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Abstract. Although industrial robots are common, higher degree of manipulability
might be required to expand the applications of manipulators in the �eld of medicine.
Modifying the mechanical design of a robot as per the workspace can be perceived as
an optimization problem. Hence, a novel spatial manipulator is designed for a diagnostic
apparatus using di�erent optimization algorithms. Standard Genetic Algorithm (SGA) and
Genetic Algorithm (GA) with hybrid functions like Pattern Search (PS) and fmincon are
proposed to optimize the link lengths of 3-Degree-Of-Freedom (DOF), 6-DOF, and novel
9-DOF hybrid redundant manipulators. A 9-DOF robot is designed to manipulate a needle
in Computed Tomography (CT) machine environment. The �tness function for all the
manipulators is formulated using forward kinematic equations according to their workspace.
Limits and constraints of each link have been decided in advance. A comparative study
between all the hybrid GA functions is performed. MATLAB is used to solve and train the
proposed GA method for optimizing the link lengths. Results show that the GA with PS
provide better-optimized link lengths for 3-DOF and 9-DOF manipulators while fmincon
is well suited for a 6-DOF robot manipulator. Workspace and dead zone analysis is also
performed using the optimized link lengths obtained.
© 2022 Sharif University of Technology. All rights reserved.

1. Introduction

Infusion of robots has taken place in almost all the
human life sectors, from manufacturing and household
to hospitals. Among all the other types of robots,
one of the most commonly used robots is robotic arm
manipulator. Robotic arms are used in manufacturing
industries for tasks like pick and place, painting,
welding, etc., while they are used for surgical purposes
in the medical �eld as well.
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Industrial robots characterized by three and six
Degrees Of Freedom (DOF) have remained widely
applicable for many years. The standard 6-DOF
robotic manipulator is su�cient for most applications
in industrial and home environments. In some in-
stances, redundancy and more DOF are required to
achieve the desired target. Some of these applications
include robots in medicine, reactors, space, underwater
explorations, etc. For such applications that require
higher DOF and redundancy, robotic manipulators
with more than 6 DOFs are necessary. The �rst step
in designing a robotic manipulator is its link lengths.

Calculations of link lengths for manipulators with
more than 6 DOFs are computationally complex, mak-
ing it di�cult to reach just one solution. Development
of a redundant manipulator is not as straightforward
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as that of a six or lower DOF manipulator. The main
problem of �nding the right solution to such issues is
that they are multi-objective, multi-constrained, and
multivariate. The optimization of parameters such as
link length, total reach, and workspace is essential and
often contradicting [1].

In the �eld of robotics, Genetic Algorithm (GA)
has been used to optimize various tasks such as path
planning of a 3-DOF manipulator to minimize the joint
angle change while avoiding obstacles [2]. GA is also
used to obtain a solution to inverse kinematics [3]. In
the case of a 6-DOF manipulator, the parameter of the
PID control system is optimized. This method also
exhibited a better result than commonly used tech-
niques such as the empirical approach and trial-error
method [4]. To dynamically model a 9-DOF hydraulic
manipulator, GA was used. Varying e�ects of the
crossover method, crossover rate, and encoding scheme
on the performance of the GA were also analyzed [5].
To reduce the error in reaching the target points
of a heavy-duty hydraulic serial robotic manipulator,
its structure needs to be optimized. Constraints are
applied according to its underground tunnelling task-
based workspace. Link lengths were e�ectively opti-
mized to minimize position and orientation errors [6].

Active research is being conducted to optimize
the workspace reach, dexterity, and structure of the
serial kinematic robotic manipulator. GA is used to
optimize the topology of a modular robot, taking into
consideration a speci�c task [7]. GA was also used
to optimize link length and gearbox of a 3-DOF serial
manipulator taking into account its dynamic model
performance [8]. Optimization of link length, link
diameter, and link thickness of a 6-DOF manipulator
designed for cleaning a �sh tank is also carried out
using GA [9]. GA is very versatile and there are many
di�erent variants of GA that are used in robotics for op-
timization of various structural and design parameters.
Multi-Objective Genetic Algorithm (MOGA), Multi-
Objective Di�erential Evolution (MODE), and elitist
Non-dominated Sorting Genetic Algorithm (NSGA-II)
are some of the modi�ed GA used to optimize the
design parameters of a robotic gripper [10]. Another
variant of GA Multi-Objective Particle Swarm Opti-
mization (MOPSO) is used to optimize the 3-DOF par-
allel manipulator design [11]. Topology optimization of
the robotic link was also attempted using a generative
design technique, which is a similar form of GA [12].
Attempt to optimize crane designs has also been made
using GA. Cranes can also be considered as a robotic
system [13]. Structural optimization of a planar 4-DOF
robotic manipulator was obtained using GA to reach a
target from a starting point without hitting obstacles.
The manipulator had hybrid rotary and prismatic
joints [14]. Another attempt is made to optimize the
travel time and space of a 3-DOF planar manipulator

