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Abstract. In recent years, the Fisher Linear Discriminant Analysis (FLDA)-based
classi�cation models are among the most successful approaches and have shown e�ective
performance in di�erent classi�cation tasks. However, when the learning data (source
domain) have a di�erent distribution compared with the testing data (target domain), the
FLDA-based models may not work well, and the performance degrades, dramatically. To
face this issue, we o�er an optimal domain adaptation via Bregman divergence minimization
(DAB) approach, in which the discriminative features of source and target domains are
simultaneously learned via domain invariant representation. DAB is designed based on the
constraints of FLDA, with the aim of the coupled marginal and conditional distribution
shifts adaptation through Bregman divergence minimization. Thus, the resulting repre-
sentation can show well functionality like FLDA and simultaneously discriminate across
various classes, as well. Moreover, our proposed approach can be easily kernelized to deal
with nonlinear tasks. Di�erent experiments on various benchmark datasets demonstrate
that our DAB can constructively face with the cross domain divergence and outperforms
other novel state-of-the-art domain adaptation approaches in cross-distribution domains.

© 2021 Sharif University of Technology. All rights reserved.

1. Introduction

In general, the conventional Machine Learning (ML)
approaches have high performance when the training
and test samples have the similar distribution and
feature space. Given the rejection of this hypothesis
in the real world applications and the lack of su�cient
labeled data in domains, the traditional supervised
learning methods become ine�ective. To compensate

*. Corresponding author. Tel.: +98 44 31980236;
Fax: +98 44 31980236
E-mail addresses: mozhdeh.zandifar@it.uut.ac.ir (M.
Zandifar); shivanoorisaray@it.uut.ac.ir (Sh. Noori Saray);
j.tahmores@it.uut.ac.ir (J. Tahmoresnezhad)

doi: 10.24200/sci.2021.51486.2210

for this shortcoming, we can bene�t from other avail-
able and relevant labeled samples. In this case, the
distribution divergence between the training and test
data may reduce the e�ciency of the trained model
on test data [1]. For an instance, suppose that for
training an adaptive model to detect the pedestrians
in night-time images, the day-time labeled images
are employed where they are available with di�erent
distributions [2]. In this way, the trained model will not
have the acceptable classi�cation accuracy where the
training and test images contain various expressions,
postures, aging, and lighting conditions. In total, the
distribution di�erence between the training and test
samples is known as domain shift problem [3].

Domain Adaptation (DA) and Transfer Learning
(TL) have been introduced as e�ective tools to address
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the domain shift problem where they utilize the gained
knowledge from training instances to model test ones.
According to the available information in input data,
the TL perspectives are categorized into following two
categories: (1) unsupervised TL, where no labeled data
in target domain is accessible, and (2) semi-supervised
TL where a small part of target domain is labeled
but the amount of labeled data is not independently
adequate to construct an e�cient classi�er [4].

In order to cope the shift problem between do-
mains, the type of distribution shift should be realized.
The distribution divergence between domains is derived
from both marginal and conditional distribution diver-
gences between domains. Given a speci�c domain, from
the probability viewpoint, the marginal distribution
mismatch is the probability distribution di�erence
of domain features, and the conditional distribution
mismatch is the prediction probability di�erence of
similar instances of the source and target domains.
Most previous TL methods reduce the distribution dif-
ference considering one of the marginal or conditional
distributions. While, our proposed method covers both
the marginal and the conditional distribution di�erence
reductions of source and target domains to tackle the
distribution mismatch across domains.

Therefore, we employ a benchmark to evaluate the
divergency between domains. Bregman Divergences
(BD) are the generalized distance measures that are
de�ned between matrices, functions, and distributions.
The BD are related to a strictly convex functions
that evaluate the distribution divergencies of instances
drawn from diverse domains. In principle, the BD work
like the norm in a Reproducing Kernel Hilbert Space
(RKHS) on Support Vector Machine (SVM) [5], where
both methods reduce the solution space volumes. The
BD can transfer the knowledge across training and test
samples via decreasing the distribution discrepancies of
source and target data.

However, the conventional dimensionality reduc-
tion algorithms �nd a shared feature space without con-
sidering the distribution diversity across the source and
target instances where the domains are not identically
and independent distributed (i.i.d.). To solve this issue,
we use a transfer subspace learning framework using
BD and Fisher Linear Discriminant Analysis (FLDA)
to partially preserve the discriminant information. In
this work, the integration of FLDA with BD is utilized
to �nd an optimal subspace whereas the distribution
discrepancy across domains is minimized and the data
from various classes are well distinguished.

Therefore, we introduce DA via BD minimization
(DAB) that is a novel unsupervised TL technique,
which learns a new latent feature space to reconcile
both the marginal and the conditional distributions
across domains. The main aims of DAB are listed in
the following:

1. DAB uses the BD to transfer the discriminant
knowledge from training instances to test ones by
dispelling or alleviating the di�erence across the
distribution of training and test instances;

2. DAB uses an embedding matrix to map di�erent
domains data onto a shared embedded space based
on the customized FLDA criterions in an unsuper-
vised manner;

3. DAB extends the nonparametric BD to calculate
the divergence across the source and target do-
mains, and integrates the FLDA to form a robust
feature representation;

4. DAB bene�ts from a base classi�er (i.e., nearest
neighbor (NN) [6] or SVM [7]) in projected subspace
to estimate the pseudo labels of test data.

In fact, our proposed approach has the following
major goals: 1) preserving the discriminant knowledge
of source samples to e�ectively transfer the class
knowledge, and 2) minimizing joint distribution dis-
parities across source and target samples to decrease
the domain variation statistically.

Extensive experiments are accomplished on 34
visual DA tasks over three benchmark datasets. The
experiment results demonstrate that our DAB remark-
ably improves the classi�cation accuracy against other
newest DA methods.

The rest of the paper is formed as follows. In
Section 2, we review the related work. The general
requirements are presented in Section 3. We bring
forward our unsupervised transfer subspace learning
method in Section 4. Experimental settings and results
on visual DA tasks are demonstrated in Section 5. In
the end, Section 6 concludes the paper and the future
works are discussed.

2. Related work

TL as an advanced variant of ML has attained great
success in various �elds, e.g., speech recognition [8,9],
text mining [10], computer vision [11,12], and ubiqui-
tous computing [13,14] over the last two decades. The
existing TL approaches are categorized into following
three main groups: (1) instance-based [15], (2) model-
based [16,17] and (3) feature-based [18,19] approaches.

In instance-based approaches, the weights are as-
signed to rate the training instances in source domain.
Instance-based methods focus on reweighting the
source instances to lessen the distribution divergency
across domains. A main idea of instance reweighting
methods is to obtain an optimal classi�er for unlabeled
data by embedding the instance-dependent weights in
the loss function. Lately, a landmark-based method is
introduced that landmarks are a subset of labeled sam-
ples in training data that have the closest distribution
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to target data [20]. Landmark selection is one of the
instance-based methods, which pro�ts from Maximum
Mean Discrepancy (MMD) [21] to choose a part of
source samples that obey the same distribution with
target samples. In the other words, landmark selection
is to link the source and target data by utilizing
the selected landmarks. Landmarks Selection-based
Subspace Alignment (LSSA) [22] is also instance-based
method which opts some of the examples as landmarks
and maps the training and test data into a new feature-
space nonlinearly by considering the discovered land-
marks. LSSA bene�ts the subspace alignment to match
di�erent domains through learning a linear mapping
model. A Minimax Game for instance-based selective
TL (MGTL) [23] is another approach that insists to
choose the high-quality source samples to boost the
transferring capability across diverse domains. In
contrast to selecting samples one by one, in MGTL,
the actions are sampled in groups to boost the training
performance.

