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Abstract. The classical manufacturing systems assume that all produced items are
of perfect quality. They also need to consider the rework process in manufacturing
operations. Moreover, most of the previous literature considers single-stage production-
inventory systems and does not consider multi-stage options. However, in real-world
production-inventory systems, defective items are inevitable, and a fraction of the produced
items may be defective. In addition, to avoid extra costs and consider environmental issues,
organizations tend to rework activities. We propose single and multi-stage production-
inventory systems in manufacturing operations where the process is defective, rework is
possible, and a percentage of items are scrapped. A main assumption in the current paper
is that the defective rate is assumed to be an uncertain parameter. The grey systems
theory, as a mathematical tool to address uncertain information in real-world situations,
is utilized to model the random defective rate via a grey nonlinear programming problem.
The proposed issues are investigated via numerical examples to assess the impact of grey
parameters on optimal solutions.
© 2023 Sharif University of Technology. All rights reserved.

1. Introduction

One of the primary assumptions of the classical
production-inventory problems is that all items are
of perfect quality every time. However, in real-world
situations, the production processes are not necessarily
of perfect quality, and producing defective items is
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inevitable. Usually, a certain fraction of the items
are defective due to poor quality of the production
process or raw materials. In a multi-stage production
system, products are transferred from one stage to the
next stage, and every stage may produce a fraction of
defective products. A production stage is a�ected by a
number of inevitable undesirable factors, which make
it rarely possible for a production machine/production
system to produce perfect quality items every time. In
fact, in some defective production systems, rework is
usually used for imperfect items at every stage. The
perfect items go to the next stage and �nally become
�nished products at the �nal stage and then go under
consumption. Moreover, a fraction of imperfect items
are of unacceptable quality and should be disposed of
as scrap at each stage. The decision on the quality of
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a produced item is made by a quality control process
in manufacturing companies.

In the real world, there are many uncertain
parameters a�ecting the decision-making process, out-
standingly. Grey systems theory is a mathematical
tool to address uncertain information in real-world
situations. In grey systems theory, the aim is to
enable prediction and decision-making in uncertain
environments. In a real system, when the information
is fully known, the system is called a white system,
and when the information is unknown, it is called a
black system. Moreover, when the system encounters
partially known information, it is called a grey sys-
tem. One of the common approaches in addressing
uncertain decision-making is stochastic programming,
where analysis of scenarios is carried out to study an
optimization problem under uncertainty. In such an
approach, the uncertainty of parameters is addressed
by a number of subproblems; each one is associated
with a scenario on the possible values of uncertain
parameters. By analyzing the subproblems and study-
ing their solutions, one hopes to discover the solution
to the original problem by using probabilistic means
like expected value. However, solving the subproblem
may have some di�culties, and great computational
e�orts are needed to solve subproblems. Grey Pro-
gramming (GP) (grey optimization) is one of the
potential approaches for avoiding the above problems
in stochastic programming [1]. The major advantages
of GP against existing approaches are:

(i) GP will generate feasible ranges of decision
variables and objective functions using the in-
terpretation of the grey solutions and grey input
parameters;

(ii) GP will have lower computational e�orts com-
pared with the existing methods and then is
applicable to practical problems;

(iii) GP will not require distribution information
(like probability-based approaches) or member-
ship function (like fuzzy-based approaches) for
input parameters, since interval numbers are
acceptable for the input parameters [1].

In this paper, as our contribution, we propose a
production-inventory problem where a manufacturer
produces products via a �nite production rate. It
is assumed that the production process is defective
and produces a percentage of imperfect items. The
imperfect products are also under a rework process
to become perfect and return to the consumption
cycle. The aim is to determine optimal/economic
production quantities in such a way that the total cost
of the system is minimized. The traditional litera-
ture mostly considers single-stage production systems
and the multi-stage production processes are rarely

considered. Moreover, many of them addressed the
constant defective rate in the manufacturing process,
which is not a real condition. In addition, rare studies
considered the rework of defective items, and others do
not consider this complementary process.

The rest of this paper is structured as follows.
Section 2 introduces the grey systems theory. Then,
Section 3 applies the grey systems theory principles
to single and multi-stage manufacturing systems. Sec-
tion 4 considers two numerical examples and studies
the impact of grey parameters on optimal solutions.
Finally, Section 5 concludes the paper.

2. Literature review

The manufacturing process with rework has been stud-
ied and discussed extensively in the literature (i.e.,
see [2,3]). Moreover, the impact of the rework process
on imperfect products was evaluated as well. As
one of the �rst contributions, Salameh and Jaber [4]
considered the raw material in the economic order
lot size problem where there is an inspection process
within a main production process. They assumed
that the defective items were sold as a single batch
at a discounted price. Also, they considered a prob-
ability density function for a percentage of defective
items. Besides, an inventory problem for a multi-
stage production process with imperfect items was
presented by Ben-Daya and Rahim [5]. In their
paper, a �xed percentage of defective items has been
considered. In another work proposed by Ben-Daya
et al. [6], they considered di�erent inspection policies
for the inventory inspection models in a single-stage
environment. Moreover, a beta distribution has been
assumed for the fraction of nonconforming items. Ojha
et al. [7] studied a reworkable item lot size quantity
model under an imperfect production system. They
considered single-stage production with producing the
defective items at a constant rate. In addition, Sarker
et al. [8] studied a multi-stage production environment
where there is an imperfect manufacturing system.
In that paper, they assumed that the proportion of
defective items is constant in each cycle. In other
research presented by Biswas and Sarker [9], an optimal
lot size quantity was calculated in a lean production
system when there are reworks and scraps in the
system. A single-stage production process with a
constant proportion of defective items was considered
in that paper. Moreover, Wee and Widyadana [10] pro-
posed an economic production quantity model under
rework conditions for raw materials and deteriorating
�nished items. Their assumption was also a single-
stage system with a constant rate of rework and
deterioration. Krishnamoorthi and Panayappan [11]
evaluated the possible sales return for poor-quality
items in a production process with rework allowed.
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They considered a constant proportion of defects in a
single-stage manufacturing system. In another study,
the various inspection options were investigated by
Yoo et al. [12], who tried to manage the inventory
with imperfect production. In this paper, a multi-
stage system with a constant defective rate for items
was considered. Colledani and Tolio [13] proposed an
analytical approach to jointly assess the e�ect of qual-
ity and performance in a multi-stage manufacturing
system with a �xed fraction of nonconforming items.
Wee et al. [14] determined the production lot size for
imperfect quality items when shortages are allowed for
a single-stage system. In their paper, the percentage
of imperfect items had a known probability density
function. Additionally, Paul et al. [15] suggested
a disruption system in a multi-stage manufacturing
system. Moreover, Mahata [16] considered partial
backlogging and fuzziness to calculate the production
lot size under an imperfect production system. In
other words, some costs, such as setup cost, average
holding cost, backorder cost, raw material cost, labor
cost, as well as a percentage of defective items, were
characterized as fuzzy numbers. Jaggi et al. [17]
proposed and discussed an imperfect inventory model
with two warehouses with permissible payment delays.
The percentage of defective items in their paper was a
random variable with a probability function. Kamali
et al. [18] presented a multi-objective optimization
inventory model for the single-buyer, multi-vendor
problem with discounts. The authors considered each
vendor had a �xed rate of item deterioration in a supply
chain. Nobil et al. [19] considered the scrapped and
reworked items under economic production quantity,
incorporating shortages and allocations in a multi-stage
manufacturing system. The percentage of defective has
been known as a constant parameter in this paper.
Cheng et al. [20] proposed multiple disposals of defec-
tive inventories for an integrated imperfect production
system. They assumed that there was a random frac-
tion of defective items with a known probability density
function. Mokhtari [21] proposed a joint production
and order lot size problem considering the rework and
defective manufacturing. The author considered the
uncertainty for a percentage of items by a probability
function. Nobil et al. [22] suggested an imperfect,
shortage, rework, and scrapped single-machine system
with inspection, de�ciency levels, and setup times. One
of their assumptions was that the expected proportion
of produced defective items was known and constant.
Mokhtari and Asadkhani [23] discussed an Economic
Order Quantity (EOQ) model with imperfect quality
inventory, including a probability density function with
the inspection under batch replacement and returned
items conditions. In another study, Mokhtari [24]
proposed an optimal manufacturing system under both
imperfect raw materials and products. In this paper,