using GA. The motion planning is optimized in such
a way that the robot avoids collision with obstacles
within the given torque limits [15]. The trajectory
and torque pro�le of another 3-DOF micro-robot was
optimized for surgery. Optimization completed GA,
hybrid GA, Pattern Search (PS), and Particle Swarm
Optimization (PSO) methods. All the optimization
techniques performed almost the same besides hybrid
GA, which was slightly better by 3% [16]. Attempts
have also been made to design a robotic manipulator
with 5-axis for application under Computed Tomogra-
phy (CT) guidance. Trajectory and path were gener-
ated in the same studies [17,18]. The trajectory of a
biped robot is optimized for random obstacle avoidance
using regression. Ultrasonic distance sensors are used
as the sensory input for the regression controller,
which then provides the heading angle for the biped
robot. Industrial automation bene�ts from random
obstacle avoidance research [19]. Even in the case
of exible robots, adaptive dynamic surface control
is implemented to enhance its tracking performance.
Parametric uncertainties are overcome using the �rst-
order derivative �lter of the inertial parameters [20].
An SCARA robot manipulator is also modeled and
simulated as a PRR-type manipulator. Link lengths
and DH parameters of this manipulator are calculated
mathematically using forward and inverse kinematic
equations. The performance of its pick and place was
then observed experimentally [21]. Path of a mobile
robot is optimized using a GA to obtain a smoother and
shorter trajectory. Adaptive penalty factor is used in
GA for ensuring the safety of the robot during obstacle
avoidance [22]. Trajectory optimization of a 6-DOF
manipulator using GA, random average recombination,
di�erential evolution, and linear and geometric cooling
strategy was attempted. The goal of this optimization
is torque minimization, while a 6-DOF robot is carrying
a load from point to point. GA achieved the best result
in torque minimization [23]. To minimize the cycle
time and vibration of a 6-DOF robot for electronic
industries, GA was implemented. It increases the pro-
ductivity of the electronic PCB manufacturing industry
and reduces vibrations by optimizing the velocity of
the robot assembly [24]. Much focus has been given
to trajectory optimization using GA, regression, and
various other algorithms, but research on the optimiza-
tion of DH parameters based on the required workspace
for standard and redundant manipulators has been
lacking. Limited research has been conducted for link
length optimization of a robot for application in the
medical �eld.

Similar attempts have been made to optimize
the structure and trajectory of various DOF robotic
manipulators, but there is a limited study on the
comparison of link length optimization for the desired
workspace reach using GA for 3-DOF, 6-DOF, and 9-
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DOF robot manipulators in CT machine environment.
Manipulating robots in a CT environment poses quite
a challenge, as the body of the CT machine is a
major obstacle. The scanning area is the workspace
of any manipulator working with a CT machine. The
diameter of the scanning region of a standard CT
machine is 70 cm [25]; hence, the robotic manipulator
must reach the scanning area and maneuver in that
region without touching the body of the CT machine.

The novelty of this research is the optimization
of link lengths of 3-DOF, 6-DOF, and 9-DOF robotic
manipulators. 9-DOF robot is a novel manipulator
speci�cally designed to be mounted on the CT bed with
an arc design. Optimization is carried out to determine
a better set of link lengths so that the robots can reach
and maneuver in the desired three-dimensional CT
workspace. Only forward kinematics and error function
are used as �tness functions in GA and GA with hybrid
functions to optimize the DH parameters including link
lengths and joint displacement. Di�erent types of GA
coupled with hybrid functions like PS and fmincon are
compared for all three robotic manipulators. Di�erent
hybrid functions are modi�ed to select the better
optimized set of link lengths and joint displacements
for each robot.