The model-based methods aim to create a ro-
bust classi�er and reduce the distribution discrepancy
across domains at the same time. They adapt the
source classi�er parameters to classify target samples.
Adaptation Regularization based TL (ARTL) [24] pur-
sues to �nd an adaptive classi�er using the following
three components: 1) minimizing the structural risk
functional, 2) matching the dual distributions across
domains, 3) utilizing the manifold consistency via
marginal distribution. Adaptive Classi�er learning
with Transfer Component Analysis (ACTCA) [25] as
a model-based method decreases the distribution shift
across domains and then constructs a classi�er on
mapped data. However, it is obvious that creating a
prediction function after obtaining a new feature rep-
resentation may miss some discriminative knowledge
and learning two steps at the same time can conduce
a better performance. Joint Adaptive Classi�er and
Representation Learning (JACRL) [26] as a two-step
model-based method learns an adaptive classi�er via
minimizing the functional structural risk and obtains
a representation space through the distribution shift
reduction across domains to maximize the manifold
consistency of classi�er.

The feature-based methods aim to learn new
feature representation, which can capture common
knowledge across domains. Most of recent feature-
based methods contain the dimensionality reduction
step to provide a common latent space among do-
mains. The aim of dimensionality reduction methods
is to embed the high-dimensional samples into a low-
dimensional subspace where the intrinsic information
contained in the data is preserved. Due to the
literature survey [27], existing dimensionality reduction
techniques can be divided into two categories: (1)
PCA-based (principal component analysis) framework,

which attempts to project instances along the direction
of maximum variance, and (2) FLDA-based framework,
which increases the mean value of Kullback-Leibler
(KL) divergences [28] across diverse classes.

There are variety of PCA-based approaches
[29,30]. Visual DA (VDA) [31] is a new framework
which constructs a shared feature representation be-
sides minimizing the joint distributions among the
source and target data. In fact, VDA maintains
the statistical and geometrical information of input
samples using manifold assumptions. In addition,
VDA employs domain invariant clustering in an em-
bedded subspace to distinguish diverse classes of target
data. Coupled Local-Global Adaptation (CLGA) [32]
is another method, which reduces the distribution gap
among domains by global and local matching. At
the global step, CLGA minimizes dual distribution
di�erences across the source and target domains. At
the local step, CLGA uses both the class discrimination
information and data geometric structures. Discrim-
inative and Domain Invariant Subspace Alignment
(DISA) for visual tasks [33] aims to embed the various
domains data into the relevant feature spaces. DISA
globally matches both domains through the distribu-
tion divergence minimization between domains. In
addition, DISA separates various classes by adjusting
the inter-class and the intra-class distances. Also,
DISA conserves the manifold knowledge of data for
local adaptation.

FLDA-based approaches consider class discrim-
ination criteria besides DA criterions to match the
distribution mismatch between domains. Scatter com-
ponent Analysis (SCA) [34] is an FLDA-based dimen-
sionality reduction approach, which seeks to learn a
new representation to perform both DA and domain
generalization e�ectively. Three main objectives of
SCA are as follows: (1) maximizing the inter-class
scatter, (2) minimizing the intra-class scatter, and (3)
maximizing the general scatter.

In this paper, we introduce a novel FLDA-based
dimensionality reduction method, which �nds an op-
timal subspace and reduces the gap in marginal and
conditional distributions of various domains. DAB
embeds the source and target data into a common low
dimensional feature space via BD minimization and
FLDA criteria.

3. Proposed method

3.1. Motivation
We are to propose a new TL algorithm based on the
dimensionality reduction process to tackle domain shift
problem. The main idea of our proposed approach is in-
spired from transfer subspace learning [2] on which the
marginal distribution di�erence of source and target
data is minimized. Nevertheless, our proposed method
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Figure 1. Overall scheme of Domain Adaptation via Bregman divergence minimization (DAB). DAB is a combination of
Fisher Linear Discriminant Analysis (FLDA) and joint distribution adaptation via Bregman divergence. DAB uses FLDA
to reduce the dimension and maintain the class structure where it increases the inter-class di�erences and reduces the
intra-class di�erences. It also uses the joint distribution adaptation to lessen the gap across conditional and marginal
distributions, simultaneously. In an iterative process, DAB seeks to obtain an optimal feature-space for matching the
source and target domains.

minimizes joint marginal and conditional mismatches
simultaneously, according to a modi�ed version of BD
to alleviate the conditional distribution discrepancy
alongside the marginal distribution discrepancy. Also,
DAB preserves the class structure using the FLDA-
based criterions. Figure 1 illustrates the overall scheme
of DAB. In the rest, we introduce the problem state-
ment and then we represent our proposed approach.

3.2. Problem statement
De�nition 1 (domain). A domain D is comprised
of pairs D = fX ; P (x)g, which is an m-dimensional
feature space and P (x) is a marginal probability distri-
bution on X where X = fx1; : : : ; xng 2 X . Input data
includes the following two domains: source domain (S)
and target domain (T ). We mark the source domain
as DS = f(x1; y1); : : : ; (xns ; yns)g which is completely
labeled. Similarly, we de�ne the target domain as
DT = fxns+1; : : : ; xns+ntg which is fully unlabeled.
Also, ns and nt are the number of source and target
samples, respectively.

De�nition 2 (task). Given a speci�c domain D, a
task for domain D is denoted by T = fY; f(x)g and is
composed of the following two components: T is the set
of labels of domain D and f(x) is a classi�er, which can

be employed to approximate the equivalent labels of the
sample x. From a probabilistic standpoint, f(x) can be
expressed as the conditional probability distribution,
i.e., f(x) = Q(y j x) where y 2 Y . Our problem is
to obtain a new feature subspace in which both the
marginal and conditional probability di�erences among
the source and target data are minimized, i.e., Ps(xs)� Pt(xt) and Qs(ys j xs) � Qt(yt j xt), respectively,
where Xs = Xt and Ys = Yt.

The aim of our DAB is to create an optimal
subspace with the following characteristics: 1) The
distances of both marginal and conditional probability
of source and target data are minimized; 2) the separate
information of source samples is preserved to improve
the class information transfer.

3.3. Feature extraction using classical FLDA
The main objective of FLDA is to perform dimension-
ality reduction besides preserving the class structure of
information as much as possible. The class structure is
considered using inter-class scatter (SB) and intra-class
scatter (SW ), which measures the di�erence across the
various classes and the scatter of measurements around
their relevant class centers. In this way, FLDA �nds a
feature space, which reduces the trace ratio of intra-
class scatter and inter-class scatter matrices. Mathe-
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matically, the inter-class scatter matrix is presented in
Eq. (1):

SB =
CX
i=1

ni(~m(i) �m)(~m(i) �m)T ; (1)

and the intera-class scatter matrix is formulated as:

SW =
CX
i=1

niX
j=1

(x(i)
j � ~m(i))(x(i)

j � ~m(i))T ; (2)

where C demonstrates the number of classes, ni is the
number of instances in ith class, ~m(i)is the mean of
samples from the ith class, x(i)

j is jth sample from ith
class and m is the mean of all instances. Therefore, the
FLDA subspace is calculated as follows:

F (W ) = argmin
tr(WTSWW )
tr(WTSBW )

=argmin tr�1(WTSBW )tr(WTSWW ); (3)

where tr�1(X) is the inverse of matrix trace.