the defective rate of items has been assumed to be a
constant number. Yang et al. [25] incorporated the
trade credit into an inventory problem with shortage
and constant defective items. Beranek and Buscher [26]
suggested an integration between pricing and quality
decisions under market segmentation by considering
imperfect quality items. The proportion of imperfect
quality items was constant and quality-dependent.
Adak and Mahapatra [27] proposed a three-layer sup-
ply chain system with imperfect items and variable
production costs under deterioration. In this paper, it
was assumed that the defection rate of the �nished item
is �xed. A comparison between papers of literature
review has been given in Table 1.

3. Theory of grey systems

In this section, the concept of grey systems will be
de�ned to be used in the sequel. A grey number
G(
) is a number whose exact value is unknown, but a
bounded interval within which the value lies is known.
A grey system is a system that includes information as
grey numbers, and a grey decision is a decision-making
system for a grey system. A grey number G(
) is
de�ned as an interval with known lower limit G and
known upper limit G as G(
) =

�
G;G

�
. One of the

main advantages of grey system theory is that it works
even if the probability distribution and membership
functions cannot be recognized [28]. A grey number
G(
) becomes a deterministic number or white number
when its upper and lower limits are equal G = G. Some
useful information on this approach is summarized in
the sequel.

De�nition 1. A grey number G(
) is de�ned as an
interval with known lower and upper limits G(
) =�
G;G

�
and unknown distribution information.

De�nition 2. The whitened value of grey number
G(
), shown by ~G(
), is de�ned as a deterministic
number with a value lying between upper and lower
limits:
G � ~G(
) � G: (1)

The whitened value of the grey number can be formu-
lated by de�ning a new variable 
 2 [0; 1] as follows:

~G(
) = 
G+ (1� 
)G: (2)

The whitened value ~G(
) equals to upper limit G if

=1, and equals to lower limit G, if 
 = 0. Moreover,
if 
 gets a value between 0 and 1, the whitened value
~G(
) gets an intermediate value between upper and
lower limits.

Grey Linear Programming (GLP) is a decision-
making method under uncertainty. It is a development
of the traditional linear programming method. The
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Table 1. The properties of reviewed papers in the literature.

Refrences EOQ/EPQ

Environment Kind of uncertainty
regarding the

percentage of defective items
Single
-stage

Multi
-stage

Supply
-chain

Salameh and Jaber (2000) [4] EOQ * { { Probability density function

Ben-Daya and Rahim (2003) [5] EPQ { * { Constant rate

Ben-Daya et al. (2006) [6] EOQ * { { Beta distribution

Ojha et al. (2007) [7] EPQ * { { Constant rate

Sarker et al. (2008) [8] EPQ { * { Constant rate

Wee and Widyadana (2012) [10] EPQ * { { Constant rate

Krishnamoorthi

and Panayappan (2017) [11]
EPQ * { { Constant rate

Yoo et al. (2012) [12] EPQ { * { Constant rate

Colledani and Tolio (2011) [13] EPQ { * { Constant rate

Wee et al. (2013) [14] EOQ * { { Probability density function

Paul et al. (2015) [15] EPQ { * { Constant rate

Mahata (2017) [16] EPQ * { { Fuzzy number

Jaggi et al. (2017) [17] EPQ { { * Probability density function

Kamali et al. (2017) [18] EPQ { { * Constant rate

Nobil et al. (2018) [19] EPQ { * { Constant rate

Cheng et al. (2018) [20] EOQ { * { Probability density function

Mokhtari (2018) [21] EPQ * { { Probability density function

Nobil et al. (2019) [22] EPQ * { { Constant rate

Mokhtari and Asadkhani (2019) [23] EOQ * { { Probability density function

Mokhtari (2019) [24] EPQ { * { Constant rate

Yang et al. (2019) [25] EOQ * { { Constant rate

Beranek and Buscher (2021) [26] EPQ * { { Constant rate

Adak and Mahapatra (2022) [27] EPQ { { * Constant rate

This paper EPQ * * { Grey number

GLP can be presented by following standard form:

Max f = c(
)x; (3)

subject to:

A(
) x � b x � 0;

in which:

c(
) = [c1(
); c2(
); : : : ; cm(
)]; (4)

xT = (x1; x2; : : : ; xm) ; (5)

bT = (b1; b2; : : : ; bn) ; (6)

A(
) = [aij(
)]

8i = 1; 2; : : : ; n; j = 1; 2; : : : ;m; (7)

and:
cj(
) =

�
cij ; cij

�
and aij(
) =

�
aij ; aij

�
8i = 1; 2; : : : ; n; j = 1; 2; : : : ;m: (8)

The optimal solution to the problem is also a grey num-
ber since the parameters in the model Eq. (27) are grey.

f�(
) =
h
f�; f�

i
; (9)

xij(
) =
�
xij ; xij

�
: (10)
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The aim of GLP is to obtain grey objective function
f�(
), and grey decision variables xij(
) of model
Eq. (27) as uncertain interval outputs. In other words,
the aim is to �nd the lower and upper limits for optimal
objective function when the input parameters are grey.

