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Abstract. This paper is an endeavor to picture excessive population threats to the
resiliency of a large metropolitan area. By employing an existing evolutionary model
of tra�c ow on a small expository network, we show how chaotic situations occur at
certain demand and supply parameter values and try to address the questions: How may
one determine city population capacity for its transportation network, what happens if
the city passes this limit, or how may one return the city to a stable situation when it
runs into unstable or chaotic situations. Under certain assumptions, the paper designs a
simulation experiment to revisit the phenomenon discovered by Greenshields in 1934, but
for a transportation network in a large city. A ow simulation shows that very small changes
in the demand and supply of the network result in large variations in the throughput of
the network, such that the time series of the latter values to an external observer are
chaotic (with positive Lyapunov exponent). The limit to the resiliency of the city from
the standpoint of its transportation network capacity is, then, estimated by a value for the
city's population. It is then argued that how to take the network out of this situation.
© 2016 Sharif University of Technology. All rights reserved.

1. Introduction

As a material property, resiliency is known as the
(utmost) ability to release the energy absorbed when
deformed [1]. Resiliency of an ecosystem is de�ned
as the capacity of tolerating external disturbances to
remain in the current state, possibly by restoration.
Extending this concept to cities, resiliency of a city may
be de�ned as the power to resume the same function
after a shock, as it used to perform before the shock.
It is a property of absorbing energy surge (shocks),
possibly by reorganization and adaptation, without
being (appreciably) harmed [1-3]. In this respect,
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several characteristics of the social system may help to
retain a resilient property. These may include learning,
redundancy, adaptability, robustness, resourcefulness,
and rapidity [4,5].

There are many reasons why the concept of
resiliency is of importance: First, increase in the
dimensions of the threats that did not exist before, or
increase in the scales of the threats in those dimensions
that were previously unimportant or ine�ective. These
dimensions pertain to the physical, infrastructural,
social, and economic, as well as health, and even
cultural aspects of these large cities. Second, the
rate of e�ect or speed of change emanating from a
shocking event is critical, so it is becoming increasingly
hard to cope with these threats in today's larger
societies. Third, large cities are increasingly losing
ground in their ability to withstand shocks due to
their deterioration, high demand (population), and low
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supply of resources and opportunities. Last, but not
least, the environment is also becoming increasingly
less friendly to large cities (in response to the past and
current unfavorable lifestyle of mankind) due to global
warming, climate change, and scarcity of energy, as well
as alternative energy sources. Thus, large cities are
becoming increasingly susceptible to collapse in case of
shock emergence, and thereby are in need of redesign
and renovation.

Stability of tra�c equilibria in day-to-day dy-
namical systems has received considerable attention
in recent years [6,7]. Oscillation of tra�c ow is one
form of the instability that is focused on by Li and
Ouyang [8], Nie [9], and Xia et al. [10]. It is natural
to think of stochasticity and chaos in the framework
of tra�c ow instability. Flow stability and bifurca-
tion relationship has been studied by Cantarella [11].
Search for chaotic ow in transportation networks
came next. Chaotic behavior in a single vehicle-tra�c
light interaction [12] and two competing vehicles-tra�c
light interactions [13] was one (micro-level) aspect of
the studies on tra�c ow. Other studies relate to
single facility (for example a freeway section), origin-
destination demand, and small-size networks [14,15].

Flow dynamics are studied in some details. Lan et
al. [16] found strong evidences to conclude that short-
term (one-minute) tra�c volume during the morning
hours exhibit chaotic, rather than random, phenomena.
These evidences are based on wide range comparisons
of plots and statistics between the observed one-minute
tra�c data and their surrogates. They selected some
most important indices to establish the parsimony
testing procedure, which validated the identi�cation of
chaotic tra�c time series.

Lin and Lan [17], in examining tra�c time series
data, conclude that one-minute ow data in the morn-
ing hours exhibit chaotic phenomenon, but �ve- and
ten-minute scales do not. Lan et al. [18], employing
cellular automaton tra�c simulator, study the self-
organization formation of tra�c. Their experiments on
a two-lane freeway show that this phenomenon appears
when the density exceeds 45%(� 60 pcu/km). They
report for their case, however, that the edge of chaos is
at 33:8%(� 45 pcu/km), so the ramp metering (tra�c
control) should start at this level of density to prevent
recurrent congestion. A two-stage mathematical model
is built by Xu and Gao [19] to describe the variations
of O/D ows over discrete time periods (a day or a
week). They show that even in a two-dimensional
system, chaos phenomena still exist, and �nd that
chaos \propagates" in their two-stage model.