3.4. Bregman Divergence (BD)
To diminish the distribution shift across the source
and target data, most of the previous studies have
focused to design and optimize the objective functions
via Euclidean distance to calculate the distribution
discrepancy across domains. However, in some real-
world applications, Euclidean distance may be unsuit-
able to measure the distribution gap between domains,
since it cannot jointly increase the inter-class distance
and decrease the intra-class distance. Thus, Bregman
distance is an appropriate nonlinear distance function
to calculate the distribution di�erence among the
source and target domains. BD transfers the achieved
knowledge from training instances to test instances
by reducing a distance across the dual distributions
of domains. We now introduce the BD with more
details.

De�nition 3 (Bregman divergence). Let 
 ! R
be a strictly convex function on a convex set 
 � Rm
supposed to be nonempty and di�erentiable. Then,
for every x; y 2 Rm the BD corresponding to  is
formulated as:

BD(x; y) =  (x)�  (y)� < x� y;5 (y) >; (4)

where  (:) is the mapping function and 5 illustrates
the gradient vector of  .

Therefore, the BD can be explained as the gap
among the value of convex function at x and its �rst
order Taylor expansion at y, or correspondingly the
remainder part of the �rst order Taylor expansion
of  at y. The geometric interpretation of BD is

Figure 2. Geometrical illustration of Bregman
divergence, BD (x; y).

demonstrated in Figure 2. As illustrated in Figure 2, it
is obvious that the BD calculates the ordinate distance
among the value of convex function at x and its tangent
at y.

By setting  (x) = x2 and  (y) = y2, the BD is
diminished to the form of squared error loss [35]. By
employing the squared loss to calculate the distribution
discrepancy, the following relation is achieved:

D(W;XS ; XT ) =
Z

(PS(~y)� PT (~y))2d~y; (5)

where XS and XT are the source and target sample
sets, W is the projected subspace, D(:) is the BD which
calculates the gap among PS and PT , PS(:) and PT (:)
demonstrate the Probability Density Functions (PDFs)
of the source and target samples in the embedded sub-
space, respectively. Therefore, the BD is a criterion of
diversity in distributions of source and target instances
in an embedded feature space.

The densities in the embedded feature spaces are
calculated by utilizing the Kernel Density Estimation
(KDE) method [36], which computes the density at
each point y 2 Rd as a sum of kernels across ~y and
other points ~yi, as follows:

p(~y) = (
1
n

)GP(~y � ~yi); (6)

where n displays the number of instances and GP(:)
shows the d-dimensional Gaussian kernel with co-
variance matrix

P
. We extend the nonlinear BD

to compute the discrepancy of both the marginal
and the conditional distributions, and merge it with
FLDA to create a new latent feature space, which is
advantageous and robust for signi�cant distribution
divergence.
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3.5. Marginal distribution adaptation
The existing dimensionality reduction methods ob-
tain a linear combination of features that character-
ize or separate two or more classes of objects or
events. However, they cannot guarantee to decrease
the distribution mismatch across various domains in
embedded subspace [37]. Thus, we are to extend an
optimal dimensionality reduction paradigm to transfer
knowledge across domains. We explicitly leverage
the nonparametric distance measure, i.e., BD, in a
projected subspace to assess the distance across expec-
tations of source and target domains. Formally, the
marginal distribution distance of domains is formulated
in Eq. (7):

Distmarginal(DS ; DT )

=

"Z
(

1
ns

nX
i=1

GP
1
(~y � ~yi))2d~y

#

+

24Z (
1
nt

nX
j=ns+1

GP
2
(~y � ~yi))2d~y

35
�
24(

1
nsnt

nX
i=1

nX
j=ns+1

GP
12

(~y � ~yi))2

35 ; (7)

where Distmarginal(DS ; DT ) measures the gap of
marginal distributions across the source domain DS
and target domain DT . Also, GP

1
, GP

2
, and

GP
12

are Gaussian kernel with d dimensions for
the covariance matrices of source instances, target
instances and sum of source and target instances,
respectively. The distance across the marginal distri-
butions P (XS) and P (XT ) is decreased by minimizing
Distmarginal(DS ; DT ).

3.6. Conditional distribution adaptation
Most of the novel DA researches consider only the
marginal probability distribution adaptation, suppos-
ing that the domains obey the same conditional prob-
ability distributions. While in factual examples, the
conditional probability distribution discrepancies are
remarkable. Moreover, alleviating the discrepancy of
marginal distributions does not necessarily decrease
the conditional distribution discrepancies. On the
other hand, the computation of conditional distribution
discrepancy is intractable, hence the class-conditional
distribution is calculated instead [38]. Thus, we
consider both the marginal and the class-conditional
distributions in DA. Thus, the gap of class-conditional
distributions is computed via the sum of empirical
distances with respect to the class labels across the
sub-domains with the same label between the source
and target domains:

Distconditional
PC
c=1(DSc ; DT c)

=

24Z (
1
ncs

ncsX
i=1

GP
1
(~y � ~yi))2d~y

35
+

24Z (
1
nct

ncs+n
c
tX

j=ncs+1

GP
2
(~y � ~yi))2d~y

35
�
24(

1
ncsnct

ncsX
i=1

ncs+n
c
sX

j=ncs+1

GP
12

(~y � ~yi))2

35 ; (8)

where Distconditional
PC
c=1(DSc ; DT c) demonstrates

the shift of class-conditional distributions among the
source domain DS and the target domain DT . Also, ncs
and nct indicate the samples number with the class c in
the source and target domains, respectively. Moreover,
DSc shows the sample set of source domain with class c,
and DT c is the sample set of target domain with class c.
With minimizing Distconditional

PC
c=1(DSc ; DT c), the

discrepancy of conditional distributions across DSc and
DT c is minimized.

3.7. Objective function
The intuition behind DAB is to learn a transfer
matrix W 2 RD�d, which maps the samples from
D-dimensional space to d-dimensional space and per-
suades three following principal objectives: (1) the
marginal distribution variation of source and target
data is decreased, (2) the conditional distribution vari-
ation between the same class of source and target data
is minimized, and (3) the discriminative information
(i.e., data manifold structure) is preserved. Therefore,
we embed Eqs. (7) and (8) into Eq. (3), to �nd the
following optimization problem:

W=argminF (W )+�D(W;XS ; XT ); s.t. WTW=I;
(9)

where F (W ) is the objective function of FLDA,
D(W;XS ; XT ) is the BD which computes the shift
across PS and PT in an embedded subspace via W ,
and � 2 [0; 1] demonstrates the regularization param-
eter which supervises the balance among F (W ) and
D(W;XS ; XT ). The solution of Eq. (9) can be found
via the following gradient descent technique:

Wk+1 = Wk � �(k)
�
@F (W )
@W

�
+�
�ns+ntX

i=1

@D(W;XS ; XT )
@~yi

@~yi
@W

+
ncs+n

c
tX

j=1

@D(W;XS ; XT )
@~yi

@~yi
@W

�
; (10)
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where @ is the gradient, Wk is the primary subspace;
Wk+1 is the update of Wk to �nd the optimal linear
subspace using the gradient descent method; and �(k)
illustrates the learning rate factor at the iteration k,
which supervises the gradient step size for kth iteration.