Since the proposed production-inventory prob-
lems are unconstrained nonlinear optimization prob-
lems, we focus on Grey Non-Linear Programming
(GNLP). Let X = (x1; x2; :::; xn) be the decision vector
and (
) a set of grey parameters. Then:

max Z = f(X; 
); (11)

is a grey unconstrained nonlinear programming prob-
lem, where f(X; 
) is a grey functional. If all grey
elements in f(X; 
) are whitened, then a programming
problem is called whitenized programming:

max Z = ~f(X; ~
): (12)

For GNLP problems, we can �rst whitenize the original
problem and then solve the resulting one for the
solution. Let us consider that f (X) is a di�erentiable
function. Then, the solution of the gradient vector is a
solution of an optimization problem:

@ ~f
�
X; ~
�
@X

= 
@ ~f
�
X; ~
�
@x1

;
@ ~f
�
X; ~
�
@x2

; : : : ;
@f ~f

�
X; ~
�

@xn

!
=0: (13)

If f (X) is second-order di�erentiable, and its Hessian
matrix;

H(x) =0BBBBBB@
@2 ~f(X;~
)

@x2
1

@2 ~f(X;~
)
@x1x2

� � � @2 ~f(X;~
)
@x1xn

@2 ~f(X;~
)
@x2x1

@2 ~f(X;~
)
@x2

2
� � � @2 ~f(X;~
)

@x2xn
...
@2 ~f(X;~
)
@xnx1

...
@2 ~f(X;~
)
@xnx2

� � �
...
@2 ~f(X;~
)

@x2
n

1CCCCCCA ;
(14)

is a negative de�nite matrix. Moreover, in order
to reach the lower and upper limits for an optimal
objective function, the following mathematical models
are constructed:
min



(f
) = max
X

~f(X; ~
); (15)

subject to:
~
 = 

+ (1� 
)
 0 � 
 � 1;

max



(f
) = max
X

~f(X; ~
); (16)

subject to:
~
 = 

+ (1� 
)
 0 � 
 � 1;

where (f
) and f(
) represents the lower and upper

limits of the objective function (total pro�t per unit
time) as a grey number. In GP, the aim is to recognize
the lower and upper limits of the objective function
f(X;
), caused by grey input parameters.

4. Grey modeling

4.1. Single-stage manufacturing system
In this section, a single-stage manufacturing system
with the aim of satisfying an external demand DS

will be discussed and proposed. In this system, the
production is performed through a �nite rate PS1 based
on an EPQ structure. The demand rate is constant,
the shortage is not permitted, and the purchase cost
is assumed to be �xed. Unlike classical inventory
problems, the production process is supposed to be
defective, and a percentage of items �S(
) is imperfect.
That means the defective rate of the system is a grey
number G(
), which is de�ned as an interval with
known lower limit �S and known upper limit �S as
�S(
) = [�S ; �S ]. The imperfect items are also under
the rework process to become perfect and return to
the consumption cycle. Every cycle of inventory, in
our problem, includes periods of (i) production, (ii) re-
working, and (iii) depletion. A percentage of defective
items �S(
) is produced during the production period,
and then a rework process with rate PS2 will be started.
The environmental e�ects, in real situations, result in
unsuitable variations in the quality of products. So,
the percentage of defective items �S(
) is assumed to
be a random variable. During the production interval
tSp , the products are produced at a rate PS1 . At
the end of the production period, there are imperfect
items whose amount is determined by multiplying
defective rate and production quantity, i.e., �S(
)QS .
At this moment, the rework process commences for
the reworkable items ��S(
)QS . The scrapped items
(1� �)�S(
)QS are detected and disposed of the re-
workable items ��S(
)QS go under reworking, become
perfect items, and then return to perfect items stock.
During the depletion period tD, the stored inventory
is fully consumed. At every cycle, this process repeats
without interruption. To ensure feasibility and prevent
shortage, we consider the initial conditions as ISmax �
��S(
)QS � 0. Since ISmax = QS �1�DS=PS1

�
, this

condition simpli�es to �S(
) � 1 �D=P1. Therefore,
the defective rate �(
) is assumed to be a variable on
interval [0; 1 � DS=PS1 ], to avoid shortage and ensure
feasibility. In order to maximize the total pro�t, we
seek the optimal production quantity QS . The total
pro�t TPS is the subtraction of total cost TCS from
total revenue TRS . The total revenue per cycle TR
involves sales of perfect and scrapped items which is
given as TRS = vS

�
QS � �S (
) QS + ��S (
) QS	+

sS
�

(1� �)�S (
) QS	, where vS and sS represent the
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sale price of perfect and scrapped items, respectively,
for a single-stage system. The total cost involves
production, setup, holding, screening, and reworking
costs. The production cost PCS can be determined by
PCS = CSQS , and the setup cost SCS is calculated
by SCS = AS . We should calculate the area below the
inventory curve in order to compute the holding cost.
To this end, we name areas below the production (�rst
period) SSI , rework (second period) SSII , and depletion
(third period) SSIII . By doing so, we reach:

SSI =
QS2

2PS1

�
1�DS=PS1

�
;

SSII =
��S (
) QS

2PS2
f2QS �1�DS=PS1

��2�S (
) QS

+��S(
) QS �1�DS=PS2
�g;

and,

SSIII =
1

2DS fQS
�
1�DS=PS1

�� �S (
) QS

+ ��S (
) QS �1�DS=PS2
�g2:

Then, the holding cost can be computed as follows:

HCS =hSQS2
�
GS2 (
)

2DS +
1

2PS1

�
1�DS

PS1

�
+
��S (
)

2PS2

��
1�DS

PS1

�
��S (
)+GS (
)

��
; (17)

where h is the unit holding cost (per product per unit
time), and:

GS (
) =
�

1�DS

PS1

�
� �S (
) + ��S (
)

�
1�DS

PS2

�
:

Moreover, the cost of screening is calculated byWCS =
dSQS , where d is the unit screening cost per item. In
addition, the reworking cost is formulated as RCS =
rS��S (
)QS in which rS is the cost of the reworked
item.

By using the above formulation, the total cost can
be written as follows:

TCS = CSQS +AS + hSQS2

�
GS2 (
)

2DS +
1

2PS1

�
1� DS

PS1

�
+
��S (
)

2PS2��
1� DS

PS1

�
� �S (
) +GS (
)

��
+ dSQS + rS��S (
) QS : (18)

Therefore, the total pro�t can be calculated by TRS �
TCS as follows:

TPS = vS
�
QS � �S (
) QS + ��S (
) QS	

+ sS
�

(1� �)�S (
) QS	� CSQS �AS
� hSQS2

�
GS2 (
)

2DS +
1

2PS1

�
1� DS

PS1

�
+
��S (
)

2PS2

��
1�DS

PS1

�
��S (
)+GS (
)

��
� dSQS � rS��S (
) QS : (19)

Since the defective rate is a grey number, then the
whitened value of total pro�t, T ~PS(
), is given by
substituting the whitened value of the defective rate
~�(
) into the above formula, as follows:

T ~PS (
) = vS
n
QS � ~�S (
) QS + �~�S (
) QS

o
+ sS

n
(1� �) ~�S (
) QS

o� CSQS
�AS � hSQS2

� ~GS
2
(
)

2DS +
1

2PS1�
1� DS

PS1

�
+
�~�S (
)

2PS2��
1� DS

PS1

�
� ~�S (
) + ~GS (
)

��
� dSQS � rS�~�S (
) QS ; (20)

where,

~GS(
) is
�

1�DS

PS1

�
� ~�S(
)+�~�S(
)

�
1�DS

PS2

�
:

Moreover, the whitened value of total pro�t per unit
time T ~PUS(
) can be computed by dividing T ~PS(
)
by the whitened inventory cycle time ~TS(
). In
another way, the cycle time is tSP + tSR + tSD, which
simpli�es to ~TS (
) = Q

D

�
~�S (
) (�� 1) + 1

�
. There-

fore, the whitened total pro�t per unit time T ~PUS(
)
is calculated:

T ~PUS (
) =
DS

~�S (
) (��1) + 1

�
vS
n

~�S (
) (��1)+1
o

+ sS
n

(1��) ~�S (
)
o�CS �hSQS� ~GS(
)2

2DS +
1

2PS1

�
1� DS

P1

�
+
�~�S(
)

2PS2
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��
1� DS

PS1

�
� ~�S(
) + ~GS(
)

��
�dS ��rS ~�S (
)

�
� ASDS

QS
�

~�S (
) (�� 1) + 1
� :

(21)

It can be proved that T ~PUS(
) is a concave function of
QS , since its second derivative is negative. Therefore,
in order to obtain the optimal quantity QS�, we set the
�rst derivative to zero, and arrive Eq. (22) as shown
in Box I.

Note that when ~�S(
)=0, QS� reduces to the tra-

ditional EPQ formula,
h
2ASDS=

�
hS
�

1� DS
PS1

��i1=2
.

Moreover, in order to reach the lower and upper
limits for optimal objective function, the following
mathematical models are constructed:

min


TPUS (
) = max

QS1
T ~PUS (
) ; (23)

subject to:

~�S (
) = 
�S + (1� 
)�S 0 � 
 � 1;

max



TPUS (
) = max
QS1

T ~PUS (
) (24)

subject to:

~�S (
) = 
�S + (1� 
)�S 0 � 
 � 1;

where TPUS(
) and TPUS(
) represents the lower
and upper limits of the objective function (total pro�t
per unit time) as a grey number. It is notable
that the existence of the grey defective rate leads to
the fact that the total pro�t is also a grey number
with upper and lower limits. The aim of GP is to
recognize the lower and upper limits of the objective
function, TPU in our model, caused by grey input
parameters. This will be obtained in our model by
the GP model. In addition, note that the �rst model
is a minimax problem (can be solved via conventional
minimax commands in MATLAB), while the second
one is a maximization problem with two variables Q1
and 
 (can be simply solved by nonlinear optimization
commands in MATLAB).

4.2. Multi-stage manufacturing system
In this section, we extend the single-stage manu-
facturing system introduced in the previous section

Figure 1. The inventory level for jth j = 1; 2; : : : ; n� 1
stage of multi stage manufacturing system.

to a multi-stage one. Let's consider an imperfect
manufacturing system with serial arrangement. As
shown in Figure 1, each production stage j performs
a speci�c operation on input items via production
rate P1j and then sends the perfect output items
into the next manufacturing stage j + 1. Moreover,
the stage j is assumed to be defective and produces
some percentages of imperfect items �j(
). Similar
to the single-stage case, the percentage of imperfect
items �j(
) is also a grey number with lower and
upper limits. The defective items that are reworkable
go under the rework process with the rework rate
P2j . At the end of the rework period, the stored
inventory is sent to the next production stage j + 1
for further processing. At each stage, there are three
types of output items: (i) perfect items, (ii) imperfect
but reworkable items, and (iii) imperfect and scrapped
items. Once the production ends, there exist imperfect
items �j(
)Qj . Among them, the reworkable items
�j�j(
)Qj go under the reworking process, and the
scrapped items (1� �j)�j(
)Qj are disposed of from
the system. During the rework period tRj , all the
reworkable items �j�j(
)Qj become perfect with the
rate of P2j and return to the system. At the end of the
rework period, the stored inventory is transferred into
the next stage. The perfect and reworked items are sent
to the next production stages for further processing.
This is continued till the items reach to nth production
stage. This stage is di�erent from previous intermedi-
ate stages. It has one more period than previous stages,
i.e., the depletion period. At this stage, the �nished
products are produced and depleted via demand rate
D. Indeed, at the end of the rework period, the
stored inventory is consumed during the depletion

QS� =

24 2ASDS

hS
n

~�S(
)2 + DS
PS1

�
1� DS

PS1

�
+ �~�S(
)DS

PS2

n�
1� DS

PS1

�� ~�S (
) + ~GS (
)
oo35 1

2

: (22)

Box I
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period tD until it reaches zero. Figure 2 presents
the inventory level of nth (�nal) production stage.
The aim is to determine optimal/economic production
quantities Q1; Q2; : : : ; Qn, in such a way that the total
pro�t is maximized. Moreover, Figure 3 depicts the
inventory level of the entire planning horizon. To
ensure feasibility and avoid shortage during stage j,
the inventory level at the start of the rework period
of every stage j should be greater than/equal to zero.
For this purpose, we should have P1jQj��j(
)Qj � 0,
which simpli�es to �j(
) � P1j for j = 1; 2; : : : ; n.

Before formulating total pro�t, we derive the rela-
tionship between production quantitiesQ1; Q2; : : : ; Qn.
The production quantity at the next stage Qj+1 is the
sum of perfect items produced at the current stage
Qj � �j(
)Qj and reworked items at the current stage
�j�j(
)Qj , which is simpli�ed to:

Qj+1 = Qj f�j (
) (�j � 1) + 1g
8j = 1; 2; : : : ; n� 1: (25)

For simplicity, we consider Q1 as a decision vari-
able in our model and formulate production quantity
Qj (j 6= 1) in terms of Q1, using the above recursive
equation, as follows:

Q1

j�1Y
p=1

f�p (
) (�p � 1) + 1g 8j = 2; 3; : : : ; n: (26)

The total revenue per cycle TR involves sales of perfect

Figure 2. The inventory level for nth stage (�nal stage)
of multi stage manufacturing system.

and scrapped items which is given as:

TRM = v fQn��n (
)Qn+�n�n (
)Qng
+
Xn

j=1
fsj (1� �j)�j (
)Qjg ;

where v denotes the unit sale price of perfect items and
sj represents the unit sale price for scrapped items at
stage j. By substituting Qn and Qj from Eq. (26) into
TRM , it can be re-written in terms of decision variable
Q1 as follows:

TRM = vQ1

nY
j=1

f�j (
) (�j�1)+1g+s1 (1��1)�1 (
)Q1

+
�Xn

j=2

�
sj (1� �j)�j(
)

j�1Y
p=1

�
�p(
) (�p � 1) + 1

���
Q1: (27)

The total cost involves production, setup, holding,
screening, and reworking costs. The production cost
per cycle PCM is calculated as PCM =

Pn
j=1 CjQj

which is re-written as:

PCM =C1Q1+

 Xn

j=2
Cj

j�1Y
p=1

f�p(
)(�p�1)+1g
!
Q1:(28)

In addition, the setup cost SCM is incurred per
production cycle by SCM =

Pn
j=1Aj . Moreover, in

order to calculate the holding cost, we �rst calculate
the area below the inventory level in two periods, i.e.,
the production period SIj and the rework period SIIj .
The �rst area is calculated as SIj = Imax j :tpj=2. Since
Imax j = Qj and tpj = Qj=P1j , the SIj is re-written as:

SIj =
Q2
j

2P1j
: (29)

To calculate SIIj , we should �rst formulate the inven-
tory level at the start of the rework period I1j and the
inventory level at the end of the rework period I2j , as

Figure 3. The inventory level for a multi stage manufacturing system.
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I1j = Qj��j (
)Qj and I2j = Qj��j (
)Qj+P2jtRj .
Similar to the single-stage case, we can calculate the
rework period of the stage j as tRj = �j�j(
)Qj=P2j .
So, the inventory level I2j can be simpli�ed as I2j =
Qj��j (
)Qj+�j�j (
)Qj . Therefore, the area below
the inventory level in the rework period is calculated
as SIIj = tRj (I1j + I2j) =2 which can be re-written as:

SIIj =
�j�j (
)Qj

2P2j�
2Qj � 2�j (
)Qj + �j�j (
)Qj

�
: (30)

In addition to production and rework periods, there is
one depletion period in nth (�nal) period. Therefore,
the area below the inventory level in the depletion
period is calculated as SIIIj = I2ntD=2 where the
depletion period is tD = I2n=D; hence, we have SIIIj =
I2
2n=2D, which is re-written as:

SIIIj =
Q2
n

2D

�
1� �n (
) + �n�n (
)

�2

: (31)

Utilizing SIj , SIIj , and SIIIj , the holding cost is cal-
culated by

Pn
j=1 hj fSIj + SIIjg+ hnSIIIj , as follows:

HCM =
Xn

j=1
hj
� Q2

j

2P1j
+
�j�j (
)Qj

2P2j

f2Qj � 2�j (
)Qj + �j�j (
)Qjg
�

+ hn
Q2
n

2D
f1� �n (
) + �n�n (
)g2: (32)

By substituting Qn and Qj from Eq. (26) into HC, it
can be re-written in terms of decision variable Q1 as
follows:

HCM =h1Q2
1

�
1

2P11
+
�1�1(
)

2P21
f2�2�1 (
)+�1�1 (
)g

�
+
Xn

j=2

�
hjQ2

1

 j�1Y
p=1

f�p (
) (�p � 1) + 1g
!2

�
1

2P1j
+
�j�j (
)

2P2j
f2�2�j (
)+�j�j (
)g

��
+ hn

Q2
1

2D

 
n�1Y
p=1

f�p (
) (�p � 1) + 1g
!2

f1� �n (
) + �n�n (
)g2 : (33)

The screening cost per cycle WC is computed as
WCM =

Pn
j=1 djQj , where dj represents the screen-

ing cost per item in stage j. Moreover, the reworking

cost per cycle RC is RC =
Pn
j=1 rj�j�j (
)Qj ,

where rj denotes the rework cost per item in stage
j. By using Qj from Eq. (26), screening and rework
costs are rewritten in terms of decision variable Q1 as
follows:

WCM = d1Q1 +Q1
Xn

j=2 
dj

j�1Y
p=1

f�p (
) (�p � 1) + 1g
!
; (34)

RCM = r1�1�1 (
)Q1 +Q1
Xn

j=2 
rj�j�j (
)

j�1Y
p=1

f�p (
) (�p � 1) + 1g
!
: (35)

Therefore, the total cost per cycle is obtained by
PCM + SCM + HCM + WCM + RCM as fol-
lows:

TCM = C1Q1 +
�Xn

j=2
Cj

j�1Y
p=1

f�p (
) (�p � 1) + 1g
�
Q1

+
Xn

j=1
Aj + h1Q2

1

�
1

2P11
+
�1�1 (
)

2P21�
2� 2�1(
) + �1�1(
)

��
+
Xn

j=2�
hjQ2

1

 j�1Y
p=1

f�p(
) (�p � 1) + 1g
!2

�
1

2P1j
+
�j�j (
)

2P2j
f2� 2�j (
) + �j�j (
)g

�
+ hn

Q2
1

2D

 
n�1Y
p=1

f�p (
) (�p � 1) + 1g
!2

f1� �n (
) + �n�n (
)g2 + d1Q1

+Q1
Xn

j=2

 
dj

j�1Y
p=1

f�p (
) (�p � 1) + 1g
!

� r1�1�1 (
)Q1 �Q1
Xn

j=2 
rj�j�j (
)

j�1Y
p=1

f�p (
) (�p�1)+1g
!
: (36)
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Here, the total pro�t per cycle TPM can be calculated
by TRM � TCM as follows:

TPM =vQ1

nY
j=1

f�j (
) (�j � 1) + 1g

+ s1 (1� �1)�1 (
)Q1

+
�Xn

j=2

�
sj (1� �j)�j (
)

j�1Y
p=1

f�p (
) (�p � 1) + 1g
��

Q1 � C1Q1

�
 Xn

j=2
Cj

j�1Y
p=1

f�p 
 (�p � 1) + 1g
!
Q1

�Xn

j=1
Aj � h1Q2

1

�
1

2P11
+
�1�1 (
)

2P21

f2� 2�1 (
) + �1�1 (
)g
�
�Xn

j=2�
hjQ2

1

 j�1Y
p=1

f�p (
) (�p � 1) + 1g
!2

�
1

2P1j
+
�j�j (
)

2P2j
f2�2�j (
)+�j�j (
)g

��
� hnQ

2
1

2D

 
n�1Y
p=1

f�p (
) (�p � 1) + 1g
!2

f1� �n (
) + �n�n (
)g2 � d1Q1

�Q1
Xn

j=2

 
dj

j�1Y
p=1

f�p (
) (�p � 1) + 1g
!

