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Abstract. In recent years, many e�orts have been made to propose di�erent strategies
for enhancing the scheduling and planning of Operating Rooms (ORs). E�cient planning
and scheduling of ORs is a complex task since it must account for the availability of
human resources, medical equipment, and medication required for each surgery and they
are often shared between di�erent ORs. This paper proposes a mathematical approach to
enhance the management of OR resources. It presents a bi-objective robust optimization
approach for scheduling surgeries in the ORs and recovery room, regarding the uncertainty
of the surgery time, uncertainty of hospitalization time in the recovery room, and shared
resources. The �rst objective function aims to minimize the maximum completion time
of the surgeries, while the second one minimizes the sum of the earliness-tardiness of the
surgical operations. The suggested approach utilizes the multi-choice goal programming
approach with utility function to solve the proposed model. The proposed approach
is applied to a real case in the Shahid Beheshti hospital, Babol, Iran. The obtained
results show that the suggested bi-objective robust optimization approach can enhance OR
scheduling and should be designed into a decision support system for OR management.

© 2023 Sharif University of Technology. All rights reserved.

1. Introduction

Operating Room (OR) is one of the most vital but
expensive parts of a hospital. Due to the importance
of surgical services in the hospital, the OR is known as
the heart of the hospital. In fact, it allows for surgical
services for patients who require an o�ensive operation
(surgery). Proper scheduling of surgical operations
and other related limited resources is quite important
for the stakeholders (managers, sta�, and patients) to
improve the e�ectiveness of sta� and resources and to
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increase satisfaction in serving patients and satisfaction
of the sta�, maintain capital, and reduce costs [1].
The e�cient scheduling of the sections before and after
the ORs can reduce the patients' waiting and hospi-
talization time [2]. This reduction further contributes
to both reducing costs and increasing the satisfaction
of patients and employees [3]. OR scheduling follows
patient prioritization; accordingly, a patient in an
emergency condition is more important and should
be surgically activated sooner [4]. Meanwhile, the
availability of limited resources and the type of surgery
are important factors that must be scheduled in OR
surgery planning [5].

A priori undetermined factors of surgeries in-
cluding patients' conditions, duration of surgery, and
hospitalization time in the recovery room are not
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deterministic and they should be considered in the
planning and scheduling of the ORs [6]. If insu�cient
time is allocated for planning, subsequent surgeries
may not commence as scheduled, leading to delays,
dissatisfaction among patients and sta�, and increased
overtime costs for hospital management in ORs. Con-
versely, if more time than necessary is allotted for a
surgery, it may result in ORs being unused, causing
the next patient and sta� to be unprepared for the
subsequent surgery. Besides, availability of some
equipment pieces required for speci�c surgeries needs
further consideration by the management. Due to the
high costs of equipment, only a limited number of
pieces are available and must be shared between ORs
and di�erent surgeries. Hereafter, they are referred
to as shared resources. If a surgery necessitates a
shared resource, other surgeries that require the same
resources may need to wait until the current surgery is
completed. Consequently, neglecting the use of shared
resources in the planning and scheduling of ORs leads
to ine�ciency in the daily ORs plan, idleness of the
ORs, and overtime costs. The e�cient management of
ORs consequently requires a highly adaptable solution
to account for uncertainties and resource limitations.

This study considers the described OR-scheduling
problem and accounts for di�erent challenges in their
management, such as uncertain surgery time in the
ORs, uncertain time of hospitalization in the recovery
room, and the use of shared resources. In the con-
sidered case study, two types of surgeries, including
orthopedic surgeries and some general surgeries, share
radiology equipment during the procedure. In the case,
the surgery time and hospitalized time of each patient
cannot be considered �xed or pre-determined. Rather,
these are dependent on factors such as the general
health condition of the patient, skill of surgeons and
OR sta�, and the availability of needed equipment.
Consequently, we consider surgery time and hospital-
ized time as uncertain parameters. In di�erent service
centers, it is quite important to consider the costumers'
and managers' preferences, simultaneously. For this
purpose, two objective functions are considered. The
�rst objective seeks to minimize the maximum com-
pletion time of surgical operation and minimize the
OR-related costs. Put simply, the operating costs of
a hospital increase as the length of time an OR is
utilized increases. This includes expenses such as sta�
salaries, operating equipment costs, and maintenance
and repair costs. To minimize these expenses, it is
necessary to reduce the maximum completion time for
surgical operations. The second objective function,
which aims to minimize the sum of tardiness-earliness
time, takes into account patient satisfaction. To
achieve this, a bi-objective robust Mixed-Integer Linear
Programming (MILP) model is proposed. A Multi-
Choice Goal Programming (MCGP) approach with

a utility function is used to handle the bi-objective
model.

The rest of the study is organized as follows.
Section 2 discusses existing �ndings on the scheduling
problem for ORs. Section 3 provides the problem
description, assumptions, and the mathematical model
developed for the research problem. The robust
counterpart of the mathematical model and MCGP
approach with utility function are introduced in Section
3. Section 4 represents the computational results to
evaluate the performance of the proposed approach
and a sensitivity analysis. Finally, Section 5 presents
conclusions from the research and future research.

2. Literature review

Due to the rapid advancement of the healthcare in-
dustry and the critical nature of scheduling for ORs,
numerous studies have been conducted in recent years
focusing on the planning and scheduling of ORs.
This section reviews relevant �ndings in this context.
Azadeh et al. attempted to investigate the scheduling
of emergency department patients based on their treat-
ment priority. They formulated the problem as a 
ex-
ible open shop problem and developed a MILP model
and a genetic algorithm to minimize patients' total
waiting time [7]. Li et al. developed a Multi-Objective
Integer Linear Programming (MOILP) model to opti-
mally schedule elective surgeries regarding the avail-
ability of ORs and surgeons. The selected objective
functions comprised minimization of the number of
patients waiting for service, underutilization of OR
time, maximum expected number of patients in the
recovery unit, and expected range of patients in the
recovery unit. They developed two Goal Programming
(GP) approaches to this problem [8]. Denton et al.
parented a stochastic optimization approach to assign
surgeries to the ORs. Objective function seeks to
minimize the �xed cost of opening ORs and a variable
cost of overtime. They proposed a simple heuristic
method to solve the problem [9]. Rachuba and Wern-
ers considered ORs scheduling regarding uncertain
surgery durations and patients' emergency arrivals.
In order to consider stakeholders' di�erent objectives,
they proposed a multi-objective robust mixed-integer
mathematical model [10]. Jebali and Diabat developed
a two-stage chance-constrained programming model for
ORs scheduling that considered uncertain surgery time,
random patient length of stay in the ICU, and random
reserved resources for the emergency cases. The
selected objective function aims to minimize patients'
costs, OR utilization costs, and penalty costs upon
exceeding ICU capacity. They proposed a Sample
Average Approximation (SAA) algorithm to solve the
model [11].