Although long-term tra�c forecasting was an
important objective in many transportation planning
problems up to the 1980's, it is the short-term ow
prediction that basically supports ITS (Intelligent
Transportation System) decisions these days. Wang

et al. [20] assert that tra�c ow data exhibit chaotic
properties. They \de-noise" the data using wavelet
transform before forecasting, and use phase space
reconstruction technique to predict tra�c ow reliably
in a short-term.

The theory of chaos has also been related to other
macro-level concepts such as sustainable transporta-
tion [21,22].

The purpose of this paper is to show that there
are limits to the resiliency of large urban areas. One
such limit is related to the population capacity of the
city from the viewpoint of transportation network. The
paper considers its contributions to be as follows: (i)
Its experiments on small-scale networks are new to
the literature; (ii) Its large-scale real-size experimental
simulations are also new. It brings in the concept of in-
frastructural limit to the growth of the city population,
which is attempted to be estimated for transportation
for the case under study. More importantly; (iii)
it experimentally shows how one may bring back a
transportation network from a chaotic to a more stable
state.

This paper is organized as follows. In Section 2,
an existing evolutionary model of tra�c ow is de-
scribed to become the core of the discussion, regarding
chaotic ow condition. This discussion is concluded by
a way to take the system back from chaotic to normal
situation. Section 3 views the transportation network
of a large city and designs simulation experiments that
initiate the generalization of a freeway section's speed-
throughput relationship to a road network, experienc-
ing large variations in a real-size network throughput
due to small demand or supply changes. To an external
observer, the positive Lyapunov exponent of the time
series of the day-to-day throughputs is indicative of the
emergence of a chaotic phenomenon.

2. Evolutionary models of tra�c ow

One type of dynamic tra�c ow model is the evo-
lutionary model de�ned by the following recursive
equation [23]:

Xn+1 = Y (Xn): (1)

The equilibrium point of the above model may be
thought of as the following �xed point:

X� = Y (X�); (2)

which may be de�ned as the stabilized state of the
dynamic system in Eq. (1):

X� = Y ((:::(Y (X�)):::)) : (3)

Flow stability in dynamic systems has recently been
under the scrutiny of many researchers including
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Jin [24]. Jin's model is a continuous model whose
�xed point is the well-known user equilibrium ow in
the transportation networks [25]. The structure of this
model is based on the First-In-First-Out (FIFO) rule
violation function. This rule states that for uniform
travelers from an origin to a destination, the �rst one
entering the network would be the �rst one to get out of
the network (reaching the destination). Thus, violation
of this basic rule is a driving force toward a stable ow.
Jin's model is as follows:

Algorithm 1. Jin's Model.:

- Step 1. Consider a feasible ow in the network
traversing the existing paths from origins to desti-
nations. Specify the model parameter, �;

- Step 2. Compute the travel times (tksp ) of all the
used paths p (with positive ow) for O/D (k; s);

- Step 3. Compute the FIFO violation of path p for
O/D (k; s) as:

Jksp (xksp ) = dks:xksp :(t
ks
p � vks): (4)

If the FIFO functions are zero, Goto Step 5; other-
wise, continue.

- Step 4. Update the path ows as follows:

xksp (� + 1) = xksp (�)� �ks:Jksp �
xksp (�)

�
: (5)

- Step 5. End. The system has reached equilibrium.�

In Step 3 of the above algorithm, vks is the
weighted average of the di�erent path travel times:

vks =
X

p2Wks

�
tksp :x

ks
p
�
=
X

p2Wks

xksp : (6)

It can easily be shown that by embedding Eq. (6)
in Eq. (4), the FIFO violation function will turn out
as:

Jksp (xksp ) = xksp :
X
q

xksq (tksp � tksq ): (7)

In fact, Eq. (5) in Step 4 of the algorithm is a linear
adaptation of ow, in which the change in path ow,
_xksp , equals �Jksp (xksp ):

xksp (� + 1) = xksp (�) + �ks: _xksp (�): (8)

Parameter �ks represents the sensitivity of the net-
work users in responding to the current di�erences
in their path travel times with the current respective
O/D average path travel time value, and adjusts the
current path ows to bring the path travel times
close to the respective O/D average value.

Figure 1. The example network and its link speci�cation
functions.

Figure 2. Path ow evolution over the iterations (days)
of the algorithm.

