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Abstract. Short-term tra�c prediction helps intelligent transportation systems to
manage future travel demands. The objective of this paper is to predict the state of tra�c
in the case of Karaj to Chaloos, a suburban road in Iran. To this end, two approaches,
i.e., statistical and machine learning, are employed. In addition, the performance of the
multinomial logit model is evaluated using Support Vector Machine (SVM) and Deep
Neural Network (DNN) as two top machine learning techniques. The Principal Component
Analysis (PCA) is considered to reduce the dimension of the data and make it possible to
use the Multinomial Logit (MNL) model. SVM and DNN can predict the tra�c state
using both primary and reduced datasets (ALL and PCA). Moreover, MNL can be used
to not only compare the accuracy of models but also estimate their explanatory power.
SVM employing primary datasets outperforms other models with the accuracy rate of 79%.
Next, the prediction accuracy rates for SVM-PCA, MNL, DNN-PCA, and DNN-ALL are
equal to 78%, 73%, 68%, and 67%, respectively. SVM-ALL exhibits better performance in
predicting light, heavy, and blockage states, while MNL can predict the semi-heavy state
more accurately. Use of the PCA dataset increases the accuracy of DNN and decreases
SVM accuracy by 1%. Greater precision is achieved for the �rst three months of testing
than that in the second three months.

© 2022 Sharif University of Technology. All rights reserved.

1. Introduction

As a result of an increase in suburban travel demands,
especially during holidays in tourist destinations, tra�c
congestion on these roads can cause several problems.
In addition, tra�c congestion a�ects social and envi-
ronmental issues. In such cases, alongside tra�c supply
management, travel demand management is essen-
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tial [1]. According to previous studies, deployment of
Advanced Travelers' Information Systems (ATIS) and
Advanced Tra�c Management Systems (ATMS) can
guarantee a balance between travel demand and supply
in near future [2]. One of the e�ective components
of these systems is short-term prediction of tra�c pa-
rameters [3]. Advanced passenger information systems
inform system operators and users about the predicted
parameters in near future [4]. System operators will
be better prepared to handle the critical situation. In
addition, road users can have better plans for their
future travels and choose less congested tra�c hours
or a parallel path with low tra�c and not to travel, if
unnecessary [5].

One of the most important tra�c variables that
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can be predicted ranging from an upcoming hour to
a few months is the tra�c state. It includes light,
semi-heavy, heavy, and blockage and exhibits road
performance under di�erent conditions. Compared
to tra�c volume and speed, this qualitative tra�c
parameter contains more signi�cant information that is
easily understandable for passengers who do not know
other road speci�cations such as capacity and free-ow
speed [6].

This study examines two di�erent methods, in-
cluding statistical approach and Machine Learning
(ML) approach, to predict the tra�c state. Each
approach has its advantages and disadvantages [7].
The statistical approach is characterized by a well-
established theoretical background; however, the ML
approach aims to achieve the highest possible accu-
racy [8]. The statistical approach needs more prior
assumptions. Yet, a majority of them are unable to
depict the non-linear relationships; on the contrary, the
ML approach is more exible [9]. Compared to the
statistical approach, ML approach can easily address
outliers as well as missing and noisy data [10]. The
statistical approach can be interpreted by estimating
coe�cients and elasticities, while the ML approach is
labeled as a black-box model [11]. Among well-known
statistical models are ARIMA [12] for continuous pa-
rameter and Multinomial Logit (MNL) [13] for nominal
parameters. On the other hand, Neural Networks
(NNs) [14], Support Vector Machine (SVM) [15], deci-
sion tree [16], and K-Nearest Neighborhood (KNN) [17]
are widely used to predict both continuous and nominal
tra�c parameters.

These two di�erent approaches can be comple-
mentary; therefore, this paper employed both of them
to ful�ll de�ciencies. In this regard, the MNL as a
statistical model and Deep Neural Network (DNN)
and SVM as two ML models were used to predict
the tra�c state in Karaj-Chaloos suburban road in
Iran. After feature extracting, 92 important features
were de�ned. Since some of them are nominal, they
must change to dummy features to be applicable in
the statistical model [18]. As a result, the number of
features increased to 280. Calibrating the MNL model
with four utility functions and 280 variables seems to be
very di�cult; therefore, Principal Component Analysis
(PCA) is used for dimension reduction [19].

