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Abstract. In this study, we investigated a non-Newtonian uid stagnation point on
a stretching surface with slip conditions using a phase ow model. Cu and Al2O3

nanoparticles were utilized, together with the base uid H2O. The mathematical model
has been built using ow assumptions and is theoretically acceptable. The momentum and
energy equations are approximated using boundary layer approximations to create partial
di�erential equations. The partial equations that are turned into ordinary di�erential
equations are subjected to the appropriate similarity transformations. The bvp4c method
is used to solve these equations numerically. Graphs and tables depict the e�ect of the
physical parameters involved. Our �ndings are in good agreement with previous literature.
Hybrid nanouid achieves smaller values than nanouid for the parameters F 00(0) and
��0(0). Furthermore, for large values of the dimensionless parameter (N), F 00(0) and �0(0)
grow, where as F 0(�) and (�(�)) increase for large values of �2.

© 2021 Sharif University of Technology. All rights reserved.

1. Introduction

Theoretical studies of non-Newtonian uids have grown
in relevance as a result of their numerous applications
in science and technology. Because of the complexity
of non-Newtonian uids, no single uid model has been
suggested or explored in the literature that covers all
characteristics of non-Newtonian uid models. Due
to the complexity of these models, exact solutions
are nearly impossible in general. As a result, the
researchers have developed their unique exact or an-
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alytical solutions as well as numerical solutions. Early
on, Rivlin and Eriksen [1] presented a second-grade
uid model. The simplest non-Newtonian uid model
exhibits many properties of the di�erential type uids.
Labropulu [2] studied exact solutions of the second-
grade uid using the inverse approach. Y�ur�usoy et
al. [3] examined the creeping ow of the second-grade
uid using the Lie group analysis. Shkoller [4] studied
Euler's two-dimensional Lagrangian ow and second-
grade uid ow. He investigated a simple proof of
global existence. The second-grade uid ow in the
absence of body forces and thermal transfer was studied
by Labropulu [5]. Nadeem et al. [6] investigated the
series solution of the second-grade uid ow over a
shrinking sheet in the stagnation area. Mehmood et
al. [7] investigated the ow of second-grade micropolar
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uids over a stretching surface with a heat transfer.
They also investigated the e�ects of non-orthogonal
stagnation point ow. The combined e�ects of thermal
conductivity and variable viscosity of second-grade
uids on stretching the surface were investigated by
Akinbobola and Okoya [8]. The linear temperature
function is inversely proportional to viscosity and
directly proportional to thermal conductivity in their
research. Majeed et al. [9] studied the e�ects of second-
grade uid ow on the stretched cylinder with Dufour
and Soret numerical impacts. They also examined the
impact of thermal radiation from various angles. The
e�ects of Dufour and Soret on temperature are ob-
served to be directly rising. Heat transfer and second-
grade uid of axisymmetric stretching sheets have been
studied by Khan et al. [10]. Many researchers have
investigated the second-grade uid ow from various
physical perspectives (see [11{18]).

The researchers were drawn to stretching analysis
because of its numerous applications in engineering
domains such as cooling of microelectronics, wire
drawing, fast spray, polymer extrusion, glass blowing,
and quenching in metal foundries. Crane [19] stud-
ied the boundary layer ow on a stretching surface
theoretically earlier in the day. The ow behavior of
peristaltic on stretching the surface was investigated
by Mekheimer et al. [20{21]. Malvandi et al. [22]
studied the e�ect of nanouid on a shrinking/stretching
surface near the stagnation point. Many researchers
have studied stretching surfaces using a variety of
assumptions [23{28].

Nanouid is a uid that contains nanoparticles
as well as a base uid. Choi [29] coined the term
\nanouid." He introduced the nanouid model, claim-
ing that nanouids could transmit heat better than
basic uids. The numerical and theoretical analyses
are satis�ed by this model. Following this, several
researchers worked on heat transfer enhancement due
to numerous applications in engineering, industrial,
and other domains. Mahian et al. [30] have studied
the use of nanouids to capture solar energy. Turky-
ilmazoglu [31] studied heat transfer of nanouid on
revolving disk. To investigate the ow of nanouid,
he used the SCCCM on the boundary layer ow. Abba
et al. [32] studied the ow of a micropolar nanouid
in a circular cylinder. Khan et al. [33] examined the
Maxwell nanouid stagnation point ow. A number of
researchers have investigated the nanouid model using
various assumptions, as shown in [33{40].