2.1. An example network
Let us study the simple example network of She� [25],
as shown in Figure 1, by the Jin's algorithm mentioned
above. The network has one O/D pair with demand
dks = 10. The link travel time functions and the
expressions for the FIFO violation functions of the
O/D paths are shown in this �gure, where each link
is an O/D path. Suppose we start the algorithm
by the initial solution of (3:39; 5:0; 1:61). We may,
then, compute the next time (day) ow vector by the
following set of equations:

xl(� + 1) = xl(�)� �Jl(�); l = 1 to 3: (9)

Suppose � = 0:002. Figure 2 shows the evolution of
the path ows over the iterations of the algorithm and
its convergence to the point of x� = (3:59; 4:70; 1:71).
This is the User Equilibrium (UE) ow in the network,
with the corresponding travel time vector of t� =
(25:57; 25:72; 25:40), approximately the same for the
three paths.

Let us increase � to 0.005. Figure 3 shows that
the solution does not converge to a speci�c point, and
the process alternates between two solutions (i.e., it
bifurcates). We increase � further to 0.0064. Figure 4
depicts the behavior of the ow in path (link) 1, which
is rather \chaotic" (i.e., the \daily" tra�c ow in the
path wonders around, taking many values). Similar
behavior exists for the other two links.

Figure 5 shows the variation in the ow of link
1, x1, as � increases from 1:0 � 10�3 to 6:4 � 10�3

(Similar variations happen for x2 and x3, the ows in
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Figure 3. Alternating path ows in the example network
(bifurcation).

Figure 4. Chaotic path ows in the example network.

Figure 5. Equilibrium, bifurcation, and chaotic ows in
path 1 for various values of �.

paths (links) 2 and 3, respectively.) For � = 1�10�3 to
4:5�10�3, the ow in path 1 tends to the UE ow. As
� increases further, the ow value in link 1 bifurcates
(several times) until � = 6:4�10�3, where it enters into
a chaotic state. In such a state, the users experience
various levels of travel times each day. However,
Figure 5 shows that the ow in path 1 is contained
within a limited range. Figure 6 shows this variation
of path ow vector with � in the three dimensions of

Figure 6. The attractor space of path ows for the
three-link example network.

(x1; x2; and x3). The latter is the attractor space of the
path ows (a \galaxy" of the solutions).

2.2. The need for uncertainty analysis in the
problem

One common assumption in most network ow prob-
lems is the determinacy and constancy of the param-
eters of the problem, such as (O/D) demand. For
the latter assumption, the ow levels are computed
for the expected levels of demand. The analysis of
the problem is usually done with the assumption that
the expected values of e�ectiveness measures equal the
respective measures with the expected values of the
parameters. However, this assumption is correct only
for the linear systems, while the ow problem in a
network is a nonlinear one. According to the Jensen's
inequality [26,27], if f(x) is a convex function and x an
uncertain input, then:

E[f(x)] � f(E[x]): (10)

Put in an example, the total travel time of the users
of the network under (constant) expected demand
input will underestimate the actual sum of the total
user travel times. This shows that consideration of
uncertainty in network ow problems leads to better
analyses of these problems, and hence better decisions.

Uncertainties in network supply parameters are as
important as those in demand side. Variations in the
weather conditions, tra�c incidents, road/lane closures
for maintenance, etc. have signi�cant e�ects on the
operation and e�ectiveness of the network. Analyses of
networks without due uncertainty considerations may
only be a simpli�cation of the realities. Nevertheless,
in most network analyses, the supply functions, such as
link travel time functions, are considered known and
invariant. As an example conclusion, if supply and
demand have their own uncertainties, say probability
distributions, one may only be con�dent in reliable
operation of the system when supply exceeds the
demand. This level of reliability (i.e., the probability
that supply exceeds the demand) is di�erent from
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the reliability of the system when the expected value
of the supply exceeds the expected value of the de-
mand [28].

2.3. Behavior of the example network under
supply uncertainty

Consider, once again, the example network, but this
time with more general link travel time functions as
follows:

t1 = 10

"
1 + 0:15

�
x1

2=�

�4
#
;

t2 = 20

"
1 + 0:15

�
x2

4=�

�4
#
;

t1 = 25

"
1 + 0:15

�
x3

3=�

�4
#
; (11)

where � � 1 is a random factor representing all
detrimental e�ects on practical capacities of the links,
with � = 1 representing the original (base) network.
Let us now apply Jin's model to this case for � =
1:5 � 10�3 and dks = 10, which has one �xed point,
i.e. the UE ow. The results are shown in Figure 7.
As is evident in this set of �gures for the three paths
in the network, for 0 � � < 1:6 the network possesses
stable (UE) ow. The ow levels bifurcate in the range
of 1:6 � � < 1:7, and then turn into a chaotic state in
the range of 1:7 � � < 1:72.

Increasing the demand, for example from dks = 10
to 25, would shorten the range of the same type of
evolution for the same value of �, as shown in Figure 8.