The present study made four main contributions.
First, this paper de�nes and predicts the tra�c state
which, in spite of being more informative than tra�c
volume and speed, has been insigni�cantly studied.
Second, to the best of the authors' knowledge, it
is the �rst time that both statistical (MNL) and
ML (DNN and SVM) models are simultaneously used
for predicting the tra�c state. Third, two di�erent
datasets are considered: the �rst one with 92 extracted
features and the second one with reduced features by

PCA. The prediction results are compared. Finally, the
suburban tra�c data consisting of non-routine trips in
Iran as a developing country are used.

2. Previous studies

A number of studies have employed ML models such
as SVM [20], decision tree [21], and NNs [22] as well
as statistical models such as count regressions [23],
MNL [24], Nested-logit [25], and other logit families [26]
for mode choice prediction.

Karlaftis and Vlahogianni [27] referred to the
di�erences and similarities of the statistical models
versus the NN model in transportation studies. They
argued that although the NN model has been included
in many of transportation studies, its application still
remains vague due to poor explanation and inability
to generate a unit answer. Moreover, making a
comparison between the NN and statistical models is
not fair because unlike linear statistical models, the
complexity of the NN model makes it more compatible
to analyzing the nonlinear relationship.

Golshani et al. [7] compared the performance
of the NN, the most popular ML algorithm, with
those of discrete choice models, continuous models,
and continuous-discrete models to model travel mode
and timing decisions. The obtained results pointed to
the better performance of the NN model in predicting
the travel mode and timing decisions as well as its
simplicity and speed. To overcome the problem of poor
explanation, they conducted sensitivity analysis to
con�rm the signi�cant role of the independent variables
in prediction accuracy.

Lee et al. [28] compared four types of NN models
with the traditional logit model in terms of mode
choice. NN models include Back-Propagation Neu-
ral Network (BPNN), Radial Basis Function Network
(RBFN), Probabilistic Neural Network (PNN), and
Clustered Probabilistic Neural Network (CPNN). The
prediction accuracy of the employed models was com-
pared using the cross-validation method. In addition,
the importance of independent variables was deter-
mined through sensitivity analysis. According to the
�ndings, the PNN model with the prediction accuracy
of 80% was superior to the MNL model with the
prediction accuracy of 70%.

Cheng et al. [29] evaluated the impact of di�erent
parameters on the travel mode choice and predicted it.
Stochastic Random Forest (RF) models as a powerful
technique for implementing the decision tree and MNL
model can predict travel mode. The results pointed
to the greater accuracy and lower cost of the RF
model than those of the MNL model. The proposed
method also estimated the relative importance of the
explanatory variables and how they might a�ect the
travel mode.
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Wang and Ross [30] compared the MNL model
with Extreme Gradient Boosting (XGB) learning tech-
nique to predict the travel mode based on the decision
tree algorithm. Their obtained results pointed to the
higher accuracy and superiority of the ML technique
(XGB) over the MNL model.

Hensher and Ton [31] employed nested logit mod-
els and NN to predict the travel mode in Melbourne,
Sydney, and Pooled Cities (Melbourne-Sydney) and
compared the generalizability of the models. The
results con�rmed the superiority of the nested logit
model in terms of matching the overall market share;
however, the NN model exhibited better performance
in matching the market share of individuals.

Filho and Maia [32] predicted the tra�c ow
using the PCA to reduce the dimensions of data.
They utilized the local linear k-mean model to predict
the tra�c ow. Model validation through real-time
network data con�rmed the proper model performance
in real conditions.

Jin et al. [33] used PCA and Support Vector
Regression (SVR) for simultaneous prediction of tra�c
ow, travel time, and tra�c speed. They compared the
performance of the SVR model with those of ARIMA
and NN models. SVR prediction reached the highest
accuracy. In another study, Jin et al. [34] applied
Robust Principal Component Analysis (RPCA) to the
Beijing tra�c data to detect abnormal tra�c ow
pattern isolation and loop detector faults.