In the face of an energy shortage, researchers
have focused their e�orts statistically, analytically, and
experimentally to attain higher heat transfer rates than
decay methods. The heat transfer and coolant are the
most frequently used in real life. The term \hybrid
nanouid" was used to describe a form of uid that con-
tains two di�erent nanoparticles with a base uid. This

is a more comprehensive version of nanouid. These
uids are bene�cial in the �elds of industry, science,
and engineering. When two nanosized particles are
mixed with a base uid, the uid thermal conductivity
is increased above that of nanouid and simple uid.
For the �rst time, Momin [41] acquired his conclusions
through an experimental study of a hybrid nanouid
with mixed convection. Suresh et al. [42] studied a
hybrid nanouid and provided analytical results. The
work of Suresh et al. [42] has been extended by a
number of researchers to estimate heat transfer rates
under various assumptions. Nadeem and Abbas [43]
have studied the stagnation ows of hybrid nanouid
in a circular cylinder. Taking into account a number of
important physical properties as observed in [44-50], a
number of researchers have recently studied the hybrid
nanouid.

The purpose of this study is to investigate the
e�ects of using a phase ow model with a second-
grade uid ow over a stretching surface. In this
study, slip e�ects and hybrid nanouids are taken into
account. This system has been transformed into an
ordinary di�erential equations system. The altered
system is solved using the bvp4c Method, which is a
numerical scheme. Figures and tables illustrate the
e�ects of involving governing parameters. No one had
ever investigated hybrid nanouid with second-grade
before.

2. Mathematical formulations

We investigated second-grade hybrid nanouid stagna-
tion point ow with slip conditions across a stretching
surface. The velocity components in the X- and Y -
axes, respectively, are V and W . Stagnation point ow
is de�ned as V = aX and W = aY , with a serving as
a stretching parameter (see [48,51{55]).
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The continuity, momentum, and energy equations for
the hybrid nanouid are shown in Eqs. (1){(3). It is
worth noting that for phase ow models, experimental
data for both nanouid and hybrid nanouid are often
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Table 1. Physical properties nanouid and hybrid nanouid of thermodynamics.

Properties Nanouid Hybrid nanouid

Density �nf = ��s + (1� �) �f , �nf = �2�s2 + f[�1�s1 + �f (1� �2) (1� �1) g],

Viscosity �nf = �f
(1��)2:5 , �hnf = �f

(1��1)2:5(1��2)2:5 ,

Heat
capacity

(�Cp)nf = �(�Cp)s + (1� �) (�Cp)f ,
(�Cp)hnf = �2�(�Cp)s2

+
hn

(�Cp)f (1� �2) (1� �1)
o

+ �1(�Cp)s1
i,

Thermal
conductivity

�nf
�f

= �s�(n�1)�(�f��s)+(n�1)�f
�s+�(�f��s)+(n�1)�f

�hnf
�bf

= �s2+(n�1)�bf�(n�1)�2(�bf��s2)
�s2+(n�1)�bf+�2(�bf��s2) , where

�bf
�f

= �s1+(n�1)�f�(n�1)�1(�f��s1 )
�s1+(n�1)�f+�1(�f��s1 )

provided only for a Newtonian uid. We make a tiny
change, in this case, replacing �

�hnf
with

��hnf
�hnf

� �N�1
N

�
in which N 6= 0. The viscoelastic uid model was
produced for N values ranging from 0 to 1. For N > 1,
the results of a second-grade uid model were obtained.
We can get a viscous uid model if N = 1 (Newtonian
uid model). The order of the entire term is assumed
to be o(�2). Now, we assume from a mathematical
standpoint that:

(
�hnf
�hnf

)(
N � 1
N

) =
�

�hnf
:

The order of approximation such as o(V ) = o(1) =
o(X) and o(Y ) = o(�) = o(W ) is evident.
From a mathematical standpoint, we now incorporate
(
�hnf
�hnf

)(N�1
N ) = �

�hnf
= o(�2) in our assumptions. This

phenomenon could exist in the form of:
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) =
�
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= o(�2):

The physical properties are de�ned in Tables 1 and
2. �hnf , N , �hnf , �hnf , and P are the thermal
di�usivity hybrid nanouid, dimensionless parameter,
viscosity hybrid nanouid, density of hybrid nanouid
and pressure, respectively. The boundary conditions
can be expressed as follows:
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;

�khnf @T@Y = hw(Tw � T ) as :

Y !0; T =T1; V =aX; W =0; Y !1; (4)

Table 2. Thermo-physical properties.

