 2q
p�2q ) < 1 + j~x2j

and jsj1� 2QP < 1 + jsj. According to Eq. (16), it can be

concluded that j~x2jj	� (~x
2q
p�2q
2 )j �  j~x2j <  (1 + ~x2

2).
In the case of maxfj~x2j; jsjg � 1, it is obvious that
j~x2j1�( 2q

p�2q )jsj1+ 4QP � 1. In the case of minfj~x2j; jsjg >
1, it follows j~x2j1�( 2q

p�2q )jsj1+ 4QP � (~x2
2)1�( q

p�2q� 2QP ) <
~x2

2 if j~x2j � jsj and j~x2j1�( 2q
p�2q )jsj1+ 4QP �

(s2)1�( q
p�2q� 2QP ) < s2 if jsj � j~x2j. Combining both

cases together and using jajjbj � a2+b2
2 yield the

following:
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where:

�5 =
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and:
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2
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!
:

The dynamics of x1 can also be written as _x1 = x2 +
d1 = x2+d̂1+d1�d̂1 = ~x2�e1. Accordingly, it follows:
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x1 _x1 = x1~x2 � x1e1 � jx1j j~x2j+ jx1jje1j

� x2
1 + ~x2

2
2

+
x2

1 + e2
1

2
= �8 + �9

x2
1

2
+ �10

~x2
2

2
; (28)

where �8 = e21
2 , �9 = 2, and �10 = 1.

Based on the work of Li and Tian [34], let us de�ne
a �nite time bounded function Vcl(x1; ~x2; s) = 1

2 (x2
1 +

~x2
2 + s2) for the sliding surface dynamics (18) and the

state dynamics (5). In accordance with Inequalities
(23), (27), and (28), the derivative of Vcl along the
state dynamics (5) satis�es:

_Vcl = x1 _x1 + ~x2 _~x2 + s _s � (�1 + �5 + �8)

+ (�2 + �9)
x2

1
2

+ (�3 + �6 + �10)
~x2

2
2

+ (�4 + �7)
s2

2
: (29)

The coe�cients �i for i = 1; � � � ; 10 are bounded due to
the boundness of e1 and e2. By de�ning �Cons = �1 +
�5 + �8, �max = maxf�2 + �9;�3 + �6 + �10;�4 + �7g,
the following result is obtained:

_Vcl � �Cons + �maxVcl: (30)

It can be concluded from Inequality (30) that Vcl and
x1, ~x2, and s will not escape to in�nity in �nite
time [34].

Since the estimation of disturbances e1 and e2 in
Eq. (9) converges to zero within a �nite time upper
bound by a constant Tobs, the sliding surface dynamics
(18), for t � Tobs, will reduce to:
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: (31)

De�ne Vr = 1
2s

2. Taking derivative of Vr and using
Eq. (31) yield the following:
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As is clear from the de�nition of 	� , then:

� p
p� 2q

s~x
2q
p�2q
2 	� (~x

2q
p�2q
2 ) = � p

p� 2q
 jsj~x 2q

p�2q
2 ;

when:
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Accordingly, � p
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2 ) � 0 holds true

8 ~x2; s 2 R. Hence, the following result is obtained
based on Lemma 2:
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(33)

Let us divide the phase plane whose axes are de�ned
by x1 and ~x2 into three regions R1 = f(x1; ~x2)T 2
R2jj~x 2q

p�2q
2 j > �; s 6= 0g, R2 = f(x1; ~x2)T 2

R2jj~x 2q
p�2q
2 j � �; s 6= 0g, and R3 = f(x1; ~x2)T 2 R2js =

0g (Figure 1). InR1, it follows from �� (~x
2q
p�2q
2 ) = 1 that

_Vr � � PQTr (1 + (V
QP
r )2) 3

2V 1�QP
r . As a consequence, the

state trajectory will either directly reach the sliding
surface s or enter R2. Assume � to be chosen su�-
ciently small. In R2, it results from Eq. (25) that the

dynamics of ~x2 is governed by _~x2 = �	�

�
~x

2q
p�2q
2

�
=

� sign (s) because �� (~x
2q
p�2q
2 )~x

�( 2q
p�2q )