Liu et al. developed a two-step MILP model and
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an SAA approach for the ORs scheduling problem in
which the surgery time is as an uncertain parameter.
The proposed approach seeks to increase resource
utilization, reduce the ORs cost, and improve surgeons'
satisfaction [12]. Molina-Pariente et al. studied a
stochastic OR scheduling problem which aimed to
minimize the undertime and overtime costs of the
ORs and the cost of exceeding the system capacity.
They considered di�erent uncertain parameters such
as surgery time, surgeons' capacity, and arrivals of
emergency surgeries. They proposed a Monte Carlo
optimization-based approach, in which the iterative
greedy local search method was combined with Monte
Carlo simulation [13]. Neyshabouri and Berg studied
a two-stage robust optimization model to handle the
uncertainty in surgery time and length of stay in the
surgical ICU. They developed a column-and-constraint
generation approach to generate optimal solutions [14].
Liu et al. developed an iterative auction mechanism
to maximize the overall social welfare of patients in
the scheduling problem for ORs. They also took
into account the eligibility constraints of the ORs
[15]. Ravnskj�r Kroer et al. developed a stochastic
model in which surgery times varied and the emer-
gency patients' arrivals were not deterministic. The
proposed approach generated robust OR schedules that
minimized overtime work and utilized unused capacity
[16]. Koppka et al. dealt with a mathematical model
that assigned the ORs available time to enhance the
overall performance. The selected objective function
maximized the likelihood of a perfect day going by
without overtime or cancellations. They considered
surgery time and the number of patients during the
day to be uncertain parameters [17]. Moosavi and
Ebrahimnejad proposed a multi-objective mathemat-
ical model for upstream and downstream units of
ORs. They suggested a robust counterpart of the
mathematical model to consider uncertain parameters,
including surgery time, emergency demand, and length
of stay. They also developed an MIP-based local search
neighborhood approach to solve the problem [18].
Sagnol et al. considered a parallel-machine scheduling
problem to formulate the problem of allocating ORs to
surgeries, such that surgery time followed a lognormal
distribution. They solved the robust counterpart of
the proposed model using a cutting-plane approach
[19]. Kamran et al. considered patients' allocation
to available OR blocks. The authors proposed multi-
objective two-stage stochastic and two-stage chance-
constrained stochastic programming models. They
solved the proposed models by using the SAA approach
and Bender's decomposition method [20]. Hamid et
al. developed a new and comprehensive MILP model
to consider inpatient surgeries in ORs scheduling.
They developed two metaheuristic algorithms, namely
NSGA-II and MOPSO, to achieve the Pareto solutions

and applied the PROMETHEE-II approach to select
the best solution among the Pareto solutions [21]. Lin
and Chou focused on multifunctional ORs in ORs
scheduling problem. The selected objective functions
included maximizing ORs utilization, minimizing the
overtime cost, and minimizing the wasting cost of
unused time. To cope with the problem, they developed
some simple heuristic methods, hybrid genetic algo-
rithm, and elite search approach for this problem [22].

Vali-Siar et al. developed an MILP model to plan
and schedule ORs with respect to the uncertainty
in surgery and recovery duration. They proposed a
new heuristic approach to minimize the tardiness in
surgeries, as well as over and idle times [23]. Silva
and De Souza addressed ORs scheduling problem
with comment resources. They considered uncertain
surgery times and patients' arrival. They proposed
an approximate dynamic programming approach to
minimize the total expected cost. The experimental
results show that the proposed approach can reduce
the total expected cost, signi�cantly [24]. Zhang
et al. addressed ORs scheduling problem regarding
the downstream resources capacity constraints. They
proposed a stochastic programming model, in which
surgery duration and length-of-stay were as uncertain
parameters. They developed column-generation-based
heuristic methods to solve the research problem [25].
Akbarzadeh et al. studied the surgical case in which
operation room planners sought to make a balance
between the capacity and demand. They developed
a three-phase column generation-based heuristic to
generate a feasible solution and it was improved via
local branching [26]. Nasiri et al. proposed a math-
ematical model to select and assign elective surgeries
on a particular day. They proposed a fuzzy robust
optimization approach to maximize the number of
surgeries using �xed resources, minimize the total �xed
and overtime costs of the ORs, and minimize the
maximum completion time of ORs [27]. Najjarbashi
and Lim proposed a risk-based solution approach for
the ORs scheduling problem regarding the Conditional
Value-at-Risk (CVaR) concept. They developed a
stochastic MILP model to minimize the CVaR of
over- and idle time costs [28]. Atighehchian et al.
studied ORs scheduling problem concerning uncertain
duration of surgeries in a multi-resource environment.
They presented a two-stage stochastic mixed-integer
programming model to minimize the ORs' idle and
over times [29]. Marchesi et al. proposed a two-stage
stochastic programming model with constant recourse
to solve ORs sta�ng and scheduling problem. They
developed possible realization scenarios to deal with the
demand uncertainty by the SSA algorithm [30]. Bar-
rera et al. proposed a stochastic dynamic mathematical
model for the ORs scheduling problem to minimize the
cost of referrals to the private sector. They developed
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a heuristic approach to achieve near-optimal solutions
in a reasonable time [31]. Bovim et al. proposed
a two-stage stochastic optimization model combined
with a simulation-optimization approach to schedule
ORs. They considered arrivals of the emergency
patients and surgery duration as uncertain parameters
[32]. Khaniyev et al. studied next-day ORs scheduling
problem regarding the uncertain surgery durations
to minimize the weighted sum of the ORs' idle and
over times and expected patient waiting times. They
proposed some simple heuristics motivated by a real
situation to �nd near-optimal solutions [33]. In order to
convince the readers, some of the main �ndings on the
ORs scheduling problem are summarized in Table 1.

2.1. Research contributions
Based on our discussion of the existing research land-
scape on the topic of ORs scheduling problem and
according to the �ndings summarized in Table 1, the
present research makes the following contributions.
A central contribution presented in this study is the
consideration of shared resources for ORs scheduling.
However, clinical practice highlights the relevance of
shared resources as a central constraining factor in
surgery planning. Thus, embedding it in the opti-
mization approach adjusts existing models to practical
realties faced in hospital management and surgery.
Based on the literature discussion, this crucial aspect
is missing in existing methodological approaches. This
is of speci�c relevance to decision-making concerning
critical surgeries in emergencies.

This paper considers two di�erent objective func-
tions for addressing the ORs scheduling problem, in-
cluding the maximum completion time of the surgical
operations and the sum of the tardiness and earliness
times. The �rst objective is of relevance to hospital
management to reduce the maximum completion time
and consequently, reduce ORs costs. The second
objective concerns patients since both the positive
deviation (tardiness) and negative deviation (earliness)
from the scheduled surgery a�ect patient satisfaction
as well as corresponding costs. As can be seen in the
literature, a highly regarded approach to the multi-
objective ORs scheduling problem is the GP approach
[4,8,15]. In the GP, an aspiration level is de�ned for
each objective function which is determined according
to decision-makers' opinions. One of the limitations
of utilizing GP to handle multi-objective models is
that the preference structure of the decision-makers is
not easily considered, which is far from reality. The
application of utility function can tackle this di�culty.
In this study, for the �rst time, the MCGP approach
with utility function is used to handle the bi-objective
ORs scheduling problem. As its key advantage, this
approach considers decision-makers' preferences, which
a�ect their approach to maximize utility.

One of the main concerns about the ORs schedul-
ing problem is uncertainty of the input parameters.
There are various approaches to cope with this issue,
such as stochastic programming, robust optimization
approach, and fuzzy approach. Unlike the stochastic
programming, the robust optimization approach does
not need any information about the probability distri-
bution of the uncertain data. Due to the nature of the
data of the ORs scheduling problem, it is quite di�cult
or impossible to achieve the probability distribution
of data in the ORs. Thus, we considered a robust
optimization approach in this research. Based on
the literature pieces reviewed, the robust optimization
approach has been rarely studied in the ORs scheduling
problem and the approach of Bertsimas and Sim [34]
has not been studied in previous research.