The derivative of F (W ) due to W is achieved via:

@F (W )
@W

= 2tr�1(WTSBW )SWW

�2tr�2(WTSBW )tr(WTSWW )SBW; (11)

where tr�2(X) displays the inverse of tr(X) square
root. We de�ne the following equation inspired
from [39] as:Z

GP
1
(~y � ~ys)X

2

(~y � ~yt)dy = GP
1 +

P
2(~ys�~yt);

which belongs to two Gaussian kernels due to the
quadratic form of Eqs. (7) and (8), where the derivative
of D(W;XS ; XT ) considering W is:
ns+ntX
i=1

@D(W;XS ; XT )
@~yi

@~yi
@W

=
nsX
i=1

@D(W;XS ; XT )
@~yi

~xTi

+
ns+ntX
i=1

@D(W;XS ; XT )
@~yi

~xTi

=
1
n2
s

nsX
s=1

ntX
t=1

GP
11

(~ys � ~yt)

+
1
n2
t

ns+ntX
s=1

ns+ntX
t=1

GP
22

(~ys � ~yt)

� 1
nsnt

nsX
s=1

ns+ntX
t=ns+1

GP
12

(~ys � ~yt); (12)

and:
ncs+n

c
tX

i=1

@D(W;XS ; XT )
@~yi

@~yi
@W

=
ncsX
i=1

@D(W;XS ; XT )
@~yi

~xTi

+
ncs+n

c
tX

i=ncs+1

@D(W;XS ; XT )
@~yi

~xTi

=
1

(ncs)2

ncsX
s=1

nctX
t=1

GP
11

(~ys � ~yt)

+
1

(nct)2

ncs+n
c
tX

s=ncs+1

ncs+n
c
tX

t=ncs+1

GP
22

(~ys � ~yt)

� 1
ncsnct

ncsX
s=1

ncs+n
c
tX

t=ncs+1

GP
12

(~ys � ~yt); (13)

where:X
11

=
X

1

+
X

1

;
X
22

=
X

2

+
X

2

and

X
12

=
X

1

+
X

2

:

Algorithm 1 illustrates the whole procedure of
DAB. Moreover, we utilize the pseudo-labels of target
domain, which can be acquired by training a simple
prediction function on the training samples to estimate
the pseudo-labels of test samples. The prediction
function could be a common ML classi�er such as NN
and SVM. It should be pointed out that, although most
of the pseudo test labels may be false because of the
discrepancies in distributions, we can still employ them
to adapt the conditional distributions by modi�ed BD
measure formulated in Eq. (8). Thereby, we can apply
the source classi�er to boost the target classi�er.

3.8. Computational complexity
In this section, we look over the computational com-
plexity of DAB by utilizing the big O notation. We
mark n and C as the instances number and the classes
number, respectively. The computational complexity
is calculated in the following: O(n2) for measuring
the marginal distribution discrepancy across the source
and target samples, (Cn2) for measuring the condi-
tional distribution di�erence among the source and
target samples, and O(n2) for computing matrix Wk+1.
Consequently, the computational complexity of DAB is
O(Cn2).

4. Experiments

In this section, at �rst we introduce the benchmark
datasets. Then, the experimental setup and details
of our DAB and other compared approaches are de-
scribed. Finally, the results are discussed with details.

4.1. Datasets
We employ the following three visual DA datasets
as the popular benchmark to assess the visual DA
algorithms: object (O�ce-Caltech-256), face (PIE) and
digit (USPS, MNIST). We used the prepared datasets
in [40] and provided 34 tasks. Table 1 shows the results
of experiments.

4.1.1. O�ce-Caltech-256 dataset
The O�ce-Caltech-256 dataset is a benchmark dataset
for visual DA tasks, which has 10 overlapping classes
from following four domains: Amazon (A), Webcam
(W), DSLR (D) and Caltech256 (C). Image-samples
of Amazon and Caltech-256 domains are taken from
amazon.com and o�ce equipment, respectively. The
Webcam and DSLR domains include images taken by
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Algorithm 1. Domain Adaptation via Bregman divergence minimization (DAB).

Table 1. The speci�cations of investigative datasets.

Dataset #Type #Examples #Features #Classes Subsets

USPS Digit 1,800 256 10 U

MNIST Digit 2,000 256 10 M

PIE Face 11,554 1,024 68 P1, P2, P3, P4, P5

O�ce Object 1,410 800 10 A, W, D

Caltech Object 1,123 800 10 C

a webcam and a DSLR cameras, respectively. Each do-
main is collected under di�erent conditions (i.e., pose,
resolution, location, view angle, scene illumination,
motion blur, and background clutter between scenes),
which causes a distribution di�erence across disparate
domains. Therefore, 12 cross DA tasks are provided,
namely A!W; :::; C ! D.

4.1.2. USPS-MNIST dataset
USPS (U) and MNIST (M) are common datasets which
is utilized are pattern recognition and computer vision
tasks. USPS dataset contains 9,298 labeled images,
each of which with size of 16�16. The MNIST dataset
contains 60,000 labeled images and 10,000 unlabeled
images, each of which with size of 28� 28. Notice that
USPS and MNIST datasets are subject to disparate
distributions and both have 10 classes. One USPS
versus MNIST task is provided by randomly picking
out 1800 images of USPS and 2000 images of MNIST
as the training and test domains, respectively. As the
same way, MNIST versus USPS task is created by
switching the source and target domains. Therefore,

we conduct the following two handwriting recognition
tasks, i.e., USPS-MNIST and MNIST-USPS.

4.1.3. PIE dataset
PIE is another visual dataset, which has 41,368 face
images with size of 32� 32. The images were taken by
13 synchronized cameras and 21 
ashes under varying
illuminations, poses, and expressions. PIE dataset
contains the following �ve domains based on the various
poses: PIE1 (C05, left pose), PIE2 (C07, upward pose),
PIE3 (C09, downward pose), PIE4 (C27, frontal pose),
and PIE5 (C29, right pose). Accordingly, 20 cross
domain tasks are constructed as follow: P1 ! P2,
P1! P3; :::, P5! P4.

4.2. Comparison baselines
We compare DAB with two baseline ML methods, i.e.,
NN, FLDA and eight novel DA methods according to
the mentioned datasets (Joint Distribution Adaptation
(JDA) [41], Transfer Joint Matching (TJM) [42], dis-
criminative transfer subspace learning via Low-Rank
and Sparse Representation (LRSR) [43], JACRL [26],
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Table 2. Label prediction accuracy (%) on O�ce+Caltech-256 datasets. Domain Adaptation via Bregman divergence
minimization (DAB) has superior performance compared with other Domain Adaptation (DA) methods (i.e., Fisher Linear
Discriminant Analysis (FLDA), Joint Distribution Adaptation (JDA), Transfer Joint Matching (TJM), discriminative
transfer subspace learning via Low-Rank and Sparse Representation (LRSR), Joint Adaptive Classi�er and Representation
Learning (JACRL), Visual Domain Adaptation (VDA), Coupled Local-Global Adaptation (CLGA), discriminative and
Domain Invariant Subspace Alignment for visual tasks (DISA) and discriminative joint probability maximum mean
discrepancy for domain adaptation (JPDA)) in 9 out of 12 tasks using Nearest Neighbor (NN) classi�er, and 9 out of 12
tasks using Support Vector Machine (SVM) classi�er. DABM is the variant of DAB that performs marginal distribution
matching without considering the conditional distribution mismatching and DABC is the variant of DAB that performs
conditional distribution matching without considering the marginal distribution mismatching.