As is evident from this �gure, the inection points
from stable ow to bifurcation, and from bifurcation to
chaotic, have changed from 1.6 to 1.045 and from 1.7
to 1.065, respectively. The total range of these changes
has reduced from [1:0; 1:72] to [1:0; 1:0655], which is a
signi�cant change. That is, the network would become
more susceptible to failure (get into a chaotic state)
when the demand for travel increases (ows get closer
to the practical capacities of the links).

2.4. Behavior of the example network under
demand uncertainty: Population capacity

Determination of the city's population capacity (e.g.,
from the viewpoint of its transportation infrastruc-
ture) is an intriguing problem to city planners and
authorities. What is the population level in the city
whose transportation infrastructure can support at an
acceptable level of service?

Let us pose this question in the framework of our
example network. This time, we increase the demand,
dks, by multiplying it by a factor k, k � 1:0 (k = 1:0
represents the original/base network). Figure 9 shows
the results of the application of Jin's model on our
example network for � = 1:0�10�3 and initial demand
dks = 10, which has one �xed point; a UE ow. This
�gure shows that starting from k = 1:0, the ow level
remains stable up to k < 1:55. The network path ows
enter into the bifurcation phase at k = 1:55 and remain
in this state until k < 1:65, at which point they enter
into the chaotic condition, which lasts until k < 1:655.
Thus, we might say that the network can handle an
O/D demand up to 1:55 � 10 = 15:5 units. For a trip
generation rate of 3 units of trips/unit of population,

Figure 7. Variation of path ows for di�erent values of � (� = 0:0015 and dks = 10).

Figure 8. Variation of path ows for di�erent values of � (� = 0:0015 and dks = 25).
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Figure 9. Variation of path ows for di�erent values of k (� = 0:001 and dks = 10k).

Figure 10. Variation of path ows for di�erent values of k (� = 0:0032 and dks = 10k).

population capacity of the city for this network is about
46 (� 3� 15:5) units.

Suppose, now, that the sensitivity of the demand
for transportation increases from � = 1:0 � 10�3 to
3:2 � 10�3. Running the model, once again, with this
new parameter value, would result in Figure 10. This
�gure shows that the ow stability range will diminish
to 1:0 � k � 1:04 (previously, 1.55). The state of ow
bifurcation happens in the shorter range of 1:04 � k <
1:17 (previously, 1.65). Finally, the state of chaotic ow
happens in the range of 1:17 � k < 1:19 (previously,
1.655). The reader will note that with the higher
value of � (higher user reaction), the network falls
into unfavorable states with a much smaller increase
in demand.

2.5. Counteracting chaotic situation
Control of chaos, and avoiding its occurrence, is one
important aspect of dynamical systems, as is also
emphasized by Xu and Gao [19]. To avoid chaotic
situations, one may make sure that the parameters of
the system are in the respective ranges of stable values.
However, the answer to the more serious question of
`how can one take a chaotic system into a (more) stable
situation?' is not straightforward. Let us, once again,
consider the three-link network in Figure 1 and run
Algorithm 1, but this time with the following time-
dependent parameter:

� = 0:0067� 1:8� 10�5�: (12)

Figure 11. The ow in path 1 for adaptive value of
� = 0:0067� 1:8� 10�5� .

Note that the system is again totally deterministic and
that at � = 0, we have � = 0:0067, which is in its
chaotic range. Figure 11 shows the value of ow in link
1 for di�erent time intervals. It shows how the time
adaptability of � brings the system (the link ows) back
to the stable UE solution shown in Figure 2.

2.6. Summary of Section 2
The concept of chaos in deterministic nonlinear sys-
tems, as discussed above, represents a state of disorder
and irregularity for a system of di�erence equations, as
given in Eq. (8), de�ning the time-dependence of path
ows in the network. More speci�cally:

Xn+1 = Y (Xnj�): (13)

We �nd that under certain conditions, ows reach
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stable values or a �xed point. Variation (increase,
here) of an exogenous parameter doubles the �xed
points at particular values and this process continues
until the �xed points become in�nite in number, while
the parameter values are all �nite. In fact, we noted
that these large changes in the number of �xed points
followed very small changes in the parameters, all being
within rather short intervals.

Later, in two other experiments with the example
network, we considered the uncertainty in the link
practical capacity (by a new parameter, �), as well
as the uncertainty in the O/D demand (considered
through a new parameter, k). The Jin's model has been
started in a state which had a unique UE �xed point
with its original parameter value � at k = � = 1:0.
We observed that changes in the new parameters (�
and k) in the direction of lower link capacities or
higher demand would lead the ow system into a
chaotic state much faster (that is, at much tighter
ranges of �). Similar observations are made with larger
networks [29,30].