3. Methods

3.1. Problem statement
Suppose that there are several patients that must
be assigned to ORs according to a patient allocation
matrix. This matrix indicates the allocation of patients
to respective surgery rooms and shows which OR is
equipped for the patient's surgery. Each OR requires
preparation at the beginning of the operation. Accord-
ingly, in between two successive operations, a speci�c
amount of time is allocated to washing and reheating.
After surgery, patients are immediately transferred to
the recovery room. In this research, a number of
shared resources are considered such that if a surgery
uses a shared resource, other surgeries cannot use it
during the present surgery. According to the problem
de�nition, the following assumptions are made in this
research:

� The number of ORs and recovery beds is less than
the number of patients;

� Each operation is assigned a weight, which indicates
the surgery priority. In this way, the higher the
assigned weight to the surgery, the higher the
urgency of the surgery;

� There is a time interval for starting a surgery due to
the type of surgery and ORs limitation;

� Patients should be assigned to the ORs according to
the allocation matrix;

� Each patient will be transferred to the recovery room
immediately after surgery in OR;

� Patients who need shared sources are identi�ed by
a shared resource matrix.

3.2. Mathematical model
In this section, a bi-objective MILP model is presented
to schedule the surgeries in the ORs and recovery room.
For this purpose, the following notations are used in the
model:
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Table 1. Categorization of the related research.

Reference Year Objective function(s) Uncertainty Shared
resources

Solving method

Rachuba and
Werners [10]

2017
Minimizing waiting time,

sta� overtime, and the number
of deferrals

Robust mixed-
integer programming

Multi-objective robust mixed-
integer mathematical model

Liu et al. [12] 2017

Maximizing the social welfare
of patients, maximize

surgeons' preference values,
and minimize the revelation

of surgeons' private information

Stochastic mixed-
integer programming

Sample Average
Approximation (SAA) algorithm

Neyshabouri
& Berg [14]

2016 Minimizing total costs
Two-stage

robust optimization
Column-and-constraint

generation method

Molina-Pariente [13]
et al.

2018 Minimizing the total expected cost
of the surgical resources

Stochastic mixed-
integer programming

Monte Carlo simulation &
Iterative greedy local

search method

Sagnol et al. [19] 2018 Minimizing the �xed cost
and the overtime cost

Robust optimization approach Exact solution
methods

Kamran et al. [20] 2018

Minimizing waiting time of patients,
tardiness, cancellation, block
overtime, and the number of

surgery days of surgeons

Two-stage stochastic
programming & Two-stage

chance-constrained
stochastic programming

SAA & Benders
decomposition

Nasiri et al. [27] 2019

Maximizing the number of surgeries,
minimize the total �xed and

overtime costs, and the
maximum of completion

time of ORs

Fuzzy robust optimization Multi-Objective Goal
Programming (MOGP) approach

Najjarbashi
& Lim [28]

2019
Minimizing the CVR of

over and idle
time costs

Stochastic mixed-
integer programming

CPLEX

Atighehchian
et al. [29]

2019 Sum of the expected
ORs over and idle time costs

Two-stage stochastic
programming

L-shaped algorithm

Marchesi et al. [30] 2020 Minimizing the total
number of waiting patients

Two-stage stochastic
programming

SAA

Silva and
De souza [24]

2020 Minimizing total
expected cost

Stochastic dynamic
programming

Dynamic programming

Zhang et al. [25] 2020 Minimizing patient-related
and hospital-related costs

Stochastic programming Column-generation-
based heuristic

Barrera et al. [31] 2020 Minimizing the cost of
referrals to the private sector

Stochastic dynamic
programming

Heuristic algorithms

Khaniyev et al. [33] 2020

Minimizing the weighted sum
of the room idle

and overtime, and expected
patient waiting times

Scenario-based programming Heuristic algorithms

Present research 2021

Minimizing the maximum
completion time and the sum
of the earliness and tardiness

time of the surgical
operations

Robust optimization approach
p Multi-Choice Goal

Programming (MCGP) with
utility function
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Index
r Index of ORs (r = 1; 2; : : : ; R)
a; b Index of patients (a; b = 1; 2; : : : ; A)
t Index of beds in the recovery room

(t = 1; 2; : : : ; N)
Parameters
M Big positive number
R Number of ORs
A Number of patients
N Number of beds in the recovery room
P 1
ar Surgery time of patient a in OR r
STr Initial preparation time of OR r
STTr Preparation time between two

successive surgeries in OR r
P 2
ar Time of hospitalization in the recovery

room for patient a on bed t
Perar Allocation matrix; 1 if patient a is

permitted to assign OR r, 0 otherwise
faca Shared resources matrix; 1 if patient a

needs the shared resource, 0 otherwise
[la; ua] The time interval for starting the

surgery of patient a
wa The weight of surgery of patient a
SSTt Preparation time of bed t in the

recovery room
AR Number of available shared resources

Decision variables
var 1 if the patient a is assigned to

operating room r; 0 otherwise
zabr 1 if the patient a is assigned to OR r

before patient b; 0 otherwise
c1a Completion time of surgery for patient

a in the OR
c2a Completion time of recovery operation

for patient a in the recovery room
�ab 1 if surgery times of patient a and

patient b have overlap; 0 otherwise
Oat 1 if patient a is assigned to bed t in

the recovery room; 0 otherwise
Sabt 1 if patient b is assigned to bed t after

patient a in the recovery room; 0
otherwise

startTa Start time of surgery for patient a
Ta Tardiness of surgery for patient a
Ea Earliness of surgery for patient a
Cmax Maximum completion time of the

surgical operations

Using the above notations, the proposed model
can be stated as follows:

MinZ1 = Cmax; (1)

MinZ2 =
AX
a

wa(Ta + Ea); (2)

s.t.:
AX
r=1

var:Perar = 1 a = 1; 2; :::; A; (3)

c1a �
RX
r=1

(P 1
ar + STr)� var a = 1; 2; :::; A; (4)

c1a +M(2 + zabr � var � vbr) � c1b + (P 1
ar:var)

+(STTr:var) a; b = 1; 2; :::; A & a 6= b

r = 1; 2; :::; R; (5)

c1b +M(3� zabr � var � vbr) � c1a + (P 1
br:vbr)

+(STTr:vbr) a; b = 1; 2; :::; A & a 6= b

r = 1; 2; :::; R; (6)

M:�ab � c1a � (c1b �
RX
r=1

P 1
br:vbr)

a; b = 1; 2; :::; A & a 6= b; (7)

faca +
AX
b=1

facb:(�ab + �ba � 1) � AR

a = 1; 2; :::; A; (8)

NX
t=1

oat = 1 a = 1; 2; :::; A; (9)

c2a = c1a +
NX
t=1

P 2
at:oat a = 1; 2; :::; A; (10)

c2a +M:(2 + sabt � oat � obt) � c2b + (P 2
at:oat)

+(SSTt:oat) a; b = 1; 2; :::; A & a 6= b

t = 1; 2; :::; N; (11)

c2b +M:(3� sabt � oat � obt) � c2a + (P 2
bt:obt)

+(SSTt:obt) a; b = 1; 2; :::; A & a 6= b

t = 1; 2; :::; N; (12)

var � Perar a = 1; 2; :::; A r = 1; 2; :::; R; (13)



S. Hasannia-Kolagar et al./Scientia Iranica, Transactions E: Industrial Engineering 30 (2023) 2203{2221 2209

Cmax � c2a a = 1; 2; :::; A; (14)

starTa � c1a �
RX
r=1

P 1
ar:var a = 1; 2; :::; A; (15)