Dataset
NN classi�er SVM classi�er

NN FLDA JDA TJM LRSR JACRL VDA CLGA DABM DABC DISA JPDA DAB LRSR JACRL DAB

C �! A 23.70 40.22 44.78 46.76 51.25 56.26 46.14 48.2 52.3 53.4 57.93 47.6 51.43 53.34 55.53 51.07

C �! W 25.76 40.11 41.69 39.98 38.64 47.8 46.1 42.37 47.8 48.9 49.15 45.76 50.98 45.76 45.42 50.72

C �! D 25.48 39.99 45.22 44.59 47.13 43.95 51.59 49.04 45.86 47.6 49.04 46.5 53.43 50.96 45.86 53.18

A �! C 26 41.36 39.36 39.45 43.37 42.65 42.21 42.3 41.85 42.87 39.36 40.78 59.99 44.70 42.3 59.01

A �! W 29.83 41.65 37.97 42.03 36.61 41.69 51.19 41.36 39.39 40.43 50.51 40.68 54.11 38.31 43.73 54.22

A �! D 25.48 40.89 39.49 45.22 38.85 43.31 48.41 36.31 43.95 45.05 50.96 36.94 54.69 39.49 42.04 53.12

W �! C 19.86 40 31.17 30.19 29.83 34.64 27.6 32.95 33.39 35.48 34.02 34.55 51.78 30.28 35.26 52.09

W �! A 22.96 42.90 32.78 29.96 34.13 39.25 26.1 34.57 37.68 38.79 42.48 33.82 49.32 34.66 39.25 51.13

W �! D 59.24 41.52 89.17 89.17 82.80 85.99 89.18 92.36 69.43 73.72 90.45 88.54 49.63 82.80 86.62 49.74

D �! C 26.27 43.21 31.52 31.43 31.61 35.17 31.26 33.66 33.04 34.15 32.15 34.73 53.67 30.72 34.82 53.71

D �! A 28.5 42.56 33.09 32.78 33.19 37.89 37.68 35.99 36.43 37.55 39.35 34.66 46.35 33.19 37.47 48.47

D �! W 63.39 42.91 89.49 85.42 77.29 89.15 90.85 89.83 77.97 81.79 93.22 91.19 79.28 76.61 89.15 80.29

Average 31.37 41.38 46.31 46.45 45.39 49.81 49.02 48.33 46.59 48.31 52.38 48.29 54.55 46.73 49.78 54.72

VDA [31], CLGA [32], DISA [33] and discriminative
joint probability MMD for DA (JPDA) [44]). Since
these methods are considered as dimensionality reduc-
tion approaches, we train a prediction function on the
labeled training data (i.e., NN and SVM classi�er), and
then apply it on test data to estimate the labels of
target domain.

4.3. Implementation details
In order to assess the e�ciency of DAB against existing
methods, the classi�cation accuracy is utilized as the
analysis criterion. The iterations number for DAB con-
vergence is set to 20 and the regularization parameter is
adjusted to � = 0:5 (i.e., in Eq. (9)) for all datasets. In
the rest, we will discuss about the parameter analysis.

5. Experimental results and discussion

In this section, we compare the e�ciency of our
proposed method with other ML and DA approaches
on benchmark visual DA datasets.

5.1. Results evaluation
Since the discussions of the experiment results with
NN and SVM classi�ers are similar, for the sake of
page limitation, only the discussions of the experiment
results with NN classi�er are included.

The classi�cation accuracies of the proposed DAB
and other baseline methods are illustrated in Tables

2, 3 and 4. The best results for each cross-domain
adaptation task is denoted.

Experiments on O�ce+Caltech-256 datasets:
The classi�cation accuracy of DAB and other methods
on O�ce+Caltech datasets is reported in Table 2. In
order to interpret better, the results are visualized in
Figure 3. DAB gains the best performance in term
of the average classi�cation accuracy (54:55%). DAB
obtains (17:24%) performance improvement compared
to NN and (2:17%) improvement against the best
compared method DISA on O�ce+Caltech dataset.
The e�ciency enhancement of DAB against FLDA is
(13:17%) on O�ce+Caltech datasets.

Experiments on USPS+MNIST datasets: The
classi�cation accuracies of DAB and other basic meth-
ods on two cross-domain hand-written digit recognition
tasks are demonstrated in Table 3. The results are
�gured in Figure 4 for better clari�cation. DAB gains
best e�ciency in terms of the average classi�cation
accuracy (76:54%) where it performs better than other
novel DA methods in 1 out of 2 DA sub-problems.
Moreover, due to the mismatched distribution among
training and test datasets, the e�ciency improvement
of DAB over NN is (21:22%). In comparison to
the best method DISA, DAB achieves (1:65%) perfor-
mance improvement on USPS+MNIST dataset. The
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Table 3. Label prediction accuracy (%) on USPS+ MNIST datasets. Domain Adaptation via Bregman divergence
minimization (DAB) has superior performance compared with other Domain Adaptation (DA) methods (i.e., Fisher Linear
Discriminant Analysis (FLDA), Joint Distribution Adaptation (JDA), Transfer Joint Matching (TJM), discriminative
transfer subspace learning via Low-Rank and Sparse Representation (LRSR), Joint Adaptive Classi�er and Representation
Learning (JACRL), Visual Domain Adaptation (VDA), Coupled Local-Global Adaptation (CLGA), discriminative and
Domain Invariant Subspace Alignment for visual tasks (DISA) and discriminative joint probability maximum mean
discrepancy for domain adaptation (JPDA)) in 1 out of 2 tasks using Nearest Neighbor (NN) classi�er, and 2 out of 2
tasks using Support Vector Machine (SVM) classi�er. DABM is the variant of DAB that performs marginal distribution
matching without considering the conditional distribution mismatching and DABC is the variant of DAB that performs
conditional distribution matching without considering the marginal distribution mismatching.

Dataset
NN classi�er SVM classi�er

NN FLDA JDA TJM LRSR JACRL VDA CLGA DABM DABC DISA JPDA DAB LRSR JACRL DAB

U �!M 44.7 73.51 59.65 52.25 54.51 42.18 62.95 58.35 60.54 66.05 69.90 59.2 73.75 53.83 41.8 72.05

M �! U 65.94 64.89 67.28 63.28 73.82 63.56 74.72 71.28 73.21 74.11 83.89 68.94 83.33 71.98 63.17 76.22

Average 55.32 58.31 63.46 57.76 64.16 52.85 68.83 64.81 66.87 70.08 76.89 64.26 78.54 62.90 52.48 74.13

Table 4. Label prediction accuracy (%) on PIE datasets. Domain Adaptation via Bregman divergence minimization
(DAB) has superior performance compared with other Domain Adaptation (DA) methods (i.e., Fisher Linear Discriminant
Analysis (FLDA), Joint Distribution Adaptation (JDA), Transfer Joint Matching (TJM), discriminative transfer subspace
learning via Low-Rank and Sparse Representation (LRSR), Joint Adaptive Classi�er and Representation Learning
(JACRL), Visual Domain Adaptation (VDA), Coupled Local-Global Adaptation (CLGA), Discriminative and Domain
Invariant Subspace Alignment for visual tasks (DISA) and discriminative joint probability maximum mean discrepancy for
domain adaptation (JPDA)) in 11 out of 20 tasks using Nearest Neighbor (NN) classi�er, and 18 out of 20 tasks using
Support Vector Machine (SVM) classi�er. DABM is the variant of DAB that performs marginal distribution matching
without considering the conditional distribution mismatching and DABC is the variant of DAB that performs conditional
distribution matching without considering the marginal distribution mismatching.