2 ! 0 as ~x2 ! 0.
This means _~x2 =  for s < 0 and _~x2 = � for s >

Figure 1. Phase plane plot.
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0. This dynamic guarantees that the state trajectory
crosses R2 within �nite time 2�(p�2q)=2q

 and, then, is
directed to the sliding surface by _Vr � � PQTr (1 +

(V
QP
r )2) 3

2V 1�QP
r . Therefore, the state trajectory will

ultimately reach the sliding surface at most within
the period Tr + 2�(p�2q)=2q

 . If  is chosen su�ciently

large, the term 2�(p�2q)=2q

 can entirely be neglected.
Accordingly, for t � Tobs + Tr, the sliding motion
begins. In R3, it follows:

0 =
�
x2 + d̂1

� p
p�2q

+
�

p
2Tsq

� p
p�2q

 �
1 +

�
(x2

1)
q
p

�2
� 3

2
! p
p�2q

x1:
(34)

Since d̂1 = d1 for t � Tobs, x2 + d̂1 = x2 + d1 = _x1.
Thus, the sliding motion dynamic is governed by:

_x1 = � p
2Tsq

�
1 +

�
(x2

1)
q
p

�2
� 3

2

x
1� 2q

p
1 : (35)

Here, we de�ne Vs = x2
1. Taking derivative of Vs and

using Eq. (35) yield the following:

_Vs = 2x1 _x1 = � p
Tsq

�
1 +

�
V

q
p
s

�2� 3
2

V
1� qp
s : (36)

This guarantees that in the sliding motion, x1 con-
verges to the origin at most within the period Ts. As
per what was gathered, the system output y converged
to the origin from any initial state in the state space
and the settling-time function satis�es T (X0) � Tobs +
Ts + Tr, which completes the proof. �

Remark 1. Once the state trajectory comes into
the region R2, the function 	� (�) in the control law
statement (14) drives it to cross R2 within �nite time.
In strict terms, this function ensures that ~x2 = 0
will not be attractor. It should also be noticed that
the condition s 6= 0 of 	� (�) is necessary for the
continuity of the control signal because it does not
allow chattering to occur in Rc = R2 \ R3, which is
depicted in Figure 2.

Remark 2. As was proven earlier, Tr and Ts are
upper bounds of convergence time of the reaching and
sliding modes, respectively. They explicitly exist as
independent design parameters in the control law state-
ment (14). This enables us to set them to any desired
value in advance. These design parameters determine
the convergence speed of the output. The smaller these
parameters are chosen, the faster the output converges
to the zero. The parameter � determines the thickness

Figure 2. The region Rc = R2 \R3.

of the region R2. This parameter must be chosen
su�ciently small in order that the negligibility of the
term 2�(p�2q)=2q

 can be guaranteed. Choosing large
values for the parameter  is also necessary for making
the term 2�(p�2q)=2q

 smaller.

4. Simulation results

This section is to represent a numerical simulation.
A benchmark simulation example is SIP system [17]
whose intrinsic instability and fast dynamics can show
how e�ective a control system acts. Hence, the
proposed controller (14) is applied to the SIP system
when the controller's parameters are selected as q = 1,
p = 9, Q = 1, P = 15, � = 0:1, Tr = Ts = 5,
 = 5 and the initial conditions are set as x1(0) = 0:5,
x2(0) = 0:5. The disturbances are considered as d1 =
0:5 sin 2t + 0:5 cosx1(t), d2 = 0:5 cos 3t + 0:5 sinx2(t)
and the observer's parameters are chosen as z01 =
z11 = z21 = z31 = z02 = z12 = z22 = 1, k01 = 5,
k11 = k21 = 10, k31 = 4, k02 = 5, k12 = 10, k22 = 7,
Tu = 0:1, � = 0:01. Figures 3 and 4 show that the
observer's state variables converge to the disturbances
d1 and d2 approximately at t = 2 s. The response
curve of the output y = x1 is depicted in Figure 5.
This �gure indicates that the overall closed-loop system
has been successful in stabilizing the output since x1
has converged to zero before the time Tr + Ts = 10.

Figure 3. Response curve of d1 and d̂1.
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Figure 4. Response curve of d2 and d̂2.

Figure 5. Response curve of y = x1.

Figure 6. Response curve of x2 and (�d1).

Figure 7. Response curve of ~x2.

Figure 6 shows that the state variable x2 has converged
to (�d1), which is equivalent to the convergence of ~x2
to zero (Figure 7). The behavior of the sliding surface
is depicted in Figure 8. As can clearly be understood
from this �gure, the sliding surface is driven into zero
before the time Tr = 5. The control signal u is shown

Figure 8. Response curve of the switching surface s.