Ta � starTa � ua a = 1; 2; :::; A; (16)

Ea � la � starTa a = 1; 2; :::; A; (17)

c1a; c
2
a; starta; Ta; Ea; Cmax � 0

a = 1; 2; :::; A; a; b = 1; 2; :::; A & a 6= b; (18)

zabr; var; sabt; oat; �ab 2 f0; 1g
r = 1; 2; :::; R; t = 1; 2; :::; N: (19)

The primary objective function aims to minimize the
maximum completion time of surgical operations, while
the secondary objective function seeks to minimize the
sum of earliness and tardiness. Constraint set (3)
indicates that each patient must be assigned to one
OR regarding the allocation matrix. Constraint set
(4) shows the start time of surgery for a patient
due to initial preparation time. Constraint sets (5)
and (6) represent the relation between the completion
times of two successive surgeries. Constraint set (7)
is incorporated into the model to show the overlap
between surgeries. Constraint set (8) indicates that
surgeries requiring the shared resources should not
be done, simultaneously. Constraint set (9) indicates
that each patient must be assigned to only one recov-
ery bed. Constraint set (10) shows the relationship
between completion time of surgery in the ORs and
recovery room. Constraint sets (11) and (12) express
the completion times of two successive surgeries in
the recovery room. Constraint set (13) prevents the
allocation of patients to the unrelated ORs. Constraint
set (14) shows the linearization of the �rst objective
function, while Constraint set (15) calculates the start
time of the patient's surgery. Constraint sets (16) and
(17) calculate tardiness and earliness times and �nally,
Constraint sets (18) and (19) show the type of decision
variables.

3.3. Robust optimization approach
Robust optimization is one of the new ways in math-
ematical programming that has attracted much atten-
tion recently [35]. The main objective of the robust
optimization approach is to select solutions that are
able to cope with the uncertain data. It is assumed
that uncertain data are bounded, but unknown, and
in most research studies, uncertainty space is assumed
to be convex. Unlike the stochastic programming,
the robust optimization approach does not need any
information about the probability distribution of the

uncertain data. In order to tackle the uncertainty, the
optimization problem with uncertainty parameters is
transformed into a robust counterpart [36]. During the
last years, many researchers have tried to develop new
and e�cient approaches regarding data uncertainty.
One of the main developments in this context is the
approach proposed by Bertsimas and Sim [34]. They
proposed a robust approach for a mathematical model
by incorporating an uncertainty budget. The main
advantage of this approach over other versions of the
robust optimization approach is that it allows for the
control of the conservatism of the solutions through this
parameter. In the robust optimization formulation,
�i 2 [0; jJij], as a budget parameter, is inserted
into the model, where jJij represents the number of
uncertain coe�cients in constraint set i. The proposed
methodology ensures that constraints will be satis�ed
despite data variation and the protection level does not
depend on the solution of the robust model [34]. To
develop the robust counterpart of the proposed MILP
model, the following parameters and decision variables
are considered:

Parameters
�1b Uncertainty budget of Constraint set

(4)
�2abr Uncertainty budget of Constraint sets

(5) and (6)
�3ab Uncertainty budget of Constraint set

(7)
�4a Uncertainty budget of Constraint set

(10)
�5abt Uncertainty budget of Constraint sets

(11) and (12)

P̂ 1
ar Measure of uncertainty for the surgery

time of patient a in OR r

P̂ 2
ta Measure of uncertainty for the

hospitalization time of patient a in the
recovery room on bed t

Decision variables
G1b; Be1ar Auxiliary dual variables of Constraint

set (4)
G2abr; Be2ar Auxiliary dual variables of Constraint

sets (5) and (6)
G3ab; Be3ar Auxiliary dual variables of Constraint

set (7)

D1a; B12
at Auxiliary dual variables of Constraint

set (10)

D2abt; B22
at Auxiliary dual variables of Constraint

sets (11) and (12)

It is worth noting that the robust counterpart
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model by Bertsimas and Sim [34] is designed for
inequality constraints. On the other hand, the Con-
straint set (10) consists of an equal equation. When
attempting to replace the equality constraint with two
inequality constraints (less than or equal and greater
than or equal), it may result in infeasibility of the
model. Thus, we applied the proposed approach by
Lin et al. [37]. Regarding the Constraint set (10), if

the term c2a exists, it is replaced by c1a+
NP
t=1

P 2
at:oat. The

robust counterpart of the model is given as follows:

MinZ1 = Cmax; (20)

MinZ2 =
AX
a

wa(Ta + Ea); (21)

s.t.:

c1b �
RX
r=1

P 1
br:vbr +G1b�1b +

RX
r=1

Be1br:vbr

+
RX
r=1

STr:vbr b = 1; 2; ::; A; (22)

G1b +Be1br � P̂ 1
br:vbr

b = 1; 2; :::; A; r = 1; 2; :::; R; (23)

c1a +M(2 + zabr � var � vbr) � c1b + (P 1
ar:var)

+(STTr:var) + (G2abr:�2abr) +Be2ar

a; b = 1; 2; : : : ; A & a 6= b; r = 1; 2; :::; R; (24)

c1b +M(3� zabr � var � vbr) � c1a + (P 1
br:vbr)

+(STTr:vbr) + (G2abr:�2abr) +Be2br

a; b = 1; 2; : : : ; A & a 6= b; r = 1; 2; :::; R; (25)

G2abr +Be2br � P̂ 1
br:vbr

a; b = 1; 2; :::; A; r = 1; 2; :::; R; (26)

M:�ab � c1a �
�
c1b �

RX
r=1

P 1
br:vbr �G3ab:�3ab

�
RX
r=1

Be3br:vbr
�

a; b = 1; 2; :::; A & a 6= b;
(27)

G3ab +Be3br � P̂ 1
br:vbr

a; b = 1; 2; :::; A; r = 1; 2; :::; R; (28)

c2a +M:(2 + sabt � oat � obt) �
�
c2b +

NX
t=1

P 2
at:oat

+(D1a:�4a) +
NX
t=1

B12
at:oat

�
+ (P 2

at:oat)

+(SSTt:oat) + (D2abt:�5abt) +B22
at

a; b = 1; 2; :::; A & a 6= b; t = 1; 2; :::; N; (29)

c2b +M:(3� sabt � oat � obt) �
�
c1a +

NX
t=1

P 2
at:oat

+(D1a:�4a) +
NX
t=1

B12
at:oat

�
+ (P 2

bt:obt)

+(SSTt:obt) + (D2abt:�5abt) +B22
bt

a; b = 1; 2; :::; A & a 6= b; t = 1; 2; :::; N; (30)

D1a +B12
at � P̂ 2

at:oat

a = 1; 2; :::; A; t = 1; 2; :::; N; (31)

D2abt +B22
bt � P̂ 2

bt:obt

a; b = 1; 2; :::; A & a 6= b; t = 1; 2; :::; N; (32)

G1b; G2abr; G3ab; D1a; D2abt � 0

a; b = 1; 2; :::; A & a 6= b;

Be1ar; Be2ar; Be3ar; B12
at; B22

at � 0

r = 1; 2; :::; R t = 1; 2; :::; N; (33)

and Constraint sets (3),(8),(9),(13){(19).