Dataset
NN classi�er SVM classi�er

NN FLDA JDA TJM LRSR JACRL VDA CLGA DABM DABC DISA JPDA DAB LRSR JACRL DAB

P1 �! P2 26.09 33.89 58.81 23.87 65.87 51.2 73.48 67.83 37.63 69.61 77.29 59.36 73.15 65.44 51.75 71.02

P1 �! P3 26.59 33.56 54.23 28.86 64.09 57.6 62.92 63.85 47.55 61.71 74.69 66.67 71.28 62.87 57.05 66.95

P1 �! P4 30.67 32.93 84.5 43.37 82.03 86.66 90.51 88.95 69.18 47.32 91.35 83.99 95.32 81.29 85.94 91.56

P1 �! P5 16.67 38.79 49.75 19.3 54.90 52.39 57.29 61.76 36.09 61.42 63.30 49.51 72.17 54.23 51.96 69.38

P2 �! P1 24.49 35.29 57.62 26.14 45.54 65.55 70.02 71.4 38.6 76.36 80.25 63 80.56 45.59 65.1 75.65

P2 �! P3 46.63 34.78 62.93 37.93 53.49 68.5 73.04 72.98 44.91 68.67 81.31 60.85 74.37 52.70 67.83 71.48

P2 �! P4 54.07 35.17 75.82 50.53 71.43 81.71 84.29 86.24 69.84 82.41 90.90 77.05 95.2 72.24 81.47 89.96

P2 �! P5 26.53 32.41 39.89 21.63 47.97 54.53 54.66 51.23 34.01 64.56 69.91 47.67 74.36 48.41 54.66 67.76

P3 �! P1 21.37 37.36 50.96 28.66 52.49 69.39 67.35 70.17 44.48 74.61 81.12 59.78 86.05 53.30 68.61 81.49

P3 �! P2 41.01 37.03 57.95 35.97 55.56 61.76 70.41 73.48 40.7 72.93 81.52 63.35 82.42 56.97 60.96 77.78

P3 �! P4 46.53 38.45 68.45 51.97 77.50 89.74 84.47 69.81 69.42 81.23 93.45 74.47 92.09 75.94 89.4 92.47

P3 �! P5 26.23 32.59 39.95 25.31 54.11 60.54 52.39 55.51 46.81 77.54 75.37 52.7 73.39 53.43 59.62 63.41

P4 �! P1 32.95 34.53 80.58 45.71 81.54 89.08 91.6 89.56 72.09 89.41 94.8 84.87 95.06 79.71 88.63 95.69

P4 �! P2 62.68 35.21 82.63 57.58 58.39 85.64 91.47 92.94 65.56 83.11 95.89 83.24 93.58 87.23 84.78 93.78

P4 �! P3 73.22 34.96 87.25 71.63 82.23 86.34 90.93 93.08 72.79 78.56 95.04 87.44 92.67 81.13 85.29 92.88

P4 �! P5 37.19 34.80 54.66 30.94 72.61 76.04 63.36 71.63 59.25 65.28 82.60 65.38 73.17 71.02 75.43 73.67

P5 �! P1 18.49 31.81 46.46 27.13 52.19 71.94 55.7 57.68 39.83 62.48 63.90 53.63 78.11 51.80 72.09 71.28

P5 �! P2 24.1 29.28 42.05 22.65 49.41 47.45 61.57 55.43 34.62 71.32 73.36 51.32 76.3 50.09 46.35 72.43

P5 �! P3 28.31 34.06 53.31 28.86 58.45 65.5 55.58 58.03 50.67 68.26 76.78 55.76 75.08 58.09 64.28 66.57

P5 �! P4 31.24 29.12 57.01 32.59 64.31 79.9 68.82 71.85 62.06 78.38 76.74 58.49 86.34 66.09 79.03 80.89

Average 34.76 34.30 60.24 35.53 63.53 70.07 70.99 72.15 51.81 71.75 80.95 64.62 82.03 63.38 69.51 78.30
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Figure 3. Label prediction accuracy (%) on
O�ce+Caltech-256 datasets. Domain Adaptation via
Bregman divergence minimization (DAB) has superior
performance compared with other domain adaptation
(DA) methods (i.e., Visual Domain Adaptation (VDA),
Joint Adaptive Classi�er and Representation Learning
(JACRL), discriminative and Domain Invariant Subspace
Alignment for visual tasks (DISA)) in 9 out of 12 tasks
using Nearest Neighbor (NN) classi�er.

Figure 4. Label prediction accuracy (%) on USPS+
MNIST datasets. Domain adaptation via Bregman
divergence minimization (DAB) has superior performance
compared with other Domain Adaptation (DA) methods
(i.e., Visual Domain Adaptation (VDA), Joint Adaptive
Classi�er and Representation Learning (JACRL),
discriminative and Domain Invariant Subspace Alignment
for visual tasks (DISA)) in 1 out of 2 tasks using nearest
neighbor (NN) classi�er.

performance improvements of DAB against FLDA is
(18:23%) on USPS+MNIST dataset.

Experiments on CMU PIE datasets: To indicate
the pro�ciency of our DAB in face recognition task, we
compare DAB with nine state-of-the-art DA methods.
Table 4 displays the accuracy of DAB and other
methods on PIE datasets. In order to interpret better,
the results are visualized in Figure 5. DAB has
(43:22%) improvement over NN classi�er. Also, the
performance improvement of DAB in comparison to
the best baseline method DISA is (1:08%) where DAB
outperforms the modern DA methods in 11 out of 20
DA tasks. In the following, we compare our DAB with
mentioned methods with details. The performance
improvement of DAB against FLDA is (43:68%) on PIE
dataset.

Figure 5. Label prediction accuracy (%) on PIE
datasets. Domain Adaptation via Bregman divergence
minimization (DAB) has superior performance compared
with other Domain Adaptation (DA) methods (i.e., Visual
Domain Adaptation (VDA), Joint Adaptive Classi�er and
Representation Learning (JACRL), discriminative and
Domain Invariant Subspace Alignment for visual tasks
(DISA)) in 11 out of 20 tasks using Nearest Neighbor
(NN) classi�er: (a) The �rst ten tasks and (b) the second
ten tasks.

NN and FLDA are two conventional metric learn-
ing algorithms, which train the classi�er on training
data to be applied to test data. It is obvious that
such algorithms cannot classify accurately because of
di�erences between domains. Although, FLDA shows
better e�ciency in comparison with NN, it performs
poorly versus other DA baseline methods.

To better analyze the contributions of our DAB,
we evaluate its performance in three di�erent settings:
(1) DABM which only focuses on the di�erences
between the marginal distributions across domains, (2)
DABC which only focuses on the di�erences between
the conditional distributions across domains, and (3)
DAB which concentrates on the di�erences between
both distributions among domains.

According to Figure 6, DABM has low e�ciency
compared to the other two variants, and DABC works
better than DABM , since DABM only adapts the
marginal distribution of samples and obviously does
not reduce the conditional distribution discrepancy
between domains. Furthermore, to create a classi�er
with high prediction accuracy, only the conditional dis-
tribution adaptation is not adequate when the domain
diversity is signi�cantly large. However, both primary
variants cannot attain superior results than DAB. DAB
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Figure 6. Average classi�cation accuracy (%) of Fisher
Linear Discriminant Analysis (FLDA), Domain
Adaptation via Bregman divergence minimization (DAB),
marginal variant of DAB (DABM ) and conditional variant
of DAB (DABC) on O�ce+Caltech-256, PIE and USPS+
MNIST datasets.

minimizes the mismatch between joint marginal and
conditional distributions among domains and bene�ts
from the source data labels to create a new subspace.
As a result, DAB can transfer knowledge across source
and target data more e�ectively.