3. Methodology

3.1. Deep Neural Network (DNN)
NNs are regarded as a useful model for time-series
prediction [35]. Typically, an NN consists of an input
layer (receives inputs), hidden layer(s) (improves the
learning ability), and output layers (represents the
results). Nodes (neurons) in di�erent layers are known
as the Processing Elements (PEs). Each PE in the
hidden layer receives the output of the connected PEs
from previous layers, and the output of the current
layer can be generated [7] through a transformation
function. Traditional (shallow) NN only contains 2{
3 hidden layers. Upon increasing the number of
hidden layers and PEs, the NN is converted to DNN
which can ensure better performance than that in
the shallow models in terms of accuracy [36]. Deep-
learning methods are representation-learning methods
with multiple levels of representation (several hidden
layers) [37].

NN training algorithms are diverse. Momentum,

Levenberg-Marquardt (LM), and Conjugate Gradient
(CG) algorithms are the most known algorithms. The
present study employed the CG algorithm to train a
DNN. The CG is an iterative algorithm searching for
a numerical solution of the objective function. This
search is done along with conjugate directions, which
typically yield faster convergence than gradient descent
directions [38].

Here, w denotes the weights in DNN, d the
training direction vector, and g the opposite direction
of d. For each iteration (i = 0; 1; � � � ), the training
direction vector is obtained through Eq. (1) [38]:

d(i+1) = g(i+1) + d(i) � (i); (1)

where  is the conjugate parameter. Then, weights are
improved using Eq. (2) [38]:

w(i+1) = w(i) + d(i) � �(i); (2)

where � is the training rate calculated by minimization.
The DNN is designed to be trained by the tra�c

data from the beginning of the period available to time
t and then, it predicts the tra�c from time t+ 1 to the
expected time. This prediction is considered a test for
model performance. The scheme of DNN is shown in
Figure 1.

It is essential to �nd the appropriate structure of
the model, thus achieving more accurate predictions.
The tests on di�erent structures were repeated for
validation dataset to obtain the best structure for the
DNN model using one input layer, 22 hidden layers,
and one output layer. This model can be implemented
using R-studio.

3.2. Multinomial Logit (MNL)
As a model based on statistics and probabilities, the
MNL model is widely used in modeling the nominal
dependent variables [39,40]. The e�ect of independent
variables on the dependent variable is determined
through an estimation of the related coe�cients, and
the statistical signi�cance of the coe�cients is exam-
ined using the t-test. The MNL model is based on the
choice theory. For tra�c state prediction, the tra�c
state that has the greatest utility will have the highest
probability of occurrence [41]. The tra�c state with the
highest occurrence probability is regarded as the model
prediction. Utility functions are a linear function of
independent variables, coe�cients, and the error term.
The MNL assumes that the error term is independent
and identically distributed (iid) [41]. Based on this
assumption, the occurrence probability of the tra�c
state i at time q is shown in Eq. (3):

Figure 1. Prediction steps by Deep Neural Network (DNN).
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Pqi =
exp(�ixqi)
JP
j=1

exp(�jxqj)
; (3)

where Pqi is the occurrence probability of the tra�c
state i at time q; xqi is the vector of independent
variables in the utility of tra�c state i in time q; and �is
are the coe�cients of the corresponding independent
variables in the utility of the tra�c state i, which
must be estimated by the model. The exponential log-
likelihood function is de�ned by Eq. (4) [26]:

logL =
QX
q=1

IX
i=1

Mqi log(Pqi); (4)

where Mqi is the indicator variable whose value equals
one if the tra�c state i occurs at time t; otherwise,
it equals zero. Also, Q is the total number of hourly
observations and I the total number of tra�c states.

This function should be maximized to estimate
the model coe�cients. To this end, R-studio is used.
Numerical methods including SANN, Nelder Mead,
and BFGS are used for optimization [42].

Finally, the output of the MNL model is the prob-
ability of occurrence of each tra�c state. The max-
imum probabilistic method is employed to determine
the �nal prediction of the model. In this method, the
tra�c state with the highest probability of occurrence
is the model prediction. Random probability method
and average share are other methods for achieving the
�nal prediction [43{47].

3.3. Support Vector Machine (SVM)
SVM is a well-known ML method based on the statis-
tical learning theory, Vapnik-Chervonenkis dimension
theory, and structural risk minimization principle [48].
SVM can e�ectively deal with classi�cation problems.
Support vectors include a set of points in the n-
dimension space based on which the boundaries of the
clusters are determined. In other words, SVM is a
classi�er that determines the best separation between
each cluster. There are a large number of boundaries
that can separate clusters. In case the data are linearly
separable, a simple way to �nd vectors is to calculate
the distance between the boundaries and support vec-
tors and select vectors with the largest distance from
each class (Figure 2). If the data are distributed non-
linearly, it is necessary to use mathematical functions
such as Kernel functions and map data into another
space, where the data can be separable and the support
vectors can be easily determined (Figure 3). Linear,
polynomial, sigmoidal, and Radial Basis Function
(RBF) are some common kernel functions. This study
employed the RBF kernel function as a widely used
function in the literature [48]. The formulation of RBF
function is given in Eq. (5) [49]:

Figure 2. Optimal boundary for separating clusters.