� r1�1�1 (
)Q1 �Q1
Xn

j=2 
rj�j�j (
)

j�1Y
p=1

f�p (
) (�p � 1) + 1g
!
: (37)

Since the defective rate is a grey number, then the total
pro�t is also grey, whose whitened value is given as:

T ~PM (
) =vQ1

nY
j=1

n
~�j (
) (�j�1)+1

o
+ s1 (1� �1) ~�1 (
)Q1

+
� Xn

j=2

�
sj (1� �j) ~�j (
)

j�1Y
p=1�

~�p (
) (�p � 1) + 1
���

Q1

� C1Q1�
 Xn

j=2
Cj

j�1Y
p=1

n
~�p(
) (�p�1)+1

o!
Q1 �Xn

j=1
Aj � h1Q2

1(
1

2P11
+
�1 ~�1 (
)

2P21

n
2� 2 ~�1 (
) + �1 ~�1 (
)

o)

�Xn

j=2

(
hjQ2

1

 j�1Y
p=1

n
~�p (
) (�p � 1) + 1

o!2

(
1

2P1j
+
�j ~�j (
)

2P2j

n
2� 2 ~�j(
) + �j ~�j(
)

o))

� hnQ
2
1

2D

 
n�1Y
p=1

n
~�p (
) (�p � 1) + 1

o!2

n
1� ~�n (
) + �n ~�n (
)

o2

� d1Q1 �Q1
Xn

j=2 
dj

j�1Y
p=1

n
~�p (
) (�p � 1) + 1

o!
� r1�1 ~�1 (
)Q1 �Q1

Xn

j=2 
rj�j ~�j (
)

j�1Y
p=1

n
~�p (
) (�p � 1) + 1

o!
; (38)

where ~�j(
) represents the whitened value of the
defective rate ~�j(
). In addition, the whitened value
of total pro�t per unit time T ~PUM (
) is calculated by
dividing T ~PM (
) by the whitened cycle time ~TM (
).
The cycle time is formulated as TM which simpli�es,
by using tPj = Qj=P1j , tRj = �j�j(
)Qj=P2j , and
tD = Qn

D f1� �n(
) + �n�n(
)g, to:

TM (
) =
Xn

j=1

Qj
P1j

+
Xn

j=1

�j�j (
)Qj
P2j

+
Qn
D
f1� �n (
) + �n�n (
)g : (39)
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By using Qj from Eq. (26), cycle time TM (
) is
re-written in terms of variable Q1 as follows:

TM (
) =
Q1

P11
+
Xn

j=2 
Q1

P1j

j�1Y
p=1

f�p (
) (�p � 1) + 1g
!

+
�1�1 (
)Q1

P21
+
Xn

j=2 
�j�j (
)Q1

P2j

j�1Y
p=1

f�p (
) (�p � 1) + 1g
!

+
Q1

D

 
n�1Y
p=1

f�p (
) (�p � 1) + 1g
!

f1� �n (
) + �n�n (
)g : (40)

The cycle time TM (
) is also a grey number, and
then the whitened cycle time is calculated as:

~TM (
) =
Q1

P11
+
Xn

j=2 
Q1

P1j

j�1Y
p=1

n
~�p (
) (�p � 1) + 1

o!
+
�1 ~�1 (
)Q1

P21
+
Xn

j=2 
�j ~�j (
)Q1

P2j

j�1Y
p=1

n
~�p (
) (�p � 1) + 1

o!

+
Q1

D

 
nY
p=1

n
~�p (
) (�p � 1) + 1

o!
: (41)

For simplicity, we de�ne Fj = ~�j(
) (�j � 1) + 1
for 2 � j � n, hereafter. Therefore, the whitened
value of total pro�t per unit time T ~PUM (
) =
T ~PM (
) = ~TM (
) is obtained:

T ~PUM (
) = fv
nY
j=1

Fj + s1 (1� �1) ~�1 (
)

+

 Xn

j=2

(
sj (1� �j) ~�j (
)

j�1Y
p=1
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)!

� C1�
 Xn

j=2
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j�1Y
p=1
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!
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 Pn
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� h1Q1

�
1
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)

2P21n
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�Xn
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+
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1
P11

+
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nY
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: (42)

It can be shown that the derived total pro�t per unit
time T ~PUM (
) is concave with respect to the decision
variable Q1, since @2T ~PUM (
)

@Q2
1

� 0. Therefore, in order
to reach the economic production quantity Q�1, we set
the �rst derivative of T ~PUM (
) to zero, which results
obtained by Eq. (43) as shown in Box II. After cal-
culating Q�1, the optimal production quantities of the

next stages can be obtained as Q�j = Q�1
j�1Q
p=1

Fp; 8j =

2; 3; : : : ; n. Moreover, in order to reach the upper
and lower limits for optimal objective function, the
following mathematical models are constructed:

min

j

TPUM (
) = max
Q1

T ~PUM (
) ; (44)

subject to:

~�j (
) = 
j�j + (1� 
j)�j 0 � 
j � 1; (45)

and:

max

j

TPUM (
) = max
Q1

T ~PUM (
) ; (46)

subject to:
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Q�1 =

2664 2
�Pn

j=1 Aj
�
D

h1D
n

1
P11

+ �1 ~�1(
)
P21

n
1� ~�1 (
)+F1

oo
+D

Pn
j=2

�
hj
�Qj�1

p=1 Fp
�2
�

1
P1j

+
�j ~�j(
)
P2j

n
1� ~�j (
) + Fj

o��
+hnF 2

n

�Qn�1
p=1 Fp

�2

3775
1
2

(43)

Box II

Figure 4. The 
owchart of proposed approach.

~�j (
) = 
j�j + (1� 
j)�j ;
where TPUM (
) and TPUM (
) represent the lower
and upper limits of the objective function (total pro�t
per unit time) as grey numbers. As mentioned
earlier, GP aims to recognize the lower and upper
limits of the objective function, TPUM in our model,
caused by grey input parameters. Note that the �rst

model is a minimax problem (which can be solved
via conventional minimax commands in MATLAB). In
contrast, the second one is a maximization problem
with two variables Q1 and 
j (which can be simply
solved by nonlinear optimization commands in MAT-
LAB). A 
owchart from the initial stages in order
to obtain the optimum solutions has been given in
Figure 4.
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Table 2. The characteristics of numerical examples.

Multi-stage

Parameters j = 1 j = 2 j = 3 Single stage

Production rate P1j 1500 2500 2000 3000

Rework rate P2j 3500 3000 4000 4500

Rate of reworkable items �j 0.80 0.70 0.85 0.90

Setup cost Aj 100 50 200 150

Holding cost hj 10 8 4 12

Production cost Cj 50 30 80 40

Screening cost dj 30 35 20 25

Reworking cost rj 10 5 8 12

Scrapped item unit price sj 50 25 75 50

Perfect product unit price v 500 500 500 450

Demand rate D 800 800 800 1000

Defective rate

�j (grey number)
[0.10, 0.15] [0.08, 0.12] [0.04, 0.08] [0.10, 0.14]

5. Examples and analysis

In order to investigate the performance of the suggested
models, two numerical examples are discussed, with
one and three stages. Table 2 shows the characteris-
tics of these numerical examples. Then, we analyze
sensitivity by changing the value of input parameters
to assess the outputs under various inputs.