3. Simulation model of network ow

We consider, now, an actual network of a large city
and change the capacity of the system by link removals
that constitute only negligible changes in the network
total Lane-Kilometers (LK) and similar (same order)
changes in the O/D pair demands. We will show that
the response of the system to these changes will be
signi�cantly magni�ed.

The system of concern is the network of a real
case, the city of Mashhad, Iran, with a population of
2.3 million at the time of the study. An aggregate
network of this city is made of 872 nodes and 1184 links;
15 (super-)sources and (super-)sinks represent the 141
tra�c zones of the study area. Figure 12 shows this
network.

The set of models that estimate the demand is
of four-step type, which is based on extensive ori-
gin/destination survey results and databases that were
conducted in 1994. There are seven trip purposes, for
each of which there is a pair of trip production and at-
traction models, each being a function of several (zonal)
variables such as employment level, car-ownership, and
student number.

Trip distribution is made by trip purpose using
doubly constrained Fratar type models:

T pij = �pi �
p
jO

p
iD

p
j d
p
ij ; (14)

where T pij is the total O/D trips from origin i to
destination j for the trip purpose p, Opi is the total trips
produced from zone i for trip purpose p, Dp

j is the total
trips attracted to zone j for trip purpose p, �pi and �pj
are two balancing factors for the trip purpose p that are

Figure 12. The network of the city of Mashhad.

dependent on origin i and destination j, respectively,
and p is a model parameter for the trip purpose, p.
The model is subject to two constraints:X

j

T pij = Opi ; 8i; and
X
i

T pij = Dp
j ; 8j; (15)

with
P
iO

p
i =

P
j D

p
j . These models are calibrated

by successive row-column balancing for each trip pur-
pose p.

The mode choice model for trip purpose p is
multinomial logit, as follows:

pm;pij = eu
m:p
ij =

X
k2M

eu
k:p
ij ; (16)

where pm;pij is probability of choosing mode m among
the set of alternative modes M (m 2 M) in a trip
from zone i to zone j for purpose p; and um:pij is utility
of mode m for this trip, which is a function of the
characteristics of passenger, origin, destination, and
mode of travel, as follows:

um:pij =
X
l

�m:pl Xij;l; (17)

where �m:pl is a coe�cient of the lth variable of the
utility function, Xij;l, for trip purpose p, which may
be either mode-speci�c or generic. The set of available
modes M includes two-wheeled vehicles, private cars,
taxi, and bus for all trip purposes with an additional
minibus mode for school trips. Variables Xij;l include
car-ownership and travel time for cars, two-wheeled
vehicle ownership and O/D distance for this type of
vehicles, in-vehicle travel time, out-vehicle travel time,
and number of times passengers board buses.

Tra�c assignment model consists of an optimal
strategy procedure [31], which assigns public transport
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passengers to its network, and a multi-class user
equilibrium ow, which assigns the demand for the
other �ve vehicles to the road network [25]. Road
network assignment considers delays at signalized and
un-signalized intersections, turn prohibitions, and six
types of road volume-delay functions. The public
transport assignment considers several vehicle types
in public transport system. The interaction between
public and private modes of transportation is also
considered by the model.

The model is coded in EMME/2 environment [32]
to estimate the (hourly) demands, assign them to the
network, and estimate the operational characteristics
of the network. These characteristics include vehicle-
kilometers, vehicle-hours, average vehicle/passenger
speed in the links and in the networks, network conges-
tion levels and the respective distribution, di�erent fuel
consumptions, and di�erent emissions of pollutants.
These are available by demand type (person/vehicle
trips), network type (public/private), vehicle type,
road type, and geographical region [33].

3.1. Experimental design
The purpose of the following experiment is to simulate
the ow over the network in a particular hour of the
day over di�erent days. The system of concern is the
network of a large city. We assume the following:
(a) In a given day, demand varies over time from 00:00

to 24:00, and we assume that the hourly varia-
tion of a typical/mean demand over the network
is known by an O/D study (mentioned above).
However, to simulate a case similar to an existing
well-known experiment by Greenshields [34], we
vary demand to create cases n = 0; 1; :::; N with
dks;n = c:dks to be the (k; s) element of the O/D
matrix, where c = c0 + c1:n for c0 and c1 being
two constants. In passing, we note that a similar
concept has been employed to �nd the reserve
capacity of a network in other studies (see, e.g.
[28,35]);