Figure 3. Mapping data into a separable space.

K(Xi; Xj) = exp

 kXi �Xjk2
2�2

!
; (5)

where � is a free parameter to be calibrated. kXi �
Xjk2 is the squared Euclidean distance between the
two feature vectors Xi and Xj . In this study, the SVM
model was implemented using R-studio.

3.4. Principal Component Analysis (PCA)
PCA is a multivariate technique for �nding a reduced
set of non-redundant features that explains substantial
variance in the original data [50]. In some cases
where the number of features in the data is large,
PCA can improve the performance of the statistical
model such as MNL [51]. The PCA identi�es the
most important components with a maximum share of
the total variance explanation. Principal Components
(PCs) are computed as a linear combination of initial
features. The �rst PC is the coordinate axis with the
most substantial variance of the features around it.
The next PC is determined by the same criterion and
perpendicular to the �rst PC and then, the other PCs
will be determined. In this study, based on the unit
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Table 1. De�nition of tra�c states.

V=C
S=Sf Under 0.5 0.5{0.7 0.75{1 Over 1

Over 0.8 Light Light Semi-heavy Semi-heavy
0.5{0.8 Light Semi-heavy Semi-heavy Heavy
0.2{0.5 Heavy Heavy Heavy Heavy

Under 0.2 Blockage Blockage Blockage Blockage

vector method, the PCs are obtained. The unit vector
of each PC is called the Eigenvector, and the sum of
the least-squares of distances of the records for each
PC from the origin is called the Eigenvalue (Eq. (6)) of
that PC [52]:

The eigenvalue for PC1 =
mX
i=1

d2
i ; (6)

where m is the number of records and di the distance
of the record of each PC from the origin.

4. Dataset

The data set used in this study was collected by a loop
detector in Karaj-Chaloos road in Iran. Each record
consists of macroscopic tra�c parameters including
tra�c speed, volume, and state collected in one-hour
periods. These records were collected from March 2018
to September 2019. The tra�c state parameters consist
of light, semi-heavy, heavy, and blockage. Tra�c state
is determined by the ratio of the hourly average speed
to the road free-ow speed as well as the ratio of hourly

tra�c volume to the road capacity. Table 1 shows how
a tra�c state is de�ned. This type of tra�c state
de�nition is provided by Iran road maintenance and
transportation organization (http://www.rmto.ir/en).

In Table 1, V=C is the ratio of the hourly tra�c
volume to the road capacity, and S=Sf the ratio of the
hourly average speed to the road free-ow speed.

Followed by matching the solar and lunar cal-
endars with the tra�c parameters, a clear relation
between them was observed. These tra�c parameters
depend on holidays; therefore, it is essential that
the calendar-related features be considered to predict
tra�c parameters. Since such holidays in Iran are
based on both solar and lunar calendars, both of them
were taken into account. Other features pertaining to
weather conditions and blockage of each road direction
and parallel paths that directly a�ect tra�c parameters
were also considered in predictive models. The e�ective
extracted features are presented in Table 2.

One-year records from March 2018 to March 2019
were used to train models, and the next month records
from March 2019 to April 2019 were used as validation
dataset to tune parameters of ML models. The next

Table 2. Description of the features used in predictive models.