It is assumed that the whitened value of defective
rates is the middle point of upper and lower limits.
We �rst investigate the feasibility conditions for two
examples. To this end, we should evaluate three
conditions: (i) P1 > D, (ii) P2 > D, and (iii) �(
)
for the single-stage example. The �rst two conditions
are deterministic, while the third one is a grey one.
Using the data of the �rst example, we have (i) P1 =
3000 > 1000 = D and (ii) P2 = 4500 > 1000 = D. On
the other hand, the right-hand equation of the third
condition is 1 � 1000=3000 = 0:67. As can be seen,
both upper and lower limits of defective rate � are
less than 0.67, which ensures the feasibility of the �rst
example. We should check out three conditions: (i)
P1j > D, (ii) P2j > D and (iii) �j(
) for the second
example. By doing so, we can simply �nd that all of the
conditions are satis�ed for both examples. The �rst two
conditions are satis�ed since P11 = 1500 > 800 = D,
P21 = 3500 > 800 = D, P12 = 2500 > 1200 = D,
P22 = 3000 > 1200 = D, P13 = 2000 > 500 = D, and
P23 = 4000 > 500 = D. Obviously, the third condition
is also true for the second example since both the upper
and lower limits of the defective rate are much less than
the production rate in all three stages.

Utilizing the characteristics of the �rst example,
the whitened values of optimal production quantity are
obtained by Eq. (22) as 307.2182, and then the total
pro�t per unit time is calculated as 381802.5. More-
over, the whitened production, rework, and depletion
periods are obtained as 0.1024, 0.0074, and 0.1938,
respectively. To obtain the possible upper and lower
limits for optimal total pro�t per unit, Eqs. (23) and
(24) are calculated for this example. The obtained
results are TPU(
) and TPU(
). Moreover, the
whitened values of optimal production quantity of the
�rst stage, for the second example, are obtained by Eq.
(43) as 324.0478, and then the production quantities of
the second and third stages are obtained as 317.5668
and 309.9452. Moreover, the total pro�t per unit time
is calculated as 82385.93 with lower and upper limits
of 789754.58 and 865741.89.

We will evaluate the relation between the optimal
solution and the input grey parameters. In the real
world, changes in the parameters of the model are
inevitable, and the parameters 
uctuate. Moreover,
changes in the parameters may have a signi�cant
impact on the values of decision variables and the
objective function. In this research, we study the
impact of defective rates as grey numbers in the
problem on the optimal total pro�t per unit time.
Table 3 presents the results for the �rst example, and
Figures (5){(7) depict the variations of the outputs.
According to the results, the defective rate negatively
impacts the optimal production, rework, and depletion
periods. In addition, the production quantities and
total pro�t decrease when the defective rate of the
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Table 3. The impact of grey defective rate on the optimal solution (�rst example).

Variation on
whitened �

tP tR tD Q� TPU

�50% 0.1074 0.0039 0.2090 322.1544 382509.47
�40% 0.1064 0.0046 0.2060 319.2700 382368.63
�30% 0.1054 0.0053 0.2029 316.3267 382227.54
�20% 0.1044 0.0060 0.1999 313.3321 382086.18
�10% 0.1034 0.0067 0.1968 310.2936 381944.51

0% 0.1024 0.0074 0.1938 307.2182 381802.51
+10% 0.1014 0.0080 0.1907 304.1124 381660.14
+20% 0.1003 0.0087 0.1877 300.9827 381517.39
+30% 0.0993 0.0093 0.1846 297.8350 381374.22
+40% 0.0982 0.009 0.1816 294.6749 381230.62
+50% 0.0972 0.0105 0.1786 291.5077 381086.57

Figure 5. The impact of grey defective rate on production rework and depletion periods (�rst example).

Figure 6. The impact of grey defective rate on optimal production quantity (�rst example).

process increases. This is a reasonable behavior in
manufacturing environments.

These results are also true for the second example.
Tables 4{6 present the impact of grey defective rates on
the optimal solution of the second example. Moreover,
Figure 8 shows the total pro�t per unit time under

a variation of grey defective rates. As an observation,
the production quantities at a special stage show a very
smooth change when the defective rate(s) of the next
stages change. For example, when the defective rate of
the third stage increases, the production quantities at
the �rst stage remain unchanged (very smooth change).
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Figure 7. The impact of grey defective rate on total pro�t per unit time (�rst example).

Table 4. The impact of �rst-stage grey defective rate on the optimal solution (second example).

Variation on
whitened

�1

Q�1 Q�2 Q�3 T TPU

�50% 324.0484 319.9978 310.3979 0.8998 83415.31
�40% 324.0482 319.1875 309.6118 0.8990 83210.07
�30% 324.0480 318.3771 308.8258 0.8982 83004.52
�20% 324.0478 317.5668 308.0398 0.8974 82798.64
�10% 324.0475 316.7565 307.2538 0.8966 82592.45

0% 324.0473 315.9461 306.4678 0.8958 385.93
+10% 324.0471 315.1358 305.6818 0.8950 82179.09
+20% 324.0469 314.3255 304.8957 0.8942 81972.38
+30% 324.0467 313.5152 304.1097 0.8934 81764.43
+40% 324.0465 312.7049 303.3237 0.8926 81556.61
+50% 324.0463 311.8946 302.5377 0.8918 81348.46

Table 5. The impact of second-stage grey defective rate on the optimal solution (second example).

Variation on
whitened �2

Q�1 Q�2 Q�3 T TPU

�50% 324.0473 315.9461 311.2069 0.9004 83974.49
�40% 324.0473 315.9461 310.2591 0.8995 83658.04
�30% 324.0473 315.9461 309.3113 0.8985 83340.96
�20% 324.0473 315.9461 308.3634 0.8976 83023.25
�10% 324.0473 315.9461 307.4156 0.8967 82704.91

0% 324.0473 315.9461 306.4678 0.8958 82385.93
+10% 324.0473 315.9461 305.5199 0.8949 82066.32
+20% 324.0473 315.9461 304.5721 0.8940 746.06
+30% 324.0473 315.9461 303.6242 0.8930 425.16
+40% 324.0473 315.9461 302.6764 0.8921 81103.61
+50% 324.0473 315.9461 301.7285 0.8912 80781.42

6. Implications and conclusions

From a practical point of view, it is not necessarily
true that all of the produced items are of perfect quality
every time, and the production processes are not neces-
sarily of perfect quality. Consequently, the production
of defective items is inevitable even in high-quality
and advanced manufacturing units. Usually, a certain

fraction of the items are defective due to poor quality
of the production process or raw materials. From a
practical point of view, the proposed model in this
paper tried to address some more realistic conditions
that usually happen in real-world production systems.
Moreover, in a multi-stage production system, products
are transferred from one stage to the next, and every
stage may produce a fraction of defective products. A
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Table 6. The impact of third-stage grey defective rate on the optimal solution (second example).