3.4. MCGP with utility function
GP approach is one of the highly regarded approaches
to tackling multi-objective optimization models. It
seeks to minimize unfavorable deviations of the objec-
tive functions from the goals. GP seeks to minimize
the sum of the deviations from the expectation (an-
ticipation) level for the objective functions [38]. In
this paper, the MCGP approach considering utility
function is applied to tackle the proposed model. In
the classic GP approach, it is necessary to de�ne an
aspiration level for each objective function with respect
to the decision-maker's opinion. On the other side,
his/her preference structure is not considered easily
and may be far from reality. Thus, Chang [39] de�ned
utility function to incorporate the decision-maker's
preference values into the model. One of the main
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advantages of the MCGP with utility function rather
than other versions of GP is to consider the decision
maker's preference value in which the decision-maker
attempts to optimize her/his expected utility [40]. In
order to present the mathematical model, the following
parameters and decision variables are considered:

Parameters
[Uk;min; Uk;max]The range of the kth aspiration level

�dk The weight of normalized deviation

��k The weight of positive and negative
deviations

Decision variables
yk The continuous decision variable
d+
k The positive deviations of fk(X) from

yk
d�k The negative deviations of fk(X) from

yk
��k The normalized deviation of yk from

Uk;min

�k The utility value

The proposed model is presented as follows:

Min
X
k

[�dk(d+
k + d�k ) + ��k�

�
k ]; (34)

s.t.:

� � Uk;max � yk
Uk;max � Uk;min

8k; (35)

fk(X) + d�k � d+
k = yk 8k; (36)

�k + ��k = 1 8k; (37)

Uk;min � yk � Uk;max 8k; (38)

d�k ; d+
k = 0 8k; (39)

d�k ; d+
k ; �
�
k ; �k � 0 8k: (40)

As a result, the MCGP with utility function for
the proposed robust model is as:

Min�d1 (d+
1 +d�1 ) + �d2 (d�2 +d+

2 )+��1�
�
1 +��2�

�
2 ; (41)

s.t.:

�1 � C+
max � C 0max

C+
max � C�max

; (42)

�2 � ET+ � ET 0
ET+ � ET� ; (43)

Cmax + d�1 � d+
1 = C 0max; (44)

AX
a=1

wa(Ta + Ea) + d�2 � d+
2 = ET 0 (45)

�1 + ��1 = 1; (46)

�2 + ��2 = 1; (47)

C�max � C 0max � C+
max; (48)

ET� � ET 0 � ET+; (49)

and Constraint sets (3),(8),(9),(13){(31).

4. Results and discussion

This section examines the quality of the mathematical
model and the solution approach presented for the
ORs scheduling problem. Subsection 4.1 introduces
36 random test problems in order to evaluate the
performance of the robust MILP model and analyze
the obtained results. Then, a real case study is
presented and the quality of the proposed approach is
analyzed based on real data in Subsection 4.2. Finally,
a sensitivity analysis is carried out to investigate the
impact of various parameters on the research problem.

4.1. Random test problems
This section aims to investigate the performance of
the proposed approach in resolving the random test
problems. A total of 36 test problems were generated
and four characteristics with di�erent levels were used
to typify the test problems. It should be noted that
the proposed model was solved by GAMS24 software
using a PC featuring i7, 2.67 GHz, 6 GB RAM. Test
problems characteristics are summarized in Table 2.

To solve the test problems through MCGP ap-
proach with utility function, three steps are considered
as follows:

1. The negative ideal point of the maximum com-
pletion time and positive ideal point of the sum
of the earliness and tardiness of the surgeries are
computed. The objective is to minimize the maxi-
mum completion time of the surgeries while the sum
of the earliness-tardiness of the surgical operations
time is considered as a constraint;

2. The positive ideal point of the maximum comple-
tion time and negative ideal point of the sum of the
earliness and tardiness of the surgeries is calculated.
The objective is to minimize the sum of the earliness

Table 2. Test problems characteristics of the random test
problems.

Parameters Values

Number of ORs 5,10

Number of beds in the recovery room 5,10

Number of patients 10,20,30

Number of shared resources 1,2,3
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Figure 1. The gap between the objective functions and the ideal negative values regarding the number of patients.

Figure 2. The gap between the objective functions and the ideal negative values regarding the number of shared resources.

Figure 3. The gap between the objective functions and the ideal negative values regarding the number of beds in the
recovery room.

and tardiness of the surgeries while the maximum
completion time of the surgeries is considered as a
constraint;

3. Regarding the negative and positive ideal points
of the objective functions in these two steps, the
MCGP problem with utility function is solved and
the �nal solution is obtained.

In order to solve the test problems, three levels
of uncertainty in surgery times and hospitalization
duration in the recovery room were considered. The
obtained results are summarized in Table 3.

To analyze the results presented in Table 3, the
di�erence between the objective functions and the ideal
negative value is examined with respect to the various
characteristics of the test problems.

Figure 1 shows the gap between the objective
functions and the ideal negative values regarding the
number of patients and uncertainty levels.

As can be seen, by increasing the number of
patients, the gap for the objective function Cmax
generally decreases. However, when the number of

patients increases signi�cantly, we can see a general
increasing trend in the gap of ET objective function.

Figure 2 depicts the discrepancy between the
objective functions and the ideal negative values, tak-
ing into account the shared resources and uncertainty
levels.

Regarding the varying number of shared re-
sources, the gap for Cmax objective function is generally
constant. In the ET objective function, the gap
generally narrows as the number of shared resources
increases.

Figure 3 represents the gap between the objective
functions and the ideal negative values concerning the
number of recovery room beds and levels of uncertainty.

According to Figure 3, there is no general trend
with respect to the number of beds in the recovery
room. However, the average gap for ET objective
function is almost constant at varying numbers of beds
in the recovery room.

Finally, Figure 4 represents the gap between
the objective functions and the ideal negative values
regarding the number of ORs and uncertainty levels.
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Table 3. Results of the test problems.

TP NORs NBRR NP NSR [�1;�2] C�max C+
max C0max GAP ET� ET+ ET 0 GAP Time

(second)

1 5 5 10 1
(0%, 0%) 300 385 315 5.0% 389 577 395 1.5% 5.3

(50%, 50%) 350 465 370 5.7% 468.5 738 488.5 4.2% 6.4
(100%, 100%) 385 465 385 0.0% 468.5 639.5 468.5 0.0% 5.5

2 5 5 10 2
(0%, 0%) 205 255 255 24.3% 317 375 375 18.2% 5.1

(50%, 50%) 245 360 360 46.9% 378.5 399 399 5.4% 9.2
(100%, 100%) 245 370 370 51.0% 378.5 429 429 13.3% 5.7

3 5 5 10 3
(0%, 0%) 205 240 205 0.0% 306.5 379 324 5.7% 6.6

(50%, 50%) 245 350 245 0.0% 364.5 524.5 364 0.1% 6.0
(100%, 100%) 245 310 245 0.0% 364.5 401 364.5 0.0% 6.8

4 5 5 20 1
(0%, 0%) 680 715 690 1.4% 2077 3421 2104 1.2% 3000.0

(50%, 50%) 795 925 800 0.6% 2982.5 4111 2982.5 0.0% 3001.0
(100%, 100%) 815 840 815 0.0% 2784.5 4236.5 2784.5 0.0% 2240.0

5 5 5 20 2
(0%, 0%) 590 620 590 0.0% 1731.5 2885 1814.5 7.7% 3000.0

(50%, 50%) 670 835 670 0.0% 2356 3754.5 2356 0.0% 1985.0
(100%, 100%) 670 790 670 0.0% 2044 3065 2188 7.0% 3005.0