Feature name Description Type
Season Including spring, summer, fall, and winter Nominal
Solar month Including 12 solar months Nominal
Lunar month Including 12 lunar months Nominal
Day of a solar month Including 29{31 days of a solar month Nominal
Day of a lunar month Including 29{30 days of a lunar month Nominal
Time of day Including 24 hours a day Nominal
Day or night Including day and night Dummy
Number of holidays The number of sequential holidays Continuous
Holidays Includes 1 for holidays and 0 for other days Dummy
Holiday type Type of holidays Nominal
Days before holidays Equal to 1 if there is at least one holiday in the next 3 days Dummy
Type of ahead holidays Including the type of holiday in the next 3 days Nominal
Days after holidays Equal to 1 if there is at least one holiday in the past 3 days Dummy
Type of previous holidays Including the type of holiday in the previous 3 days Nominal
Blockage Blockage of the road by accidents or by police Dummy
Blockage of the opposite direction Blockage of the opposite direction by accidents or by police Dummy
Blockage of parallel paths Blockage of parallel paths by accidents or by police Dummy
Weather Including sunny, rainy, and snowy Nominal
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Figure 4. The number of records and share of each tra�c
state in each dataset.

�ve-month records from April 2019 to August 2019
were also employed to test the accuracy of predictions.
Figure 4 shows the number of records and share of each
tra�c state in each dataset.

By de�ning dummy features, 98 primary features
were converted to 280 features. To reduce the data
dimensions and use them for the MNL model, PCA was
used and 30 PCs were de�ned. These 30 new features
could explain 37.7 % of the total variance of 280
features. The �rst PC (PC1) explains 3.4% of the total
variance and this value reaches 0.7% for the 30th PC.
Figure 5 shows the distribution of records in terms of
the two �rst PCs, and Figure 6 presents the share of the
total variance explanation of each PC. Table 3 shows
three features with the highest weight for each PC.

In the next section, the predictive models were
trained based on these two datasets: (a) ALL dataset
with all 92 primary features and (b) PCA dataset
with 30 PCs.

5. Results

To evaluate the prediction accuracy in this study, two
criteria of accuracy and F-measure are used. Let

Figure 5. The distribution of records in terms of two �rst
Principal Components (PCs).

Figure 6. The share of total variance explanation of each
Principal Components (PC).

CM be an N � N confusion matrix where N is the
total number of tra�c states. CM(i; j) stands for
the number of the state i assigned to state j by the
predictive model. Then, the accuracy (Acc) and F-
measure (F1) formulas are:

Acc =
PN
m=1 CM (m;m)PN

m=1
PN
n=1 CM (m;n)

; (7)

F1(i) =
2Re(i):P r(i)
Re(i) + Pr(i)

; (8)

where Re(i) and Pr(i) are state i recall and precision:

Re(i) =
CM (i; i)PN

m=1 CM (i;m)
; (9)

Pr(i) =
CM (i; i)PN

m=1 CM (m; i)
: (10)

A machine with a four-core 2.80 GHz processor and
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Table 3. Three features with the highest weight for each Principal Component (PC).

PCs Feature 1 Feature 2 Feature 3
PC1 Number of sequential holidays Tomorrow is a holiday Three days ago is a holiday
PC2 Number of sequential holidays Tomorrow is a holiday Three years later is a holiday
PC3 Tomorrow is a holiday Three days later is a holiday Three days later is a holiday
PC4 It is a holiday Tomorrow is a holiday Yesterday is a holiday
PC5 Weekdays Year Year
PC6 Year Year Season
PC7 Season Season Solar months
PC8 Weekdays Three days later is a holiday Weekdays
PC9 Season Season Lunar months
PC10 Lunar months Solar months It is a holiday
PC11 Two days ago is a holiday Three days ago is a holiday Three days later is a holiday
PC12 Lunar months Solar months Three days later is a holiday
PC13 Hour Day or night Hour
PC14 Hour Two days ago is a holiday Day or night
PC15 Lunar months Tomorrow is a holiday Two days ago is a holiday
PC16 Three days ago is a holiday Yesterday is a holiday Two days ago is a holiday
PC17 Tomorrow is a holiday Three days later is a holiday Two days ago is a holiday
PC18 Two days ago is a holiday It is a holiday Yesterday is a holiday
PC19 Number of sequential holidays Tomorrow is a holiday Three days ago is a holiday
PC20 Two days ago is a holiday Yesterday is a holiday Lunar months
PC21 Solar months Lunar months Lunar months
PC22 Solar months Lunar months Yesterday is a holiday
PC23 Three days ago is a holiday Yesterday is a holiday It is a holiday
PC24 Three days ago is a holiday Tomorrow is a holiday Yesterday is a holiday
PC25 Three days ago is a holiday Three days later is a holiday Two days ago is a holiday
PC26 Number of sequential holidays Tomorrow is a holiday Three years later is a holiday
PC27 Three days ago is a holiday Two days ago is a holiday Two days ago is a holiday
PC28 Two days ago is a holiday Three days later is a holiday Three days ago is a holiday
PC29 Day of a lunar month Day of a solar month Tomorrow is a holiday
PC30 Tomorrow is a holiday Three days ago is a holiday Day of a solar month

Table 4. Computation time taken to train each model.