2. Manipulator designs and DH parameters

Standard rotary 3-DOF, rotary 6-DOF, and a novel
9-DOF hybrid robotic manipulators are designed for
this research. The kinematic model of all the robotic
manipulators is designed in MATLAB. DH parameters
of all the robot manipulator are also determined and
mentioned in the respective tables. The red items are
the end e�ector link and the joints including rotary and
prismatic, while the blue items denote the rest of the
links of the robotic manipulators.

Figure 1 shows the kinematic model of a 3-DOF
robot manipulator with rotary joints. The workspace
of this robot is spherical when all the joints have full
360� motion.

DH parameters of the 3-DOF manipulator are
shown in Table 1 where i signi�es the link number. It
is observed that the robot is a standard rotary 3-DOF
manipulator.

Figure 2 shows the kinematic model of a 6-DOF

Table 1. DH parameters of the 3-DOF robot
manipulator.

Joint
number

Link
length

(li)

Joint
displacement

(di)

Link
twist
(�i)

Joint
angle
(�i)

Joint 1 0 d1 �=2 �1

Joint 2 l2 0 0 �2

Joint 3 l3 0 0 �3

Figure 1. Kinematic model of a 3-DOF robotic
manipulator.

Figure 2. Kinematic model of a 6-DOF robotic
manipulator.

robot manipulator with rotary joints. The workspace of
this robot is very versatile as it has freedom of motion
in every direction and orientation.

DH parameters of the 6-DOF manipulator are
shown in Table 2. It is observed that the robot is a
standard rotary 6-DOF manipulator.

Figure 3(a) shows the CAD and kinematic model
of a novel 9-DOF robot manipulator with rotary and
prismatic joints. This robot is designed to be mounted
on the CT bed and maneuver in the scanning area.
Figure 3(a) shows a CAD model of the robotic manip-
ulator mounted on a CT bed and Figure 3(b) shows
the kinematic model of the manipulator. In Figure 3,
all the joints of the robotic manipulator are shown at
0� con�guration.
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Figure 3. (a) CAD of the novel 9-DOF robotic manipulator. (b) Kinematic model of the novel 9-DOF robotic
manipulator.

Table 2. DH parameters of the 6-DOF robot
manipulator.

Joint
number

Link
length

(li)

Joint
displacement

(di)

Link
twist
(�i)

Joint
angle
(�i)

Joint 1 0 d1 �=2 �1

Joint 2 l2 0 0 �2

Joint 3 l3 0 ��=2 �3 � �=2
Joint 4 0 d4 �=2 �4

Joint 5 l5 0 �=2 �5 + �=2

Joint 6 l6 0 0 �6

DH parameters of the 9-DOF manipulator are
given in Table 3. It is observed that the robot is a
redundant hybrid 9-DOF manipulator. The arc design
of the manipulator constitutes 1-DOF. Arc design is

developed for the ergonomics of the patient in a CT
machine environment.

3. Mathematical formulation

GA is a heuristic approach to solving an optimization
problem [26]. Here, the error functions are minimized
to derive the optimum set of link lengths. GA needs a
�tness function to optimize these link lengths and for a
robotic manipulator, forward kinematic equations serve
as a good �tness function because forward kinematic
equations relate the DH parameters to the realworld
workspace in X, Y , and Z directions.

The transformation matrix is used to derive the
forward and inverse kinematic equations. Mathemat-
ical equations for link lengths are derived from the
kinematic equations. From these equations, a �tness
function for obtaining the link lengths by training the
GA is derived. In Eq. (1), shown in Box I, the general

Table 3. DH parameters of the 9-DOF robot manipulator.

Joint number
Link length

(li)
Joint displacement

(di)
Link twist

(�i)
Joint angle

(�i)

Joint 1 (vertical) l1 d1 ��=2 0

Joint 1 (horizontal) l2 d2 ��=2 ��=2
Joint 2 0 d3 ��=2 �3 � �=2
Joint 3 l4 0 ��=2 �4 � �=2
Joint 4 l5 0 0 �5

Joint 5 l6 0 ��=2 �6

Joint 6 l7 0 �=2 �7 + �=2

Joint 7 0 d8 0 �8

Joint 8 0 d9 0 0

Joint 9 0 d10 0 0
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Tn(n�1) =

cos(�n) � sin(�n)� cos(�n) sin(�n)� sin(�n) ln � cos(�n)
sin(�n) cos(�n)� cos(�n) � cos(�n)� sin(�n) ln � sin(�n)

0 sin(�n) cos(�n) dn
0 0 0 1

(1)

Box I

form of the transformation matrix used for all three-
robot manipulators [27] is shown. `n' denotes the
number of joints in a robot manipulator. The units
of all the link lengths and joint displacements are in
cm and the link twist and joint angles are in degrees.