Thermo-physical
properties

Base uid
(H2O)

Al2O3 Cu

� (kg/m3) 997.1 3970 8933
k (W/mK) 0.613 40 400
Cp (j/kg) K 4179 765 385

where !1, hw, Tw, and T1 are velocity slip parameter,
temperature slip parameter, wall temperature, dimen-
sionless and the ambient temperature, respectively.
The following is the non-dimensional form of the
appropriate similarity transformation:

� = (a=�f )1=2Y; V = aXF 0(�);

T =(T0�Tw)�(�)+T1; W =�(a�f )1=2F (�): (5)

When the preceding equations are applied, Eq. (1) is
satis�ed in the same way, and Eqs. (2) and (3) are
reduced to the following form:

(
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+ F 0(�)F 00(�)� F 0(�)F 0(�) = 0; (6)

�hnf �
00(�) + F (�)�0(�) = 0: (7)

Using Eqs. (4) and (5), the dimensionless version of the
boundary conditions is shown below:
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Thermal slip, velocity slip, and non-dimensional pa-
rameters , � and � are examples of non-dimensional
parameters. NuX is de�ned as:

NuX = �
�
khnf
kf

�
(X=(Tw � T1))

�
@T
@Y

�
Y=0

; (9)

and the skin friction coe�cient can be obtained as
follows:
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�
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��
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: (10)

ReX = (aX2)=vf is the local Reynolds number.

3. Solution procedure

We used a second-grade hybrid nanouid over a
stretched surface in the stagnation point region for
this study. Flow assumptions were used to build
the mathematical model. The boundary layer ap-
proximations on the Navier Stokes equations are used
to create partial di�erential equations. The partial
equations that are turned into ordinary di�erential
equations are subjected to the appropriate similarity
transformations. The numerical scheme used to solve
these equations is the bvp4c method. We must �gure
out how to solve the above-mentioned system. We start
with three assumptions such as:

� If K = �hnf
�hnf (N�1

N ) and �1 = 0 = �2 while N =2
[0; 1] then this system becomes a second-grade uid
model;

� If K = �hnf
�hnf (N�1

N ) and �1 = 0 = �2 while N 2 [0; 1]
then this system becomes a viscoelastic uid model.

For large values of the velocity slip parameter,
the velocity pro�le gains boundary layer thickness, as
shown in Figure 1. When thermal slip rises, the tem-
perature pro�le curve declines, as shown in Figure 1.
Table 3 shows how our �ndings could be compared to
those of Ariel [51]. As can be seen, our �ndings are in
good agreement with Ariel [51]. This model becomes
a Newtonian uids model if N = 1 and the rest of
the physical parameters are �xed. The present results
are compared to the previous literature. Table 4 shows
the comparison between our results corresponding to
F 00(0) for di�erent values of � with those provided by
Bachok et al. [53] and Wang [52]. When �1 = �2 = 0,
it is shown to be in good agreement with Bachok et
al. [53] and Wang [52]. Table 5 shows the e�ect of
velocity slip � and nanoparticle concentration �2 on
the NuXp

ReX
and Cfp

ReX
. Table 5 shows that our �ndings

Figure 1. Inuence of Cu-Al2O3/H2O and Cu/H2O on
�(�) and F 0(�).

Table 3. Numerical results of [48] compared with the
present results.

(N�1)
N

Present
solution

Approximate
solution [48]

Exact
solution [48]

{ F 00(0) F 00(0) F 00(0)

0.0 1.232479 1.232588 1.224745
0.05 1.169785 1.179830 1.185498
0.1 1.121512 1.134114 1.149241
0.2 1.078543 1.058131 1.084652
0.3 1.019854 0.996844 1.028992
0.4 0.965843 0.945869 0.980581
0.5 0.923564 0.902500 0.938083
1.0 0.778532 0.752766 0.784465
2 0.609856 0.596769 0.618347
3 0.517703 0.510703 0.526235
4 0.460396 0.453968 0.465812
5 0.413285 0.412885 0.422308
6 0.379865 0.381336 0.389071
7 0.353241 0.356110 0.362613
8 0.340521 0.335335 0.340905
10 0.306571 0.302828 0.307093
20 0.221324 0.218554 0.220316
50 0.141241 0.140077 0.140579
100 0.099854 0.099515 0.099701

are in good accord with those of Yacob et al. [55] and
Bachok et al. [53]. Table 6 shows the e�ects of � on
the F 00 (0). It is observed that there is good agreement
between our �ndings and those of Bachok et al. [53] and
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Table 4. Numerical results of [52] and [53] compared with
the present results with �1 = �2 = 0.