Model MNL DNN-ALL DNN-PCA SVM-ALL SVM-PCA

Computation time consumed (sec) 196 334 81 490 126

Table 5. Tra�c state prediction accuracy.

Dataset MNL DNN-ALL DNN-PCA SVM-ALL SVM-PCA

Train 83 99 92 100 92
Test 75 67 68 79 78

32 GB memory, running Windows 10, was used to train
models. Table 4 shows the computation time taken to
train each model.

According to Table 4, in the case of using 30 PCs
for training models, the DNN has the least computation
time consumed. In addition, training ML models with
92 primary features increased the computation time
consumed dramatically. Table 5 shows the accuracy
of each model.

According to Table 5, the accuracy of the models
varies from 83% to 100% for the training dataset
and from 67% to 79% for the testing dataset. The
prediction accuracy results show the superiority of the
SVM. Moreover, MNL prediction is more accurate than
DNN prediction. Application of 30 PCs improves the
accuracy of the DNN prediction and decreases that
of SVM prediction. The di�erences in the accuracy
values for testing and training datasets in DNN and
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Table 6. Model accuracy for each predicted tra�c state in the testing dataset.

Tra�c state MNL NN-ALL NN-PCA SVM-ALL SVM-PCA Number of records
Light 77 78 79 100 99 6236
Semi-heavy 69 26 28 34 11 1463
Heavy 3 18 17 42 21 244
Blockage 0 0 0 9 0 68

Table 7. Model F-measures for each predicted tra�c state in testing and training datasets.

Models MNL SVM-ALL SVM-PCA DNN-ALL DNN-PCA

Dataset Test Train Test Train Test 96 78 Train Test Train
Light 84 91 88 100 87 78 26 100 80 97
Semi-heavy 55 50 21 100 19 59 12 99 29 83
Heavy 5 6 59 99 32 0 0 99 14 62
Blockage 0 0 0 0 0 96 78 0 0 0

SVM models resulting from ALL 92 primary features
are 36% and 21%, respectively, while these di�erences
are reduced to 29% and 14% using 30 PCs.

Tables 6 and 7 demonstrate the accuracy and F-
measures of models for each predicted tra�c state.

Since 78% of the train dataset records are labeled
as light tra�c state, as a result of this imbalance in
test dataset, the highest accuracy and F-measure of
models are achieved and used for predicting the light
tra�c state and the least accuracy and F-measure are
related to the blockage tra�c state with less than 1%
of total records. Only SVM-ALL can predict some
correct blockage tra�c state. Of note, 100% accuracy
of the SVM-ALL was obtained in predicting light tra�c
state. This model can predict the most iterative state
in the best possible way. It is the MNL model that can
predict semi-heavy more accurately than other models.
Further, SVM-ALL yields a more accurate prediction
for the heavy state.

Table 8 shows the accuracy of models for each
solar month in the test dataset.

According to Table 8, the accuracy of the tra�c
state prediction in the �rst two months is greater than
that in the second three months for all �ve models.
Due to the short-term nature of these predictions, a
decrease in prediction accuracy over time is expected.
From 21 April to 20 May and from 22 June to 22

July, the MNL is the most accurate model. For other
periods, the SVM-ALL model can predict the tra�c
state more accurately than other models. Interestingly,
the accuracy of SVM-ALL and SVM-PCA models
is equal in all periods. The di�erence between the
accuracy rates of DNN-ALL and DNN-PCA models is
negligible during these �ve months.

In MNL model as a statistical model, the re-
lationship between the features and tra�c state and
statistical signi�cance of features can be determined
by estimating features coe�cient and t-state. This
paper used MNL for not only tra�c prediction but
also ful�lling the lack of interpretability of ML models.
Table 8 shows the results of the MNL model. In
Table 9, positive coe�cients in tra�c state utilities
indicate that PCs increase the occurrence probability
of that state compared to blockage state which is set as
the base state. In addition, according to Table 3, the
inuencing features can be determined. For instance,
the coe�cient of PC1 in light utility is estimated
signi�cantly. The negative sign indicates that PC1
decreases the occurrence probability of light compared
to blockage. The �rst three high weighted features of
PC1 are the numbers of sequential holidays; tomorrow
is a holiday and three days ago was a holiday. In other
words, these three holiday-related features increase the
probability of blockage occurrence compared to the

Table 8. Model accuracy for each solar month in the testing dataset.