(b) Given the O/D demand and the network, distribu-
tion of the ow over the network is a deterministic
procedure. For a given hour of the day, say the
peak hour, the ow over the network varies day-
by-day. One source of this variation is small
changes in the timing of the (�xed) demand
appearing in the network. We assume a normal
distribution for this variation with known mean
(mentioned in (a)) and a standard deviation equal
to a small fraction of this mean. Let xks be the
total O/D demand from origin k to destination s
during a given time period, and that:
xks = dks + �ksZ; (18)

where Z � N(0; 1). Then, xks � N(dks; �ks).
Banks et al. [36] present a procedure for generating

standard normal random numbers by two inde-
pendent uniformly distributed random numbers in
interval [0; 1]. For the purposes of this study, we
assume that �ks = 0:1 dks, for all (k; s) 2 W ,
where W is the set of O/D pairs;

(c) Another source of variation of the daily ow in
the network is small variation in the supply over
the network due to: (i) operational factors (lane or
road closures due to vehicle accidents, road repair,
unauthorized stops and parking, and bus stops in
front of a column of moving vehicles in a lane); (ii)
weather-related factors (rain fall, water ponds, icy
pavement, and low visibility due to fog or rain);
and (iii) human-related factors (slow-moving and
badly-maneuvering vehicles).

For random variation of supply, we assume,
for simplicity, that the major incident in road
capacity reduction is tra�c accident, and that if
it happens in a link, it closes the link completely
for that time period under considerations. It
is assumed that accidents occur in the links of
the network independent from each other, propor-
tional to the vehicle-kilometers of travel in that
link, but dependent on the type of the link k
(expressway, e, and arterial, a). Then, we may
write:

pa = (la:xa)=(
X
a2A

la:xa); (19)

where pa is the probability of an accident occur-
rence in link a, xa is the passenger car (equivalent)
volume of tra�c, and la is the length of this
link. Each link a has a type k. Suppose, also,
that accident occurrence in the network for each
link type k is a stochastic process, fNk

t ; t �
0g, following a Poisson rule with average rate of
arrivals of �k for all links of type k. Assume �a = 6
accidents per hour (of the time period of concern)
for 618 km of arterials, and �e = 2 for 162 km of
expressways, per day. Then, the probability of nk
accidents in a unit time interval (t = 1hr) may be
computed as:

p
�
Nk
t = nk

	
=
�
e��k�1(�k � 1)n

k
�
=(nk!)

= e��k(�k)n
k
=(nk!);

k = a; e: (20)

(d) Observations in the city under study show that
link disruption, due to an accident occurrence in
the link, takes about 1hr before clearance of the
accident scene. We assume that accidents occur at
the beginning of the time period under study and
that users become aware of the accident locations
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by local media and change path choices to their
destinations to form the new user equilibrium ow.
The latter assumption may be plausible by the
virtue of repetition of the urban trips, particularly
the morning work and school trips which are basi-
cally mandatory. Furthermore, since the changes
in demand and supply are marginal (as we will
see later in this paper), the di�erence between
the e�ects of these assumptions and the actual
phenomena is considered marginal to the higher
orders, and hence ignored for simplicity, without
causing appreciable changes in the results.

The performance of the system changes as a
function of the state of demand and network in each
day. Let us de�ne the following:

De�nition 1. (k; s) demand is responded satisfacto-
rily if tksu =tks0 � � , where tksu and tks0 are, respectively,
the user equilibrium in time period u and the free ow
travel time from origin k to destination s, (k; s) 2 W ,
and � is a real number showing the minimum expected
level of service (for example, � = 30). The subscript u
is the time period under consideration (e.g. the morning
peak hour period).

De�nition 2. The throughput of the network during
a time period u under study (e.g., peak hour) is the
sum of all satisfactorily responded demands, qu =P

(k;s)2W :xksu :zksu . In this relation, zksu = 1=0 if in
time period u the demand for (k; s) 2 W is responded
satisfactorily or not.

3.2. Network ow simulation algorithm
The following procedure has been devised to simulate
tra�c ow in the city under study:

- Step 0 (Preparation). Obtain the O/D ow matrix
(dks). De�ne a practically absolute number of
accidents for each road type k for Monte Carlo
simulation. Set iteration number, m := 1;

- Step 1 (Identifying the number and place of tra�c
accidents in the network for the time period in the
next day). Use Eq. (20) to specify the number of
accidents for the time period in the next day (e.g.,
morning peak hour), and Eq. (19) to specify the
link(s) in which these accidents occur, for each road
type k, by Monte Carlo simulation. Omit these links
from the original network and specify the currently
available network;

- Step 2 (Equilibrium ow computation). Compute
the new O/D demand by Eq. (18), �nding the
standard normal random variable Z and assuming
�ks = 0:1dks for all (k; s) 2 W . Then, compute the
user equilibrium ow by assigning this demand to
the currently available network in Step 1;

Figure 13. The speed (V )-throughput (q) points for 30
runs for each of the 23 demand cases for the city of
Mashhad.