TJM is a novel DA technique which seeks to di-
minish the domain variation by simultaneously adapt-
ing the feature spaces and reweighting the samples
between domains in a dimensionality reduction way,
and constructs an optimal embedded representation,
which is robust to both distribution diversity and
unrelated samples. TJM only decreases the marginal
distribution di�erences across domains. However, DAB
focuses to jointly match both marginal and conditional
distribution mismatches in a dimensionality reduction
way, and provides an optimal representation which is
e�cient for considerable distribution diversity. The
improvement accuracy of DAB is (18:78%) on digit
datasets, (41:45%) on PIE dataset, and (8:14%) on Of-
�ce+Caltech datasets in term of classi�cation accuracy
in comparison with TJM.

VDA is the next new framework that constructs a
shared feature representation besides minimizing joint
marginal and conditional distributions among domains.
In fact, VDA preserves the statistical and geometrical
pattern of the input data using manifold assumptions.
In addition, VDA exploits domain invariant clustering
in an embedded subspace to distinguish the variant
classes of the target data. JDA is a novel TL framework
that seeks to learn a shared feature subspace which
simultaneously alleviates the marginal and conditional
distribution discrepancies among the training and test
data. JDA utilizes MMD to calculate the distance
among the source and target distributions. VDA and
JDA only aim to align the distributions of the source
and target samples, while they ignore the discrimi-
native properties between distinct classes in adapted
domains. DAB tries to diminish the distances among

the both domain distributions, while, the particular
knowledge (e.g., domain manifold structure) is pre-
served. Moreover, DAB severally achieves (7:71%),
(6:98%) and (5:53%) performance enhancement in
average classi�cation accuracy compared to VDA on
digits, PIE and O�ce+Caltech datasets. DAB also
severally gains (13:08%), (17:77%); and (9:23%) perfor-
mance improvement compared to JDA on digits, PIE
and O�ce+Caltech datasets.

LRSR is a new technique, which embeds instances
of the source and the target domains into a shared
feature-space, where each target instance can be shown
by a composition of source instances such that di�ering
domains instances can be well linked. The bene�ts
of LRSR are noted below: (1) It can enlarge the
distances among various classes, and (2) It minimizes
the di�erences among the source and target distri-
butions. In LRSR, the test samples are represented
using the training samples. Therefore, LRSR could
have poor performance on small-scale datasets. DAB
performs well on both small and large datasets, and
has considerable improvement against LRSR. DAB
obtains (12:38%), (14:45%), and (9:16%) improvement
compared to LRSR on digits, PIE and O�ce+Caltech
datasets, respectively.

JACRL is another novel TL framework, which
obtains an adaptive classi�er and an embed represen-
tation space simultaneously via reducing the projected
distribution di�erence among domains and the func-
tional structural risk and also increasing the manifold
consistency of the learned classi�er. However, DAB
outperforms JACRL in most cases since DAB considers
both the distinctive knowledge included in the labeled
instances and the distribution bias across the training
and test instances. DAB gains (23:69%), (7:91%);
and (4:74%) performance improvement compared to
JACRL on digits, PIE and O�ce+Caltech datasets,
respectively.

CLGA as a new unsupervised multi-source DA
method has both the local and the global adaptations.
CLGA uses multiple domains as the source domains
while it mitigates the distribution gap between domains
for maximizing the adaptation ability (i.e., global
adaptation). Also, it adopts both class and domain
manifold structures contained in domain instances
for maximizing the discriminative ability (i.e., local
adaptation). However, DAB jointly bene�ts from the
representation and classi�cation learning to adapt the
source and target domains. Also, DAB uses class
structure and distribution alignment to maximize the
discriminative and adaptation abilities, respectively.
DAB achieves (13:73%), (9:88%), and (6:22%) perfor-
mance enhancement in average classi�cation accuracy
compared to CLGA on digits, PIE and O�ce+Caltech
datasets, respectively.

DISA is a novel unsupervised DA technique,
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which matches joint distributions of training and test
samples. The focus of DISA is to construct distinct
projection matrices to project di�erent domains data to
the discrete feature spaces with the following character-
istics: 1) the discrepancy of marginal and conditional
probability distributions across the source and target
samples is calculated by MMD, 2) DISA discriminates
various classes in the source domain utilizing the inter-
class maximization and intra-class minimization, and
3) DISA preserves the local information of domains
instances containing geometrical patterns of samples
using sample labels. DISA learns a coupled sub-
spaces to decrease the joint marginal and conditional
distribution diversities among domains using MMD
while DAB minimizes distribution distance across the
marginal and conditional distribution of domains using
BD. However, DAB outperforms DISA in most cases,
because BD partially preserves the discriminative in-
formation. DAB obtains performance amelioration in
terms of the average classi�cation accuracy (1:65%),
(1:08%), and (2:17%) compared to DISA on digits, PIE
and O�ce+Caltech datasets, respectively.

JPDA is a noticeable method that introduces a
new MMD for computing the distribution discrepancy,
which is simpler and more accurate. Also, JPDA max-
imizes the discriminability and transferability, simul-
taneously. However, DAB exploits BD for computing
the distribution discrepancy, which performs well in
DA. In addition, DAB uses the source domain labels
to construct a shared low dimensional subspace and
also discriminate across various classes. Thus, DAB
achieves (14:28%), (17:41%), and (6:26%) performance
amelioration in average classi�cation accuracy com-
pared to JPDA on digits, PIE and O�ce+Caltech
datasets, respectively.

5.2. Parameter analysis
In this section, we discuss the sensitivity analysis on
parameters of DAB. In general, the objective function
of DAB, in Eq. (10), has two parameters � and �(k).
We empirically show the convergence property and
parameter sensitivity of our DAB on three benchmark
datasets.

1. Parameter �(k) is the learning rate at the iteration
k, where it supervises the gradient step size for kth
iteration. The learning rate is reduced with the
increase of the iterations' number. The large steps
for several initial iterations indicates that W is far
away from its optimal solution and large size steps
are e�cient for a quick convergence. Moreover,
small size steps for later iterations are bene�cial
to update W in an acceptable scale such that the
optimal solution is reached step by step.

For a better understanding, Figures 10, 11,
and 12 are included and related to the convergence
evaluation of DAB on O�ce-Caltech, digits and

PIE datasets. As can be seen from the �gures,
DAB has almost an identical process in all tasks
regardless of the dataset being tested. In this way,
with increasing the iteration number, DAB has
an upward trend and reaches stability in the �nal
steps. This shows that the �(k) parameter has a
signi�cant e�ect on the accuracy of DA. Moreover,
Figures 10 to 12 show that the learning rate in the
early iterations has an upward trend with a steep
slope, while with increasing the iterations number
in the �nal steps, the learning rate decreases and
experiences a steady trend. Therefore, the transfer
matrix obtained in the �nal iterations is more
robust and more e�cient;

2. Parameter � 2 [0; 1] is the tradeo� weight that is
allocated to the regularization component, which
supervises the trade-o� between objective functions
FLDA and BD. We consider � = 0:5 for all datasets.
Figures 7, 8 and 9 illustrate the experimental results
for parameter � on O�ce+caltech, digits and PIE
datasets, respectively.