6 5 5 20 3
(0%, 0%) 590 660 590 0.0% 1693.5 2910 1758 3.8% 2208.0

(50%, 50%) 670 700 670 0.0% 2104.5 3223 2104.5 0.0% 3000.0
(100%, 100%) 670 745 670 0.0% 2006.5 3666.5 2059 2.6% 3001.0

7 5 5 30 1
(0%, 0%) 895 10065 980 9.4% 3996 6172.5 4836.5 21.0% 3004.0

(50%, 50%) 1260 1375 1260 0.0% 5920 9599 6441.5 8.8% 3004.0
(100%, 100%) 1110 1125 1110 0.0% 7692 8304.5 7692 0.0% 3005.0

8 5 5 30 2
(0%, 0%) 825 10075 915 10.9% 4002.5 5814.5 5343 33.4% 3005.0

(50%, 50%) 980 1225 980 0.0% 4741 7365.5 4741 0.0% 3006.0
(100%, 100%) 985 1260 985 0.0% 5677.5 7209 5677.5 0.0% 3007.0

9 5 5 30 3
(0%, 0%) 825 10075 860 4.2% 3523.5 5883 3664 3.9% 3003.0

(50%, 50%) 950 1025 950 0.0% 4464.5 6202.5 4690.5 5.0% 3007.0
(100%, 100%) 950 1115 950 0.0% 4218 6365.5 5161 22.3% 3004.0

10 5 10 10 1
(0%, 0%) 300 325 305 1.6% 389 633.5 428 10.0% 13.6

(50%, 50%) 350 385 350 0.0% 468.5 763.5 578 23.4% 14.5
(100%, 100%) 350 465 385 10.0% 468.5 601.5 468.5 0.0% 15.8

TP: Test Problem; NORs: Number of ORs; NBRR: Number of Beds in the Recovery Room; NP: Number of Patients;
NSR: Number of Shared Resources; [�1;�2]: Uncertainty levels; C�max: The ideal negative value of the �rst objective function;
C+

max: The ideal positive value of the �rst objective function; C0max: The obtained value of the �rst objective function;
ET�: The ideal negative value of the second objective function; ET+: The ideal positive value of the second objective function;
ET 0: The obtained value of the second objective function; GAP: The gap between the objective function and the ideal negative value.
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Table 3. Results of the test problems (continued).

TP NORs NBRR NP NSR [�1;�2] C�max C+
max C0max GAP ET� ET+ ET 0 GAP Time

(second)

11 5 10 10 2
(0%, 0%) 295 345 300 1.6% 441.5 611 441.5 0.0% 3.9

(50%, 50%) 340 380 340 0.0% 557.5 795 559.5 0.3% 12.8
(100%, 100%) 340 430 340 0.0% 557.5 683.5 559.5 0.3% 11.0

12 5 10 10 3
(0%, 0%) 295 345 295 0.0% 437.5 520.5 439.5 0.4% 4.1

(50%, 50%) 340 460 340 0.0% 553.5 791 557.49 0.7% 9.8
(100%, 100%) 340 395 340 0.0% 553.5 708.5 557.5 0.7% 44.5

13 5 10 20 1
(0%, 0%) 680 715 685 0.7% 2140.5 2860 2763 29.0% 3000.0

(50%, 50%) 800 955 800 0.0% 3050.5 4529 3076 0.8% 3000.1
(100%, 100%) 790 965 795 0.6% 2627 4064 2991 13.8% 3002.1

14 5 10 20 2
(0%, 0%) 590 620 590 0.0% 2014 2675 2014 0.0% 2115.3

(50%, 50%) 670 680 670 0.0% 2124.5 2915 2124.5 0.0% 2933.4
(100%, 100%) 670 705 670 0.0% 2076 3227 2152.5 3.6% 3000.0

15 5 10 20 3
(0%, 0%) 745 770 745 0.0% 2189 3703.5 2279 4.1% 2077.5

(50%, 50%) 840 935 840 0.0% 2531.5 4296 2651.5 4.7% 2831.3
(100%, 100%) 840 860 840 0.0% 2531.5 4208 2703 6.7% 3000.0

16 5 10 30 1
(0%, 0%) 1095 68618.5 1360 24.0% 3996 6621 6272 56.9% 3007.1

(50%, 50%) 1465 1695 1465 0.0% 8523 9628.5 8523 0.0% 2315.4
(100%, 100%) 1375 1665 1375 0.0% 8277 8504 8277 0.0% 3004.1

17 5 10 30 2
(0%, 0%) 1010 60239.2 1260 24.7% 5363 6498 6498 21.1% 3005.0

(50%, 50%) 1350 1400 1350 0.0% 7829.5 9463 7829.5 0.0% 2294.9
(100%, 100%) 1150 2000 1150 0.0% 6000 8742.5 6000 0.0% 2505.7

18 5 10 30 3
(0%, 0%) 1010 53832.5 1045 3.4% 3979 7541.5 4145.5 4.1% 3004.0

(50%, 50%) 1145 1405 1145 0.0% 7430 8805 7430 0.0% 2027.1
(100%, 100%) 1135 1535 1140 0.4% 7412 8265 7412 0.0% 3006.1

19 10 5 10 1
(0%, 0%) 390 395 390 0.0% 483 779 494 2.2% 7.3

(50%, 50%) 445 505 445 0.0% 599 1053.5 642 7.1% 15.3
(100%, 100%) 445 500 445 0.0% 599 982 642 7.1% 12.2

20 10 5 10 2
(0%, 0%) 305 385 305 0.0% 359.5 460 359.5 0.0% 3.4

(50%, 50%) 340 440 340 0.0% 458.5 724.5 458.5 0.0% 6.0
(100%, 100%) 340 485 340 0.0% 458.5 668.5 458.5 0.0% 6.6

TP: Test Problem; NORs: Number of ORs; NBRR: Number of Beds in the Recovery Room; NP: Number of Patients;
NSR: Number of Shared Resources; [�1;�2]: Uncertainty levels; C�max: The ideal negative value of the �rst objective function;
C+

max: The ideal positive value of the �rst objective function; C0max: The obtained value of the �rst objective function;
ET�: The ideal negative value of the second objective function; ET+: The ideal positive value of the second objective function;
ET 0: The obtained value of the second objective function; GAP: The gap between the objective function and the ideal negative value.
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Table 3. Results of the test problems (continued).