- Step 3 (Computation of network performance).
Compute the total network throughput according to
De�nitions 1 and 2, and the network average speed as
V = (total vehicle-kilometers)/(total vehicle-hours);

- Step 4 (Stopping criterion). If m � M (say, 30),
STOP; otherwise, set m = m+ 1 and Goto Step 1.

3.3. Network ow simulation results
In order to see the behavior of the network under
the load of varying O/D demand, the algorithm in
Section 3.2 has been run for M = 30 times for each
of the demand cases n = 0; 1; :::; N . Assume c0 = 0:1,
c1 = 0:1, and N = 23. Figure 13 shows the resulting
V � qu points in this coordinate space.

The reader may note the resemblance of the kind
of relationship in this �gure with that of the Green-
shields' observations for a freeway section (see [37]).
Three distinct regions may be seen in Figure 13. These
are Regions (a) and (c) with more or less clear relation-
ships between V and q, as shown in this �gure. The
statistically estimated mathematical relationships are
shown beside the respective curve/line. The parame-
ters of these functions are statistically signi�cant above
99% con�dence level, and the R2's of the regression are
0.97 and 0.94 for the functions of Regions (a) and (b),
respectively.

Next, we see Region (b), which has spread over
points in the coordinate space. This is the same
message conveyed by the Greenshields' observations
for a freeway section. Increase in the incoming ow
(characterized by n in our experimental procedure,
as discussed in assumption (a) in Section 3.1) would
increase the density of the ow, which in turn reduces
the speed. This is true for the whole M = 30
observations that form a bunch of close points in
Figure 13. This reduction in the level of service
is accompanied by the increase in the rate of the
throughput, until a point is reached where this rate
becomes a maximum. At this point, the process ceases
to retain a clear relationship between the state variables
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Figure 14. Variation of the throughput for 30 runs of the
algorithm for 23 demand cases.

speed and throughput, or ow (and presumably the
ow density in the network), so that a turbulence
(or instability, or \chaotic" situation) occurs. From
this point on, increase in the incoming ow (and its
density) would reduce the speed further, while reducing
the throughput rates as well, which together bring the
tra�c to a standstill situation.

Figure 14 shows the trajectory of the throughput
in the M = 30 runs (i.e., days) of the algorithm for
each of the 23 demand level increases. It shows this
variation for Region (a) and the other two regions,
respectively. The reader notes that the throughput in
Region (a) over the days is rather stable. However, this
ow is turbulent in Region (b), with this characteristic
diminishing as tra�c goes to a standstill condition in
Region (c).

3.4. Chaotic interpretation of the day-to-day
uctuation of the network throughput

Chaos is a phenomenon that may occur in systems
which are dynamic, nonlinear, sensitive to their pa-
rameters, sensitive to their initial conditions, or possess
self-similarity [21,38-41]. Schuster and Just [42] present
several possible qualitative criteria for chaotic notions:
\looking chaotic," exhibiting broadband noise, de-
caying correlation function, and showing space �lling
points in Poincar�e map. They also introduce some
quantitative measures to characterize the case of deter-
ministic chaos, such as Lyapunov exponent, invariant
measure, and correlation functions, for one-dimensional
Poincare' maps, as well as quantitative measures for
other cases.

Consider the following model of user equilibrium
ow:

(xij) = Assign
�
D(dks(�)); N(V;A(�))

�
: (21)

This model is an abstract form of the following prob-
lem:

MinU(x) =
X

(i;j)2A(�)

Z xij

0
tij(u)du; (22)

s.t. : (i)
X
p2Pks

xksp = dks(�); 8(k; s) 2W; (23)

(ii) xksp � 0; 8p 2 Pks; 8(k; s) 2W; (24)

(iii) xij =
X

(k;s)2W

X
p2Pks

xksp :�
ks;
ijp (25)

where � and � are, respectively, the ratio of the
total O/D demand appearing in the network, and the
ratio of the total length of the links available to the
users of the network, over the long run average value
of the respective quantities, at the time period u of
consecutive days.

Time series analysis of data is a prevalent method
to verify chaotic behavior of complex systems [43,44].
We, also, take advantage of this method in our study
of large real-size transportation network. Consider,
now, another experiment in which 300 observations are
made in Region (b) of Figure 13. (There are about 300
working days in a year.) Figure 15 shows a schematic
representation of the results of this experiment. There
are two time dimensions running in this experiment;
the day time which starts early in the morning till the
peak ow time in the network, when it operates at the
capacity level. Then, there is another time running
on the day-to-day basis. To an external observer, the
result would be the maximum throughputs obtained in
each day, whose uctuation is shown in the lower-right
part of Figure 15.