For a 3-DOF manipulator, Eq. (2) shows its
transformation matrix formula:

T 3
0 = T 1

0 � T 2
1 � T 3

2 ; (2)

Eqs. (3) to (5) show the forward kinematic equations
of the 3-DOF robot:

X1 = C1
�(l3�C23 + l2�C2); (3)

Y1 = S1
�(l3�C23 + l2�C2); (4)

Z1 = d1 + l3�S23 + l2�S2; (5)

where X1, Y1, and Z1 are the derived coordinates in
the workspace of the 3-DOF robot [28]. Here, Cn and
Sn are cosine and sine of the nth joint, respectively,
where n = 1; 2; � � � ; n. C23 and S23 represent cosine
(�2 + �3) and sine (�2 + �3), respectively.

3.1. Fitness function for 3-DOF robot
3.1.1. Constraints
In Eqs. (3) to (5) the link length equations of the 3-
DOF mahipulator are shown. It is observed that all the
equations are interdependent, and it is not easy to come
to a de�nitive solution to a range of target coordinate
values. Hence, to �nd an optimum solution, GA is
used. Error1 shows the equation for error between all
the jth desired coordinates (X, Y , and Z) and derived
coordinates:

Error1 =
q

(Xj�X1)2 + (Yj�Y1)2 + (Zj�Z1)2: (6)

Eq. (7) shows the constraints for the 3-DOF robot.

l2 > d1 � l3: (7)

The desired workspace for the 3-DOF robot ranges
from +20 cm to �20 cm in each of X, Y , and Z
directions. For a 6-DOF manipulator, Eq. (8) shows
its transformation matrix formula:

T 6
0 = T 1

0 � T 2
1 � T 3

2 � T 4
3 � T 5

4 � T 6
5 : (8)

Eqs. (9) to (12) present the forward kinematic equa-
tions of the 6-DOF robot and the �tness function:

X2 =l2�C1
�C2 � d4

�(C1
�S2
�S3 � C1

�C2
�C3)

+ l5�S5
�(S1

�S4 � C4
�(C1

�C2
�S3 + C1

�C3
�S2))

+ l6�S6
�(C4

�S1 + S4
�(C1

�C2
�S3 + C1

�C3
�S2))

+ l6�C6
�(S5

�(S1
�S4 � C4

�(C1
�C2

�S3

+ C1
�C3

�S2))� C5
�(C1

�S2
�S3 � C1

�C2
�C3))

� l5�C5
�(C1

�S2
�S3 � C1

�C2
�C3); (9)

Y2 =l2�C2
�S1 � l5�C5

�(S1
�S2
�S3 � C2

�C3
�S1)

� l6�C6
�(S5

�(C1
�S4 + C4

�(C2
�S1
�S3

+ C3
�S1
�S2)) + C5

�(S1
�S2
�S3 � C2

�C3
�S1))

� d4
�(S1

�S2
�S3 � C2

�C3
�S1)� l5�S5

�(C1
�S4

+ C4
�(C2

�S1
�S3 + C3

�S1
�S2))� l6�S6

�(C1
�C4

� S4
�(C2

�S1
�S3 + C3

�S1
�S2)); (10)

Z2 =d1 + d4
�S23 + l2�S2 + l5�S�23C5

+ l6�C6
�(S�23C5 + C23�C4

�S5) + l5�C�23C4
�S5

� l6�C�23S4
�S6; (11)

Eq. (12) is shown in Box II. X2, Y2, and Z2 are
the derived coordinates. �2, 2, and �2 (Eqs. (13)

Error2 =
q

(Xj �X2)2 + (Yj � Y2)2 + (Zj � Z2)2 + (�j � �2)2 + (�j � �2)2 + (j � 2)2: (12)

Box II
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2 = tan(�1)

0BBBBBB@
(C6
�(C4

�S1+S4
�(C1

�C2
�S3+C1

�C3
�S2))�S6

�(S5
�(S1

�S4�C4
�(C1

�C2
�S3+C1

�C3
�S2))