TP NORs NBRR NP NSR [�1;�2] C�max C+
max C0max GAP ET� ET+ ET 0 GAP Time

(second)

21 10 5 10 3
(0%, 0%) 545 650 550 0.9% 330 693 334 1.2% 2.1

(50%, 50%) 575 580 575 0.0% 428 1057 428 0.0% 4.7
(100%, 100%) 575 580 575 0.0% 428 1162 428 0.0% 3.3

22 10 5 20 1
(0%, 0%) 670 795 685 2.2% 2293 3408.5 2293 0.0% 3000.4

(50%, 50%) 855 1060 855 0.0% 2558 3798 2558 0.0% 2365.1
(100%, 100%) 865 910 865 0.0% 2438.5 4254 2598 6.5% 3001.2

23 10 5 20 2
(0%, 0%) 440 480 445 1.1% 1559.5 1924.5 1600.5 2.6% 3002.4

(50%, 50%) 505 880 530 4.9% 2059.5 2222.5 2059.5 0.0% 2990.1
(100%, 100%) 530 580 530 0.0% 1807 2546 1871 3.4% 3003.5

24 10 5 20 3
(0%, 0%) 365 585 420 15.0% 1199 1592.5 1202.5 0.2% 3000.0

(50%, 50%) 435 620 485 11.4% 1384 2067 1499.5 8.3% 3000.1
(100%, 100%) 430 650 435 1.1% 1496.5 2167 1569 4.8% 3000.7

25 10 5 30 1
(0%, 0%) 1000 10065 1045 4.5% 3152.5 6545 3728 18.2% 3003.0

(50%, 50%) 1290 1615 1290 0.0% 5328 7549.5 5328 0.0% 3006.1
(100%, 100%) 1190 2060 1190 0.0% 5450.5 6545 5450.5 0.0% 3007.9

26 10 5 30 2
(0%, 0%) 740 10115 770 4.0% 3099.5 5019 3505.5 0.0% 3003.2

(50%, 50%) 1045 1440 1045 0.0% 3829.5 5913 4068 6.2% 3004.3
(100%, 100%) 965 1355 965 0.0% 4835 6342.5 4835 0.0% 2235.7

27 10 5 30 3
(0%, 0%) 650 10065 685 5.3% 2190 3740 2672 22.0% 3004.2

(50%, 50%) 725 850 750 3.4% 2979 5223 3106 4.2% 3006.0
(100%, 100%) 725 845 725 0.0% 2894.5 4447.5 2894.5 0.0% 3007.5

28 10 10 10 1
(0%, 0%) 390 480 395 1.2% 483 602.5 483 0.0% 12.3

(50%, 50%) 445 455 445 0.0% 599 1145 642 7.1% 20.3
(100%, 100%) 445 475 445 0.0% 599 1060 642 7.1% 19.3

29 10 10 10 2
(0%, 0%) 350 485 365 4.2% 456 622.5 456 0.0% 11.7

(50%, 50%) 405 460 410 1.2% 577.5 1069.5 638 10.4% 22.2
(100%, 100%) 405 425 410 1.2% 577.5 990.5 638.5 10.5% 17.8

30 10 10 10 3
(0%, 0%) 300 415 310 3.3% 377 513 426.5 13.1% 10.8

(50%, 50%) 335 550 365 8.9% 490.5 737 516.5 5.3% 16.1
(100%, 100%) 335 585 365 8.9% 490.5 740.5 516.5 5.3% 15.6

TP: Test Problem; NORs: Number of ORs; NBRR: Number of Beds in the Recovery Room; NP: Number of Patients;
NSR: Number of Shared Resources; [�1;�2]: Uncertainty levels; C�max: The ideal negative value of the �rst objective function;
C+

max: The ideal positive value of the �rst objective function; C0max: The obtained value of the �rst objective function;
ET�: The ideal negative value of the second objective function; ET+: The ideal positive value of the second objective function;
ET 0: The obtained value of the second objective function; GAP: The gap between the objective function and the ideal negative value.
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Table 3. Results of the test problems (continued).

TP NORs NBRR NP NSR [�1;�2] C�max C+
max C0max GAP ET� ET+ ET 0 GAP Time

(second)

31 10 10 20 1
(0%, 0%) 670 720 685 2.2% 2067 3494 2487 20.3% 3003.1

(50%, 50%) 910 1000 910 0.0% 2838.5 5112.5 2838.5 0.0% 2104.4
(100%, 100%) 860 955 860 0.0% 2761 4555.5 2761 0.0% 2152.1

32 10 10 20 2
(0%, 0%) 435 510 445 2.2% 1527.5 2022 1621 6.1% 3003.2

(50%, 50%) 545 655 545 0.0% 1876.9 2433.5 2024 7.8% 3003.1
(100%, 100%) 525 1035 525 0.0% 2025.5 2618 2025.5 0.0% 2562.0

33 10 10 20 3
(0%, 0%) 365 455 395 8.2% 1166 1695 1313.5 13.6% 3003.3

(50%, 50%) 430 495 430 0.0% 1413 2135.5 1602 13.3% 3007.1
(100%, 100%) 429.9 545 465 8.1% 1405.5 2000.9 1616 14.9% 3003.2

34 10 10 30 1
(0%, 0%) 805 60013.5 855 6.2% 3233 4878.5 3386 4.7% 3008.4

(50%, 50%) 1010 1375 1010 0.0% 4786 4878.5 4786 0.0% 3008.2
(100%, 100%) 985 1135 985 0.0% 3884.5 4878.5 4523.5 16.4% 3007.6

35 10 10 30 2
(0%, 0%) 535 83550.6 760 42.0% 2633 3565.5 3409.5 29.4% 3006.1

(50%, 50%) 735 1265 735 0.0% 3375.5 5820.5 3375.5 0.0% 2387.4
(100%, 100%) 1070 83550.6 1070 0.0% 3940 5000 4929 25.1% 3006.1

36 10 10 30 3
(0%, 0%) 490 73969.8 490 0.0% 2061 3245.5 2154.5 4.5% 3000.2

(50%, 50%) 540 995 540 0.0% 2988 3837.5 2988 0.0% 2054.3
(100%, 100%) 540 935 540 0.0% 3571 4075.5 3571 0.0% 2395.4

TP: Test Problem; NORs: Number of ORs; NBRR: Number of Beds in the Recovery Room; NP: Number of Patients;
NSR: Number of Shared Resources; [�1;�2]: Uncertainty levels; C�max: The ideal negative value of the �rst objective function;
C+

max: The ideal positive value of the �rst objective function; C0max: The obtained value of the �rst objective function;
ET�: The ideal negative value of the second objective function; ET+: The ideal positive value of the second objective function;
ET 0: The obtained value of the second objective function; GAP: The gap between the objective function and the ideal negative value.

Figure 4. The gap between the objective functions and the ideal negative values regarding the number of ORs.

Based on Figure 4, the gap for both objective
functions narrows when the number of ORs decreases.

4.2. Case study
4.2.1. Description and data
This article includes a real-world case study to demon-
strate the approach. The case study focuses on Shahid
Beheshti hospital, a public hospital located in Babol, in
northern Iran. Established in 1974, the hospital's OR

unit comprises nine OR and is spread across two 
oors.
The types of surgeries on each 
oor are presented in
Table 4. The OR unit at the hospital is operational
from Saturday to Wednesday, while Thursdays are
reserved for the OR and providing emergency services.
The hospital's recovery room has a total of seven beds
available.

Note that the OR allocation is only taken into
account for non-emergency cases. In the event of an
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Table 4. Types of surgeries on each 
oor.

Floor Types of surgeries Number
of ORs

First 
oor

Orthopedics 3

General surgery 2

Urology 1

Neurosurgery 1

Second 
oor
General surgery 1

Kidney transplant 1

Table 5. Prioritization of patients in the OR unit.

Patient status Weight

Patients with unstable condition 1
Elderly patients and pediatric patients [0.5,1]
Patients with stable condition Less than 0.5

emergency, the �rst available OR is allocated to the
emergency case. The working hours of the OR unit are
divided into three working shifts: morning, evening,
and night. There is no waiting list at Shahid Beheshti
hospital and surgeries are performed based on a de�ned
prioritization system outlined in Table 5. Each patient
is assigned a speci�c weight within the range of [0,1],
indicating their priority level for surgery.