Figure 9. Response curve of the control signal.

in Figure 9. This �gure bears witness to the fact that
the control signal is continuous.

To demonstrate the e�ectiveness of the proposed
method, the controller is compared with the �xed-
time sliding mode controller introduced by Jianguo and
Shengjiang [35]. We have chosen the aforementioned
paper because its idea is somewhat similar to what was
proposed here; however, these two papers essentially
adopted di�erent approaches to constructing a �xed-
time sliding mode controller. In strict terms, Jianguo
and Shengjiang's controller was designed on the basis of
ordinary �xed-time control method, while the proposed
controller was derived from a completely novel and
di�erent approach.

Unlike the claim of the authors of the above-
mentioned paper, their proposed �xed-time sliding
mode controller is not �xed-time stable. This can easily
be evidenced by the formula [35, page 3]:

T1 =
ln
�

s(0)k1

(k21� �d�� ) + 1
�

k1
;

obtained for the convergence time of the reaching
phase. This formula clearly shows that the convergence
time of the reaching phase depends on the initial
conditions s (0), which is completely contrary to the
concepts of the �xed-time stability and control. In
addition, the aforementioned paper has only consid-
ered the mismatched uncertainties and used a linear
observer rather than a �xed-time one. Nonetheless,
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Figure 10. Response curve of the switching surface s for
the proposed controller and Jianguo's controller.

we applied our controller and the proposed controller
of Jianguo and Shengjiang to the simulation example
(SIP) without considering disturbances and reported
the results of these simulations in the following.

This paper proposed the following sliding surface
and control law orderly:

s = x2 + �
x1

jx1j+ �
+ x

m+n
m

1 ; (37)

and:

u=�g�1(X)
�
f(X)+

��x2

(jx1j+�)2 +
m+n
m

x
n
m
1 x2

+k1s+
�
k1 +

m+ n
m

d�jx1j nm
�

sign(s)
�
: (38)

Jianguo and Shengjian selected their parameters as
follows: � = 0:5, � = 0:01, m = 3, n = 2,  = 0:5,
k1 = 0:1, and k2 = 0:5. Since the disturbances
have not been considered, we set d� = 0. Figure 10
shows the behavior of the sliding surface s. This �gure
indicates that the proposed controller drives the state
trajectory into the sliding surface much faster than
Jianguo and Shengjian's controller. This results from
the fact that Jianguo and Shengjian's controller can
only guarantee the �nite-time stability of the reaching
phase. As can clearly be understood from this �gure,
the sliding surface of Jianguo and Shengjian linearly
converges to zero, whereas our sliding surface is driven
into zero as a high-degree polynomial. The response
curves of the state variables x1 and x2 are also depicted
in Figures 11 and 12. The control signals of the
two controllers are also illustrated in Figure 13. As
clear from this �gure, the proposed control signal is
signi�cantly larger than that of Jianguo and Shengjian.
This is completely reasonable because the proposed
controller stabilizes both reaching and sliding phases
within �xed time whereas Jianguo and Shengjian's
controller only guarantees the �xed-time stability of
the sliding phase. Another remarkable feature of the
proposed controller is that it generates a continuous
control signal, but Jianguo and Shengjian's controller

Figure 11. Response curve of x1 for the proposed
controller and Jianguo's controller.

Figure 12. Response curve of x2 for the proposed
controller and Jianguo's controller.

Figure 13. Response curve of the control signal u for the
proposed controller and Jianguo's controller.

experiences chatters even when there is not any kind
of disturbances (Figure 13).

5. Conclusion

This article presented a disturbance-observer-based
NTSMC controller for nonlinear planar system. Its
notable features included �xed-time stability of the
closed-loop system, continuity of the control signal,
and countering matched and mismatched disturbances.
The �rst one guarantees the convergence time of the
closed-loop system to be uniform with respect to initial
conditions. The continuity of the control signal gives
rise to chattering avoidance. In addition, the last
one broadens the application area of the proposed
controller.
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6. Future recommendation

Applying the idea of the observer-based continuous
FTNTSMC to the sophisticated applications such as
complex dynamical networks, multi-agent systems, and
so on will de�nitely be highly impressive and attract
the attention of many researchers. Extending the
proposed method to high-order planar systems can be
considered a challenging problem for further research.
Restructuring the proposed method in the form of
output-feedback control will be also of general interest.
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