Variation on
whitened �3

Q�1 Q�2 Q�3 T TPU

�50% 324.0473 315.9461 306.4678 0.8955 83131.53
�40% 324.0473 315.9461 306.4678 0.8956 82982.37
�30% 324.0473 315.9461 306.4678 0.8956 82833.23
�20% 324.0473 315.9461 306.4678 0.8957 82684.11
�10% 324.0473 315.9461 306.4678 0.8957 82535.01

0% 324.0473 315.9461 306.4678 0.8958 82385.93
+10% 324.0473 315.9461 306.4678 0.8959 82236.87
+20% 324.0473 315.9461 306.4678 0.8959 82087.83
+30% 324.0473 315.9461 306.4678 0.8960 81938.80
+40% 324.0473 315.9461 306.4678 0.8960 81789.79
+50% 324.0473 315.9461 306.4678 0.8960 81640.80

Figure 8. The impact of �rst, second and third stage grey defective rates on total pro�t per unit time.

production stage is a�ected by a number of inevitable
undesirable factors, which make it rarely possible for
a production machine/production system to produce
perfect quality items every time. In fact, in some
defective production systems, rework is usually used
for imperfect items at every stage. In the proposed
model, the perfect items go to the next stage and �nally
become the �nished product at the �nal stage, and
then go under consumption. To address the practical
circumstances, the proposed model considers that a
fraction of imperfect items are of unacceptable quality
and should be disposed of as scrap at each stage. The
decision on the quality of a produced item is made by
a quality control process in manufacturing companies.

This paper proposed single and multi-stage
production-inventory systems with defective manufac-
turing processes, possible rework, and scrap items.
The feasibility conditions are extracted for both mod-
els to avoid shortage. It is also assumed that the
defective rate is an uncertain parameter. The grey

systems theory, as a mathematical tool to address
uncertain information, is utilized to model the random
defective rate via grey programming in both models.
From a theoretical point of view, this is a new kind
of mathematical programming problem with its own
challenges and complications. Since the proposed
production-inventory problems are unconstrained non-
linear optimization problems, we employ grey nonlinear
programming principles to address the complexities
that occur in the solving process. The total pro�t
per unit time is derived from both models in terms of
whitened random defective rate, and then the optimal
production quantities are calculated for each model
separately. Two numerical examples are presented
and studied to assess the impact of grey parameters
on optimal solutions. Grey programming generates
feasible ranges of decision variables and objective
functions using the interpretation of the grey solutions
and grey input parameters; it has lower computa-
tional e�orts compared with the existing methods,
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and then is applicable to practical problems, and does
not require distribution information (like probability-
based approaches) or membership function (like fuzzy-
based approaches) for input parameters, since interval
numbers are acceptable for the input parameters.

As an opportunity for future research, it can be
considered to incorporate other uncertain parameters
into proposed models like demand rate or reworkable
item rate to reach a more practical problem and address
it via grey programming. Moreover, it is interesting to
employ other approaches like stochastic programming
to handle the uncertainties in our models.

Nomenclature

J Stages of the manufacturing system

�S(
) A grey number for the defective rate of
the single-stage system

PS1 The production rate in the single-stage
system

PS2 The rework process rate in the
single-stage system

� The rate of reworkable items rate in
the single-stage system

rS The cost of the reworked items
DS The demand for the single-stage system

vS The sale price of the perfect item in
the single-stage system

sS The sale price of scrapped items in the
single-stage system

CS The production unit cost in the
single-stage system

SCS The total setup cost in the single-stage
system equal to AS

hS The holding unit cost in the single-stage
system

dS The screening unit cost in the
single-stage system

P1j The production rate for the stage jth
in the multi-stage system

P2j The rework process rate for stage jth
in the multi-stage system

�j(
) A grey number for defective rate for
stage jth in the multi-stage system

�j The rate of reworkable items for stage
jth in the multi-stage system

tSPj The production interval for stage jth
in the multi-stage system

�j The rate of reworkable items for stage
jth in the multi-stage system

tSDj The depletion interval for stage jth in
the multi-stage system

D The demand for the multi-stage system
� The sale price of the perfect item in

the multi-stage system
sj The sale price of scrapped items for

stage jth in the multi-stage system
Cj The production unit cost for stage jth

in the multi-stage system

SCS The total setup cost in the multi-stage
system

Aj The setup cost for stage jth in the
multi-stage system

hj The holding unit cost for stage jth in
the multi-stage system

dj The screening unit cost for stage jth in
the multi-stage system

rj The cost of the reworked item for stage
jth in the multi-stage system

Qj The production quantity for stage jth
in the multi-stage system

ISmax The maximum inventory level for the
single-stage system

QS The production quantity in the
single-stage system

TPS The total pro�t in the single-stage
system

TCS The total cost of the single-stage
system

TRS The total revenue in the single-stage
system

PCS The total production cost for
single-stage system

HCS The total holding cost for the
single-stage system

SSI The area below the �rst period
(production) in the single-stage system

SSII The area below the second period
(rework) in the single-stage system

SSIII The area below the third period
(depletion) in a single-stage system

WCS The total cost of screening in the
single-stage system

RCS The total cost of rework in the
single-stage system

TCS The total cost for the single-stage
system

T ~PS(
) The whitened value of total pro�t in
the single-stage system
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T ~PUS(
) The whitened value of total pro�t per
unit time in the single-stage system

~TS(
) The whitened inventory cycle time

tSP The production interval in the
single-stage system

tSR The rework interval in the single-stage
system

tSD The depletion interval in the
single-stage system

QS� The optimal quantity in the single-
stage system

TPM The total pro�t in the multi-stage
system

TCM The total cost of the multi-stage
system

TRM The total revenue in the multi-stage
system

PCM The total production cost for the
multi-stage system

HCM The total holding cost for the
multi-stage system

SIj The area below the �rst period
(production) for stage jth in the
multi-stage system

SIIj The area below the second period
(rework) for stage jth in the multi-stage
system

SIIIj The area below the third period
(depletion) for stage jth in the
multi-stage system

WCM The total cost of screening the
multi-stage system

RCS The total cost of rework in the
single-stage system

TCS The total cost for the single-stage
system

T ~PM (
) The whitened value of total pro�t in
the multi-stage system

T ~PUM (
) The whitened value of total pro�t per
unit time in the multi-stage system

~TM (
) The whitened inventory cycle time
tPj The production interval for stage jth

in the multi-stage system
tRj The rework interval for stage jth in

the multi-stage system
tDj The depletion interval for stage jth in

the multi-stage system
Qj� The optimal quantity for stage jth in

the multi-stage system

I1j The inventory level at the start of
the rework period for stage jth in the
multi-stage system

I2j The inventory level at the end of the
rework period for stage jth in the
multi-stage system
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