Models 21 April{
21 May

22 May{
21 June

22 June{
22 July

23 July{
22 August

23 August{
22 September

MNL 91 84 81 57 57
DNN-ALL 78 81 65 56 44
DNN-PCA 81 83 65 60 44
SVM-ALL 89 88 77 62 60
SVM-PCA 89 88 77 62 60
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Table 9. Result of the Multinominal Logit (MNL) model.

Light Semi-heavy Heavy Blockage

Features Coe�cients
(t-state)

Level of
signi�cance

Coe�cients
(t-state)

Level of
signi�cance

Coe�cients
(t-state)

Level of
signi�cance

Coe�cients

Constant {1.72 ({34.2) (� � �) {4.88 ({22.6) (� � �) {8.27 ({10.9) (� � �) |
PC1 {0.07 ({5.53) (� � �) {0.12 ({5.85) (� � �) {0.18 ({3.24) (� � �) |
PC2 {0.37 ({25.6) (� � �) {0.66 ({13.9) (� � �) {0.73 ({7.04) (� � �) |
PC3 {0.01 ({0.75) | 0.2 (4.67) (� � �) 0.07 (0.64) | |
PC4 {0.02 ({1.03) | 0.01 (0.42) | 0.05 (1.32) | |
PC5 0.29 (13.81) (� � �) 0.32 (4.68) (� � �) 0.58 (2.8) (� � �) |
PC6 {0.24 ({11.2) (� � �) {0.02 ({0.32) | 0.18 (0.95) | |
PC7 {0.33 ({17.2) (� � �) {0.36 ({6.34) (� � �) 0.06 (0.29) | |
PC8 0.32 (15.29) (� � �) 0.25 (4.4) (� � �) 0.71 (4.09) (� � �) |
PC9 {0.01 ({0.27) | 0.11 (1.96) (� �) {0.45 ({2.54) (� � �) |
PC10 {0.15 ({6.71) (� � �) {0.1 ({1.79) (�) 0.19 (1.1) | |
PC11 0.01 (0.34) | {0.28 ({4.12) (� � �) {0.83 ({3.93) (� � �) |
PC12 {0.06 ({1.95) (�) 0.12 (1.45) | {0.16 ({0.56) | |
PC13 {0.28 ({10.8) (� � �) {0.39 ({6.83) (� � �) {0.24 ({1.61) | |
PC14 0.44 (15.44) (� � �) 0.48 (6.26) (� � �) 1.07 (4.33) (� � �) |
PC15 0.07 (2.15) (� �) 0.3 (3.9) (� � �) 1.29 (3.65) (� � �) |
PC16 0.27 (7.01) (� � �) 0.41 (4.31) (� � �) {1.55 ({3.29) (� � �) |
PC17 0.04 (1.92) (�) {0.31 ({4.3) (� � �) {0.61 ({2.28) (� �) |
PC18 0.13 (2.74) (� � �) 0.24 (1.74) (�) 0.99 (4.44) (� � �) |
PC19 0.03 (1) | {0.09 ({0.73) | {0.66 ({3.91) (� � �) |
PC20 0.18 (5.63) (� � �) 0.52 (5.72) (� � �) 0.78 (2.79) (� � �) |
PC21 0.03 (1.16) 0.24 (2.78) (� � �) 0.34 (1.57) | |
PC22 0.23 (7.9) (� � �) 0.31 (4.62) (� � �) 0.25 (1.66) (�) |
PC23 0.01 (0.44) | 0.19 (2.03) (� �) 0.54 (1.77) (�) |
PC24 {0.29 ({10.8) (� � �) {0.24 ({3.59) (� � �) {0.51 ({2.43) (� � �) |
PC25 {0.02 ({0.81) | 0.22 (3.35) (� � �) 0.38 (1.83) (�) |
PC26 0.17 (5.82) (� � �) 0.45 (6.53) (� � �) 0.23 (1.58) | |
PC27 {0.17 ({5) (� � �) 0.11 (1.55) | 0.15 (0.77) | |
PC28 {0.26 ({8) (� � �) {0.28 ({4.03) (� � �) {0.46 ({2.32) (� �) |
PC29 {0.16 ({5.7) (� � �) {0.34 ({5.69) (� � �) {0.43 ({2.28) (� �) |
PC30 {0.01 ({0.2) | 0.08 (1.41) | {0.21 ({1.34) | |