Figure 16(a) and (b) show the variations of the
parameters � and � for the 300 runs of this experiment,
respectively. They show that these variations are
very small. Figure 16(c) depicts the ratio of the
maximum throughput of the day over the average value
of these 300 runs (days). This part clearly shows
a large variation for the small changes in the input
parameters. To the external observer, this is a time
series data which has a positive Lyapunov exponent of
0.0236, showing that the series is chaotic (see Schuster
and Just [42], and also Best et al. [45], who employ
Lyapunov exponent for ight control systems as a
warning onset of instability).

3.5. The city network capacity
We raise, once again, a similar question that was posed
in Section 2.5: What is the capacity of the city net-
work? We de�ne the capacity as being the maximum
demand that the network may handle without falling
into a \chaotic" situation. Let us answer this question
in an overall and informal manner.

Suppose qmax is the total city transportation
demand (in car equivalent per hour) before it takes
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Figure 15. A schematic representation of day-to-day maximum throughput evolution.

Figure 16. Large variation in throughput due to small variation in inputs (O/D demand and network length).

the network into a \chaotic" situation. Suppose the
average car (equivalent) occupancy rate is coe, the
average number of trips per capita per day is t, and
f is the portion of the total daily vehicular trips of the
city occurring in the morning peak hour. Then, we
may write:�

City population capacity from
its transportation point of view

�
=

h
coe
�

pass. trips
pcu. trips

�
:qmax

�
pcu. trips
peak hour

�i�
t
�

pass. trips
persons. day

�
:f
�

( pass. trips
peak hour )

( pass. trips
day )

��
=
coe:qmax

t:f
persons: (26)

For the city of Mashhad, we have coe = 3:65, t = 1:6,
and f = 0:0772, and from Figure 13, we estimate
qmax = 127; 978. Then, from Eq. (26), we may compute
city population capacity � 3; 800; 000. That is, to
prevent \chaotic" tra�c ow in the city (in the morning
peak) with the current transportation technology, we
should hold its population much below 3.8 million.
Alternatively, we may invest on the network to increase
its roadway network capacity (Figure 17) or take the
demand o� the road by encouraging car users to choose
public transportation by suitable means.

4. Conclusions

This paper intends to convey the fact that there are
threats to the resiliency of a large city. One important
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Figure 17. Demand management (wiser network use)
and/or supply increase (network expansion) to avoid chaos
in the network.

factor in this respect is the population capacity of
the city. It is clear that a city has a population
capacity from the di�erent resources points of view:
transportation, electricity, water, gas, communication,
etc. Transportation-imposed capacity, however, is
of particular importance, as it limits the activities
and economics of the city. However, it is not clear
that: What happens if the city passes this limit?
How may we return the city to a stable situation
(by, e.g., education, demand/supply management, or
investments in supply?), when it turns into a chaotic
one? What is the value of this limiting/critical capacity
at the �rst place?

This paper is an attempt to analyze these ques-
tions and draw an answer for them. Section 2 tries to
draw suitable transportation network performance con-
ditions by employing an existing evolutionary model of
tra�c ow, to show how chaotic situations occur at cer-
tain demand and supply parameter values. Moreover,
it shows a way to return the system back to its normal
operation. This is done on a small expository network
available in the literature.

Section 3 is an attempt to revisit the experiments
done by Greenshields [34] in 1934 for an actual freeway
section, but this time for a large real city. Under
certain assumptions, it designs a simulation experiment
and shows that the same phenomenon experienced by
Greenshields occurs for this city: As demand increases
(for all O/D's) from a minimum level, the average
network travel speed (v) decreases, while increasing
the network throughput (q) following a rather clear
function, (until) up to a maximum level at which
point the function ceases to exist, and a chaotic-
type (Greenshields' unstable) situation arises. Further
increase in the demand decreases both the speed and
the throughput of the network, but in a rather clear
V � q relationship. A large number of ow simulations
at the demand levels in the region of unstable ow show
that small changes in the demand and supply of the
network result in large variations in the throughput

of the network, such that the time series of the latter
values to an external observer is chaotic (with positive
Lyapunov exponent). The discussion in this section
poses the question of the limit to the resiliency of the
city from the standpoint of its transportation network
capacity, and estimates a value for the maximum
population of the city to prevent it from falling into
the chaotic region of tra�c ow. It is, then, argued
how to take the network out of this situation.
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