�C5C5
�(C1

�S2
�S3�C1

�C2
�C3)))

(S6
�(C4

�S1+S4
�(C1

�C2
�S3+C1

�C3
�S2))+C6

�(S5
�(S1

�S4�C4
�(C1

�C2
�S3+C1

�C3
�S2))

�C5
�(C1

�S2
�S3�C1

�C2
�C3)))

1CCCCCCA :
(14)

Box III

to (15)) are the desired orientation of the approach in
the workspace of the 6-DOF robot and constraints:

�2 = tan(�1)��(S6
�S�23C5 + C23�C4

�S5) + C�23C6
�S4)

(S�23S5 � C�23C4�C5)

�
;

(13)

Eq. (14) is shown in Box III.

�2 = � sin(�1)(C6
�(S�23C5+C�23C4

�S5)�C�23S4
�S6):

(15)

Here, C23 and S23 represent cosine (�2 + �3) and sine
(�2 + �3), respectively.

3.2. Fitness function for 6-DOF robot
3.2.1. Constraints
Based on Eqs. (9), (11), (13), and (15), forward
kinematics and orientations of 6-DOF are complex
and a straightforward solution for link lengths is quite
di�cult. Hence, GA is used to determine the link
lengths for the 6-DOF manipulator to cover the desired
workspace. Error2 shows the equation for the error
between all the jth desired coordinates (X, Y , and Z)
and orientation of approach (Euler angles �, �, and )
and derived coordinates and orientation of approach.
2 ranges from +60� to �60�. Error2 is minimized
using GA, as shown in Eq. (12). The transformation
equation of the novel 9-DOF manipulator is derived
using Eq. (16) [29]:

T 10
0 =T 1

0 � T 2
1 � T 3

2 � T 4
3 � T 5

4 � T 6
5 � T 7

6

� T 8
7 � T 9

8 � T 10
9 : (16)

Forward kinematic equations and orientation con-
straints of the novel 9-DOF robotic manipulator are
presented by Eqs. (17){(19):

X3 =l1 + d3 + d8 + d9 + l�4C7 + l�6C7 � d�5S7

� d�6S7 + l�5C�6C7; (17)

Y3 =l3 � l7 + d2 � l�8C8 � l�9C8 � l�10C8 + l�4S7

+ l�6S7 + d�5C7 + d�6C7 + d�10S8 + l�5C�6S7; (18)

Z3 =l2 + d1 + d4 � d7 + l�5S6 � l�8S8 � l�9S8

� l�10S8 � d�10C8; (19)

Error3 =
q

(Xj�X3)2+ (Yj�Y3)2+ (Zj�Z3)2: (20)

X3, Y3, and Z3 are the target coordinates in the
workspace of the 9-DOF robot. The desired workspace
for the 6-DOF robot ranges from +20 cm to �20 cm
in each of X, Y , and Z directions. Here, Cn and Sn
are cosine and sine of the nth joint, respectively, where
n = 1; 2; � � � ; n.

3.3. Fitness function for 9-DOF robot
3.3.1. Constraints
Constraints are added in line with Eqs. (21) to (23):

�3 = 0; (21)

�4 = �7; (22)

�5 = ��6: (23)

These constraints provide the desired orientation of the
approach to retrieval of tissue samples while working
on a CT machine. Error3 shows the equation for
error between all the jth desired coordinates (X, Y ,
and Z) and derived coordinates. As the orientation
of the robotic 9-DOF manipulator is prede�ned for
the speci�ed tissue retrieval task, the error function in
Eq. (20) does not include the orientation segment, as
included in Eq. (12) for the 6-DOF manipulator. These
equations are used to iterate the GA to �nd the sets of
link length of 3-DOF, 6-DOF, and novel hybrid 9-DOF
robotic manipulators. The desired workspace for the
9-DOF robot ranges from +20 cm to +40 cm in X,
+20 cm to �20 cm in Y , and Z directions.

3.4. Boundry conditions
In�nite solutions for link lengths and joint displace-
ments are possible for an open chain robotic manipula-
tor system. Hence, boundary conditions need to be set
for optimization. Upper and lower boundaries for each
robotic manipulator design are shown in Table 4. All
dimensions are in centimeter (cm). These boundary
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Table 4. Upper and lower boundaries for 3-DOF, 6-DOF, and 9-DOF robotic manipulators.