Figure 7 shows the parameter sensitivity of � on
O�ce-Caltech dataset. As can be seen, DAB has a
signi�cant performance improvement against other two
methods. Also, in tasks such as C-W, A-C, W-C, W-A,
D-C, and D-A, the prediction accuracy of DAB, VDA,
and JDA methods increase by increasing the � value.
This shows that the joint distribution discrepancies in
mentioned tasks is low and with increasing � impact
factor, the e�ect of this component on DA increases,
which gives good results. In addition, in C-A, C-D, A-
W and A-D tasks, the prediction accuracy has unstable
but almost the uniform trend, while in W-D and D-
W tasks trend of instability has a large interlude and
downtrend is observed in the �nal steps. This behavior
indicates that the conditional and marginal distribu-
tion divergences in the above tasks are large and with
increasing the � value, the e�ect of this component on
DA increases, which leads to performance degradation.
As is clear from the plots, DAB achieves remarkable
results with small values of �. Therefore, we consider
� = 0:5 for O�ce+Caltech dataset.

Figure 8 shows the sensitivity of � parameter on
digits dataset. As can be seen from the �gure, the
prediction accuracy is almost constant for low � values,
and for high � values, the trend is unstable. This
indicates that both USPS and MNIST domains have a
large distribution discrepancy that increases the impact
factor (i.e., parameter �) of di�erences between both
domains which causes a performance reduction. The
presented results demonstrate that DAB achieves good
accuracies with small values of � on digits dataset.

Figure 9 demonstrates the parameter assessment
related to the classi�cation accuracy and parameter � 2
[0:00001 10] for PIE dataset. As the �gure shows, DAB
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Figure 7. Parameter assessment according to label prediction accuracy (%) and parameter �, for Visual Domain
Adaptation (VDA), Joint Distribution Adaptation (JDA) and Domain Adaptation via Bregman divergence minimization
(DAB) on O�ce+Caltech dataset. DAB achieves remarkable accuracies with large values of �. We set � = 0:5 for
O�ce+Caltech dataset.

has a higher prediction accuracy than VDA and JDA
methods. Also, DAB behavior is almost the same in
all tasks. As is clear, for the � values that are less than
0.5, DAB prediction accuracy has an increasing and
almost uniform trend, while for values more than 0.5,
it has a decreasing trend. These behaviors indicate that

the distribution di�erence in all tasks of PIE dataset is
large and with increasing the e�ect of the distribution
di�erence (i.e., the increase of �) on the DA, the
prediction accuracy decreases. As Figure 9 makes clear,
in most cases, DAB achieves high performance with
� 2 [0:01 1]. The best value of � is 0.5 for PIE dataset.
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Figure 8. Parameter assessment according to the label prediction accuracy (%) and the regularization parameter �, for
Visual Domain Adaptation (VDA), Joint Distribution Adaptation (JDA) and Domain Adaptation via Bregman divergence
minimization (DAB) on digits dataset. DAB achieves remarkable accuracies with small values of � on digits dataset.

5.3. E�ectiveness evaluation
We conduct some experiments on all benchmark
datasets to evaluate the e�ciency of DAB and three
baseline DA methods by considering their accuracies
in 20 iterations. TJM, JDA, VDA, and DAB are
iterated 20 times with their optimal parameters on Of-
�ce+Caltech, digits and PIE datasets, and the results
are indicated in Figures 10, 11, and 12, respectively.

Figure 10 demonstrates the average prediction
accuracy of DAB and three baseline methods on Of-
�ce+Caltech dataset. As evidenced from the �gures,
TJM alleviates the marginal distribution mismatch
across domains via integrating feature matching and
instance reweighting, but it has low performance com-
pared with other baseline methods. JDA obtains
desirable performance and outperforms TJM in 7
out of 12 experiments. VDA reduces the mismatch
between joint distributions across the domains data
and employs domain invariant clustering in an em-
bedded subspace. VDA outperforms TJM and JDA in
most cases. However, DAB incorporates TL and DA
concurrently and reduces the distribution mismatch
across domains. DAB outperforms VDA in 10 out
of 12 experiments on O�ce+Caltech dataset. With
the increase of iteration number, the prediction ac-
curacy of DAB increases, which indicates that the
learning rate increases with iteration number. In
the �rst iterations, there is an increase with steep
slope, while in the last steps, the slope of the pre-
diction accuracy becomes mild, which indicates that
the optimal transfer matrix is obtained with much
iterations.

Figure 11 displays the e�ciency of DAB and
three baseline methods on digits dataset. As is ap-
parent from the sub-�gures, DAB possesses remarkable
improvement on digits dataset in comparison with
other DA methods. In the �rst iterations, DAB
has less prediction accuracy against other compared
methods, while in the last iterations, DAB prediction

accuracy increases signi�cantly. Also, DAB has an
upward trend with a steep slope during the iteration
increase.

Figure 12 shows the average prediction accuracy
of DAB and three benchmark methods on PIE dataset.
In general, DAB converges in 20 iterations in most
cases. Although DAB is 
uctuated in some cases,
it has a limited oscillation range after 20 iterations
and increasing the iteration number does not have
signi�cant impact on the e�ciency enhancement of the
proposed method. Although DAB method in the �rst
iterations may have a lower prediction accuracy than
the compared methods, in the last iterations, DAB
prediction accuracy is signi�cantly superior against
other methods.

The ine�ectiveness of increasing the iteration
numbers in the performance of DAB indicates the
convergence of DAB in the last iteration stages.

6. Conclusion and future work

In this paper, we introduced DAB framework for
unsupervised DA tasks. DAB focuses to attain an
optimal model with a best possible data representation,
at the same time, and minimizes the joint marginal and
conditional distribution mismatches. According to the
proposed framework, the discriminative features are ex-
tracted to introduce a common predictive model. DAB
maps the training and test samples onto a common
low dimensional feature-space according to the FLDA
criterions in an unsupervised manner. DAB e�ciently
preserves and utilizes the speci�c information among
the samples from di�erent domains. The obtained
results indicate that DAB outperforms several state-
of-the-art adaptation methods even if the distribution
diversity is signi�cantly large. Our upcoming work will
focus to improve the e�ciency of our proposed ap-
proach using other dimensionality reduction methods
such as locality preserving projection.
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Figure 9. Parameter assessment according to the label prediction accuracy (%) and parameter � for Visual Domain
Adaptation (VDA), Joint Distribution Adaptation (JDA) and Domain Adaptation via Bregman divergence minimization
(DAB) on PIE dataset. In most cases, DAB has high e�ciency with � 2 [0 1]. The best value of � is 0.5 for PIE dataset.
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Figure 10. Average label prediction accuracy (%) according to the iterations number for O�ce+Caltech datasets against
Domain Adaptation via Bregman divergence minimization (DAB), Visual Domain Adaptation (VDA), Transfer Joint
Matching (TJM) and Joint Distribution Adaptation (JDA). DAB predicts the accurate labels for target samples in an
iterative manner. Almost, the predicted labels of each step are better than the previous one.

Figure 11. Average label prediction accuracy (%) according to the iterations number for digit datasets against Domain
Adaptation via Bregman divergence minimization (DAB), Visual Domain Adaptation (VDA), Transfer Joint Matching
(TJM) and Joint Distribution Adaptation (JDA). DAB predicts the accurate labels for target samples in an iterative
manner. Almost, the predicted labels of each step are better than the previous one.
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Figure 12. Average label prediction accuracy (%) according to the iterations number for PIE datasets against Domain
Adaptation via Bregman divergence minimization (DAB), Visual Domain Adaptation (VDA), Transfer Joint Matching
(TJM) and Joint Distribution Adaptation (JDA). DAB predicts the accurate labels for target samples in an iterative
manner. Almost, the predicted labels of each step are better than the previous one.
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