light state, which seems logical. Other coe�cients can
be interpreted in the same manner. Moreover, the stars
point to the signi�cance of these features. Three, two,
and one stars are indicative of signi�cance levels of 99%,
95%, and 90%, respectively. Coe�cients without any
stars are statistically insigni�cant.

6. Conclusion

This paper aims to predict tra�c state through two
di�erent approaches, i.e., statistical and machine learn-
ing approaches. To this end, Multinomial Logit
(MNL), Deep Neural Network (DNN), and Support
Vector Machine (SVM) models were employed, and
the prediction capability of these methods was assessed
by comparing prediction accuracy. Since there was

a limitation concerning the number of features in
MNL, Principal Component Analysis (PCA) was used
to reduce the data dimension. After converting 92
primary features to 280 features by de�ning dummy
features, PCA reduced the number of features to 30,
explaining 37.7% of the total variance. SVM and DNN
were trained using two di�erent databases of ALL (92
primary features) and PCA (30 PCs), and the results
were compared. One-year records were taken into
account to train models and the next six-month records
were employed to test the accuracy of predictions.

Overall, it can be concluded that the SVM-
ALL model reached the highest total accuracy equal
to 79%. After SVM-ALL, the prediction accuracy
values of SVM-PCA, MNL, DNN-PCA, and DNN-
ALL were 78%, 75%, 67%, and 66%, respectively.
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Light, heavy, and blockage tra�c states were predicted
more accurately using SVM-ALL, compared to other
models. In the case of predicting the semi-heavy
tra�c state, MNL outperformed SVM-all. In general,
the prediction accuracy for the �rst three months of
the test dataset was greater than that in the second
three months. DNN and SVM failed to assess the
explanatory role of features. To address this issue,
MNL model parameters including coe�cient and t-
state elaborated the relationship between features and
tra�c state and statistical signi�cance of features.

Finally, it is important to determine what pa-
rameter is more important for transportation engi-
neers and policymakers: the accuracy of predictions
or discovering the e�ect of independent variables on
tra�c state. To achieve a greater prediction accuracy,
machine learning models like the SVM were pro-
posed; in addition, to have interpretable �ndings about
the relationship between dependent and independent
variables, statistical models such as the MNL were
suggested. Also, these models could complement each
other by employing the MNL �rst and, then, detecting
independent variables that a�ect tra�c state and next
train machine learning regarding the results of MNL.

Using predicted tra�c state and providing them
to travelers and transportation agencies through in-
telligent transportation systems can ensure a balance
between travel demand and supply in the near future,
which is the main aim of this study.

As a limitation, this paper only uses the maximum
probabilistic method to determine the prediction of
MNL. For further research, it is suggested that the
random probability method be used for both machine
learning and statistical approaches.

Abbreviation

ARIMA Autoregressive Integrated Moving
Average

ATIS Advanced Travelers Information
Systems

ATMS Advanced Tra�c Management Systems
BFGS Broyden-Fletcher-Goldfarb-Shanno
BPNN Back-Propagation Neural Network
CG Conjugate Gradient
CPNN Clustered Probabilistic Neural Network
DNN Deep Neural Network
DNN-PCAN Deep Neural Network trained by

principle components
DNN-PCA Deep Neural Network trained by all

features
KNN K-Nearest Neighborhood
LM Levenberg-Marquardt
ML Machine Learning

MNL Multinomial Logit
NN Neural Networks
PC Principal Component
PCA Principal Component Analysis
PE Processing Element
PNN Probabilistic Neural Network
RBF Radial Basis Function
RBFN Radial Basis Function Network
RF Random Forest
RPCA Robust Principal Component Analysis
SANN Simulated Annealing
SVM Support Vector Machine
SVM-PCA Support Vector Machine trained by

principal components
SVM-ALL Support Vector Machine trained by all

features
SVR Support Vector Regression
XGB Extreme Gradient Boosting
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