Link
parameter

3-DOF robot Link
parameter

6-DOF robot Link
parameter

9-DOF robot
Lower Upper Lower Upper Lower Upper

d1 1 15 d1 1 15 d3 1 5
l2 5 25 l2 5 25 l4 1 15
l3 5 25 l3 0 5 l5 5 25

d4 5 20 l6 1 15
l5 1 15 l7 1 10
l6 1 10 d8 1 5

d9 1 5
d10 1 5

Figure 4. Flowchart representing the process of Genetic
Algorithm (GA).

limits are based on the dimensions of the desired
workspace.

Using Standard Genetic Algorithm (SGA) and
hybrid GA technique, including PS and fmniuc. A
owchart depicting the process of GA is shown in
Figure 4.

This process is iterated until a termination cri-
terion is reached. After completing the iterations for
SGA, PS, and fmincon hybrid GA, optimum sets of link
lengths for all robot manipulators are obtained.

4. Results and discussion

GA is trained to obtain the optimum set of link
lengths for 3-DOF, 6-DOF, and novel 9-DOF robot
manipulators by varying the hybrid functions. Op-
timization of link lengths and joint displacement is
carried out by keeping the rotation angles constant.
Hence, link lengths and joint displacement are the
variables. The hybrid functions used here are PS
and fmincon to minimize the error functions. Firstly,
an SGA architecture is trained, which has no hybrid
function, and the link lengths are found; then, PS
and fmincon are applied. All the other parameters
are kept constant. The initial parameters include the
creation function, initial population size, initial popula-
tion range, �tness scaling, selection function, crossover
fraction, elite count, mutation function, and constraint
algorithm. The termination criteria parameters includ-
ing the number of generations, stall generation, and
function tolerance are also kept constant. The creation
function is a nonlinear feasible function with an initial
population size of 5. The initial population size is kept
at 5 to reduce the computational cost. The initial
population range is kept between�10 and +10. Fitness
scaling is based on the rank system and stochastic
uniform is used as the selection function. The crossover
fraction is kept at 0.8 and the elite count is 2.5.
The mutation function is selected as adaptive feasible
and augmented. The Lagrangian function is taken as
the nonlinear constraint algorithm. The formula for
Lagrange function is shown in Eq. (24):

L = f(x)� �g(x): (24)

The variable f(x) is the �tness function and g(x) the
equality function according to Eqs. (19){(21). The
variable � is the Lagrange multiplier which is adjusted
while training of the GA.

As for the termination condition, the number
of generations is 100, stall generations are 50, and
function tolerance is kept at 10�6. The link lengths
and joint displacements obtained after optimization
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Figure 5. (a) Training graph of Standard Genetic Algorithm (SGA). (b) Training graph of Genetic Algorithm (GA) with
Pattern Search (PS). (c) Training graph of Genetic Algorithm (GA) with fmincon.

Table 5. Link lengths obtained after optimizing the error
function using Standard Genetic Algorithm (SGA),
Pattern Search (PS), and fmincon for a 3-DOF robot.

Link
parameter

SGA
(cm)

PS
(cm)

Fmincon
(cm)

d1 1.00 1.00 1.00

l2 20.00 20.00 14.05

l3 1.00 8.48 2.54

will have a su�cient level of accuracy with a tolerance
like 10�6. Even if one decides to manufacture the links
of the robotic manipulator, 10�6 cm tolerance provides
a su�cient amount of accuracy. These parameters are
kept constant throughout the study.

Using the parameters mentioned and training
with SGA, PS, and fmincon, the overall �tness value
and �tness of each individual in the population of a
3-DOF robotic manipulator are plotted in Figure 5.
Table 5 shows the optimum link lengths of a 3-DOF
manipulator, obtained after iteration using all the

three functions. According to the graphs, the training
reached global minima.

It is observed in Figure 5 that the best overall
�tness value for a 3-DOF robot is obtained using PS
while the overall �tness values for SGA and fmincon
are 1.16 and 1.38, respectively. Hence, the link lengths
determined using PS are optimized better for a 3-DOF
robot to reach the desired workspace. The workspaces
of this robot are plotted and shown in Figure 6. These
workspaces represent the volume covered by the 3-DOF
robot with the optimized sets of link length obtained
after training the SGA, PS, and fmincon.