Every patient is transferred to the waiting room
for surgery. In the waiting room, the hospitalization
records of patients are checked and they are subse-
quently prepared for surgery. Afterward, the patient is
transferred to the assigned operation room. After the
surgery is completed, the patient is promptly moved
to the recovery room for stabilization. Finally, the
patient's overall condition is assessed to determine
whether transfer to the ICU or general unit is necessary.

Prior to the initial surgery, as well as between
subsequent surgeries, and following the �nal surgery,
various preparatory and cleaning procedures must be
performed. On average, the equipment preparation and
sterilization in the ORs require about 45{60 minutes

initially. In addition, between successive surgeries, a
period of approximately 10{25 minutes is required for
the same purpose, while after the last surgery, about
45{60 minutes are required to perform cleaning oper-
ations, on average. As mentioned earlier, the surgery
and hospitalization time durations in the recovery room
are considered uncertain parameters. According to
the data derived from our case study, minimum and
maximum times are presented in Table 6.

In the OR unit at the Shahid Beheshti hospital,
radiology equipment is a shared source for orthopedic
surgeries and some general surgeries. Due to budget
limitation, only one radiology equipment is available
and the surgeries that require this equipment cannot
be performed, simultaneously.

4.2.2. Results
In order to compare the proposed approach with the
current approach and to demonstrate the superiority
of the proposed approach, the real data of �ve di�erent
days are gathered from the ORs at the Shahid Beheshti
hospital. Of note, regarding the real and �xed data sets
from the case study, uncertainty budgets (�1 and �2)
are equal to 0. As a result, according to the solution
obtained by the MCGP method, values of the �rst and
second objective functions are presented in Table 7.

Based on the information presented in Table 7,
there appears to be a 10.28% improvement in the �rst
objective function and a 10.04% improvement in the
second objective function. Thus, the obtained results
show the superiority of the proposed approach to solve
the research problem. Besides, we statistically com-
pared the proposed approach with current approaches
at a con�dence interval of 95%. The hypotheses are
tested as follows:

Cmaxproposed:approach = Cmaxcurrent:approach
Cmaxproposed:approach < Cmaxcurrent:approach

and:

ETproposed:approach = ETcurrent:approach
ETproposed:approach < ETcurrent:approach

The P -values of the �rst and second tests are 0.098

Table 6. Minimum and maximum times for di�erent surgeries and the recovery room (minute).

Surgery times in ORs

Type of surgery Minimum surgery
time

Maximum surgery
time

Orthopedics 30 240
Urology 15 270

Neurosurgery 30 360
General surgery 30 300

Kidney transplant 180 300
Hospitalization time in the

recovery room
Type of surgery Minimum time Maximum time

All surgeries 10 120
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Table 7. Results of the case study.

C0max ET 0

Day Number of
patients

Number of
patients

that need
shared

resource

Proposed
approach

Current
approach

Improvement Proposed
approach

Current
approach

Improvement

1 30 4 765 820 7.8% 3308 3774 12.33%
2 20 3 665 780 14.74% 1699 1990 14.62%
3 17 3 630 700 10% 1184 1250 5.28%
4 12 3 615 675 7.4% 890 950 6.31%
5 10 2 540 610 11.47% 477 540 11.66%

Table 8. Di�erent situations evaluated through sensitivity analysis.

Case Description NP NBRR NSR NORs

1 Base case 30 7 1 9
2 Sensitivity analysis on the number of shared resources 30 7 2 9
3 30 7 3 9
4 Sensitivity analysis on the ORs (use lower-load OR to help other ORs) 30 7 1 9
5 30 7 1 9

Table 9. Sensitivity analysis of the number of shared resources.

Case NOR NBRR NP NSR [�1;�2] C0max
Percentage of

change
ET 0 Percentage of

change
1 9 7 30 1 (50%, 50%) 1030 { 4664.5 {
2 9 7 30 2 (50%, 50%) 695 {32.5% 3636 {22%
3 9 7 30 3 (50%, 50%) 590 {42.7% 3359.5 {27.9%

and 0.404. H0 is rejected in both tests, which indicates
that the proposed approach outperforms the current
approach, statistically.

4.2.3. Sensitivity analysis
This section presents a sensitivity analysis that takes
into account the in
uence of each parameter on the
obtained results. Two key parameters, (i) the number
of shared resources and (ii) a new policy for assigning
the surgeries to the ORs, are considered here. Table 8
displays the various scenarios analyzed in the sensitiv-
ity analysis.

As can be seen, Case 1 is related to the basic
model while Cases 2 and 3 show the number of shared
resources. Finally, Cases 4 and 5 take into account
di�erent policies on the assignment of surgeries to the
ORs.

(i) Sensitivity analysis of the number of shared
resources. This section attempts to evaluate the
e�ect of the number of shared resources on both
objective functions. To this end, in addition to the
base case, we consider two new values of 2 and 3

for the shared resources. The obtained results are
given in Table 9.

With reference to Table 9, it can be observed
that the shared resource serves as a bottleneck
in enhancing the productivity of the ORs with
respect to the selected objective functions. In-
creasing the number of shared resources to 2 and
3 results in a reduction of about �32:5% and
�42:7%, respectively, in the value of Cmax. A
similar trend can be seen for the second objective
function, where there is a decrease in ET of about
{2% and �27:9% relative to the base case.

(ii) Sensitivity analysis on the ORs assigning
policy. To conduct a sensitivity analysis on
the ORs assigning policy, two di�erent policies are
taken into account:

� The �rst policy allows patients whose surgery
time is less than 60 minutes to be assigned to
other ORs that are capable of performing the
same surgery;

� The second policy allows patients who need to
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Table 10. Sensitivity analysis of the ORs assigning policy.

Case NOR NBRR NP NSR [�1;�2] C0max
Percentage of

change
ET 0 Percentage of

change
1 9 7 30 1 (50%, 50%) 1030 { 4664.5 {
4 9 7 30 1 (50%, 50%) 1025 {0.4% 4478 {3.9%
5 9 7 30 1 (50%, 50%) 985 {4.3% 4508 {3.3%

undergo surgeries in higher work-load ORs to
be assigned to a lower work-load OR if it is
available.

As can be seen in Table 10, both of the proposed
policies enhance the performance of the ORs schedul-
ing. The �rst policy appears to be more e�ective than
the second one in terms of Cmax. However, there is no
signi�cant di�erence between the two policies in terms
of ET .

5. Conclusion

The focus of this study is on the scheduling of
Operating Rooms (ORs), taking into account shared
resources, uncertainty in surgery time, and the time
required for patients to recover in beds in the recovery
room. To address this problem, a bi-objective robust
Mixed-Integer Linear Programming (MILP) model is
proposed. The �rst objective function minimized the
maximum completion time of the surgical operations,
while the second objective function minimized the
sum of the earliness and tardiness of the surgical
operations. To solve the proposed model, the Multi-
Choice Goal Programming (MCGP) approach with a
utility function was utilized, using both random test
problems and real data obtained from Shahid Beheshti
hospital in Babol, Iran. Additionally, a sensitivity
analysis was conducted on selected parameters. The
results of the study demonstrated the e�ectiveness of
the proposed method in solving the OR scheduling
problem, and showed that it outperformed existing
methods.

For future research, it is recommended that a sur-
gical team be set up and all working shifts and relative
costs of each surgery be considered. Emergency cases
ought to be be incorporated in the ORs scheduling
problem. To solve the problem, we can develop exact
approaches such as Branch and Bound method, Bender
decomposition algorithm, or Lagrangian relaxation
algorithms.
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