Figure 6 shows the desired workspace volume
(black) versus the workspace plotted after obtaining
the link lengths using SGA (blue), PS (green), and
fmincon (red) in two (Figure 6(a)) and three dimen-
sions (Figure 6(b)). It is observed that the SGA
produces the workspace closest to the desired one, but
the dead zone is very large and, thus, the robot with
those link lengths becomes impractical. Dead zones
are the regions within the workspace where the end
e�ector of the robotic manipulator cannot be reached.
These dead zones result from physical constraints such

Figure 6. (a) 2D workspace analysis of 3-DOF robot after using Standard Genetic Algorithm (SGA), Pattern Search (PS)
and fmincon. (b) 3D workspace analysis of 3-DOF robot after using Standard Genetic Algorithm (SGA), Pattern Search
(PS) and fmincon.
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Figure 7. (a) Training graph of Standard Genetic Algorithm (SGA). (b) Training graph of Genetic Algorithm (GA) with
Pattern Search (PS). (c) Training graph of Genetic Algorithm (GA) with fmincon.

as link lengths and joint displacements. On the other
hand, the workspace generated by fmincon does not
cover the necessary desired volume, while PS provides
better results. The entirety of the workspace is covered
with the link lengths obtained by PS. Moreover, the
dead zone is relatively small. Hence, PS becomes a
better choice to obtain optimized link lengths for the
3-DOF robot.

Now, a 6-DOF manipulator is trained using the
same parameters and hybrid functions. The overall
�tness value and �tness of each individual in the
population of a 6-DOF robotic manipulator are plotted
in Figure 7. Table 6 shows the optimum lin lengths
of a 6-DOF manipulator obtained after iteration using
all the three functions. According to the graphs, the
training reached global minima.

According to the graphs in Figure 7, the best
overall �tness value for a 6-DOF robot is obtained
with PS 0.34, while the overall �tness values for SGA
and fmincon are 1.94 and 1.54, respectively. Hence,
it is observed that the link lengths found using PS
are theoretically more optimized to reach the desired
workspace. After training all three GAs, the set of link
lengths is obtained and the workspace of the 6-DOF
robot using this link lengths is plotted in Figure 8.

Table 6. Link lengths obtained after optimizing the error
function using Standard Genetic Algorithm (SGA),
Pattern Search (PS), and fmincon for a 6-DOF robot.

Link
parameter

SGA
(cm)

PS
(cm)

Fmincon
(cm)

d1 3.058 3.004 3.00

l2 20.00 19.997 19.032

l3 0.412 0.101 0.610

d4 13.808 13.527 12.845

l5 6.696 6.791 6.951

l6 0.166 0.117 1.289

The constraints and error function ensure that the
robotic manipulator reaches the desired position in the
workspace at the desired orientation.

Figure 8 shows the workspace analysis of the 6-
DOF robot with link lengths obtained after optimiza-
tion using SGA (blue), PS (green), fmincon (red),
and desired workspace (black) in two (Figure 8(a))
and three dimensions (Figure 8(b)). It is observed
that the volumes covered using SGA and PS are
very similar, while the workspace volume obtained by
fmincon is slightly smaller with a smaller dead zone.

Figure 8. (a) 2D workspace analysis of 6-DOF robot after using Standard Genetic Algorithm (SGA), Pattern Search (PS)
and fmincon. (b) 3D workspace analysis of 6-DOF robot after using Standard Genetic Algorithm (SGA), Pattern Search
(PS) and fmincon.
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All the methods cover the desired workspace volume
and hence, any function can be applied, but fmicon is
more acceptable.

Link lengths for the novel 9-DOF robotic manip-
ulator are optimized using the same parameters and
hybrid functions. Here, the desired orientation is �xed
as the orientation of approach near the CT machine
is limited so as to avoid a collision. The overall �tness
value and �tness of each individual in the population of
a 9-DOF robotic manipulator are plotted in Figure 9.
Table 7 shows the optimum lin lengths of a 9-DOF
manipulator, obtained after iteration using all the three
functions. It is observed in the graphs that the training
reached global minima.

Figure 9 shows that the best �tness value for
the novel 9-DOF robot designed for tissue retrieval
in a CT environment is found as 0.121 using SGA
method. Fitness values for PS and fmincon are 0.124
and 1.36, which are more than those obtained by
the SGA method. The set of link lengths obtained
from the SGA method should ensure that the robotic
manipulator will reach the entire desired target in the
desired orientation safely. Lengths of Links 1 and 2 are
constant due to CT bed constraints and arc structure
design. The workspace of each set of link lengths

Table 7. Link lengths obtained after optimization using
Standard Genetic Algorithm (SGA), Pattern Search (PS),
and fmincon for a novel 9-DOF robot.

Link
parameter

SGA
(cm)

PS
(cm)

Fmincon
(cm)

d1 40.00 40.00 40.00
d2 20.00 20.00 20.00
d3 1.00 1.002 1.00
l4 9.997 9.990 6.459
l5 19.988 19.981 17.509
l6 2.012 10.693 6.317
l7 5.912 5.987 4.771
d8 2.00 2.983 3.177
d9 4.970 4.993 3.867
d10 4.957 2.396 2.062

obtained after training all three GA methods is plotted
in Figure 10.

Figure 10 depicts the comparison of workspaces
plotted after obtaining link lengths using SGA (blue),
PS (green), fmincon (red), and the desired target
workspace (black) in two (Figure 10(a)) and three
dimensions (Figure 10(b)). It is observed that the

Figure 9. (a) Training graph of Standard Genetic Algorithm (SGA). (b) Training graph of Genetic Algorithm (GA) with
Pattern Search (PS). (c) Training graph of Genetic Algorithm (GA) with fmincon.

Figure 10. (a) 2D Workspace analysis of the novel 9-DOF robot manipulator. (b) 3D Workspace analysis of the novel
9-DOF robot manipulator.
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desired workspace is cylindrical in shape as the in-
terior scanning area of a CT machine is cylindrical.
The cylindrical workspace is solely targeted on the
CT bed and scanning area. The advantage of a
cylindrical workspace over a spherical one is that the
optimization is focused on the desired CT bed and
scanning area. Deadzone is not present within the CT
scanning workspace because the optimization is carried
out only for the cylindrical workspace. Workspace
obtained using PS shows better optimization as all
the coordinates of the target workspace are covered.
A negligible dead zone is observed in the workspace
of the novel 9-DOF robot manipulator. SGA and
fmincon cover most of the target workspace, but do not
cover some coordinates. Hence, it is observed that the
PS hybrid optimization function is useful for �nding
the link lengths of a robotic manipulator designed for
speci�ed tasks under CT machine with only forward
kinematic equations and primary constraints.

5. Conclusion

In this research, a novel method was proposed to
calculate and optimize the DH parameters including
link length and joint displacement of a robotic manip-
ulator with 3-DOF, 6-DOF, and 9-DOF using Standard
Genetic Algorithm (SGA), Genetic Algorithm (GA)
with Pattern Search (PS), and GA with fmincon hybrid
functions. Forward kinematics and error function were
used as the �tness function for training the GA and GA
with hybrid functions. DH parameters obtained after
optimization based on the required workspace were
then used for simulating the workspace of the robotic
manipulator in MATLAB to observe the workspace
and dead-zone coverage. Results demonstrated that
in the case of a 3-DOF robot, the GA with PS
hybrid function provided better-optimized results as
it covered the target workspace with minimal dead
zones. For a 6-DOF robotic manipulator, GA with
fmincon achieved better results covering the desired
workspace in the desired orientation as well. The dead
zone for the 6-DOF robotic manipulator after using
fmincon was smaller than the other two GA functions.
As for the novel 9-DOF robot designed to manipulate
a needle in the Computed Tomography (CT) machine
environment, GA with PS produced better results. The
cylindrical workspace required for this task was covered
fully by using the PS hybrid function. With a clear lack
of signi�cant research on optimization of DH parame-
ters for a medical robotic manipulator, the proposed
method shows promising results with di�erent Degree
Of Freedom (DOF) robot manipulators by minimizing
the error function using forward kinematic equations.
The only assumptions this method requires are the
constraints for the link lengths. Hence, this proposed
method can be successfully implemented for �nding the

optimum link lengths of open chain robotic systems
designed to function in the desired workspace.

Nomenclature

l Link length
d Joint displacement
� Link twist
� Joint angle
Cn Cosine of nth joint
C23 Cosine (�2 + �3)
Sn Sine of nth joint
S23 Sine (�2 + �3)
� Euler angle about X axis
� Euler angle about Y axis
 Euler angle about Z axis
n Joint number of the robotic

manipulator
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