� Present
results

Bachok
et al. [53]

Wang
[52]

{ F 00(0) F 00(0) F 00(0)

0 1.225684 1.232588 1.232588
0.5 0.712358 0.713295 0.71330
1.0 0 0 0
2.0 1.225684 {1.887307 {1.88731

Malvandi et al. [54]. Let us analyze phase ow with a
second-grade uid under the mathematical assumption
of O

�
�2� =

�
�hnf
�hnf

� �N�1
N

�
=
�

�
�hnf

�
. Our hypothesis

is determined to be in good accord with the existing
literature, and the order of approximation is also met.

4. Results and discussions

The purpose of this analysis is to demonstrate the
impact of physical parameters on the temperature
and velocity pro�les. Nanoparticle concentration of
aluminium oxide (�1), nanoparticle concentration of
copper (�2), velocity slip parameter (�), dimensionless
parameter (N) and thermal slip parameter () are the
physical parameters involved. In the whole investiga-
tion, the nanoparticle concentration of aluminum oxide
(�1 = 0:1) is assumed to be constant. The range of
the physical parameters is considered as 0:005 � �2 �
0:09, and 0:0 �  � 0:5, and 0:0 � � � 0:5, and
the dimensionless parameter is considered to be N =2
[0; 1]. The e�ects of physical parameters are shown
through �gures and tables. The comparative analysis
of Cu-Al2O3/H2O and Cu/H2O on F 0(�) and �(�) are
shown in Figures 2 and 3. It should be noted that
F 0(�) improves with rising in the �2. Cu-Al2O3/H2O
achieves a larger moment boundary layer thickness
than Cu/H2O. Figure 3 shows the impacts of �2 on
�(�). It is worth noting that as the value of �2 rises,
so does the size of �(�). Cu-Al2O3/H2O has a greater
thermal boundary layer thickness gain than Cu/H2O.
Figures 4 and 5 show the e�ects of �2 on �(�) and
F 0(�). It is shown that �(�) and F 0(�) increase as �2
increases, indicating a high resistance to uid velocity.

Table 6. Comparative results of [53] and [54] with the
present results with �2 = 0:1 and �1 = 0.

� Bachok
et al. [53]

Malvandi
et al. [54]

Present
results

{ F 00(0) F 00(0) F 00(0)

0.0 1.447977 1.447977471 1.3578
0.5 0.83794 0.837940401 0.8238
1.0 0.0 0.0 0.0
1.5 { {1.026658507 {1.0252
2.0 -2.217106 {2.217105947 {2.1987

Figure 2. E�ects of Cu/H2O and Cu-Al2O3/H2O on �(�).

Figure (6) shows the impact of thermal slip on �(�) and
velocity slip on the velocity pro�le. It is observed that
F 0(�) increases as the velocity slip parameter increases
but �(�) exhibits a drop in the curve as the thermal
slip parameter increases. Figure (6) shows the e�ects
of dimensionless parameter on �(�) and F 0(�). It is seen
that F 0(�) increases as the dimensionless parameter
(N) increase, and �(�) decreases as the dimensionless
parameter (N) increases, as shown in Figure 7. For
large values of the dimensionless parameter, the thick-
ness of the momentum boundary layer increases while

Table 5. Numerical results of [52] and [54] compared with the present results with �1 = 0.

Cu/H2O Present results Bachok et al. [53] Yacob et al. [55]
�2 � Cfp

(ReX)
Nuxp
(ReX)

Cfp
(ReX)

Nuxp
(ReX)

Cfp
(ReX)

Nuxp
(ReX)

0.1 0.0 1.7968 1.4043 1.8843 1.4043 1.8843 1.4043
0.2 0.5 2.4589 1.6421 2.6226 1.6692 2.6226 1.6692
0.1 0.0 1.0795 1.7895 1.0904 1.8724 { {
0.2 0.5 1.5004 2.0987 1.5177 2.1577 { {
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Figure 3. E�ects of Cu/H2O and Cu-Al2O3/H2O on �(�).

Figure 4. E�ects of �2 on F 0(�).

the thickness of the thermal boundary layer decreases.
Table 7 shows the impacts of physical parameters �2, ,
�, andN on �0(0) and F 00(0). We also conducted a com-
parative investigation, which included a comparison
of Cu-Al2O3/H2O and Cu/H2O. We observed that as
F 00(0) increases �2 increases. The values of F 00(0) are
lower in Cu-Al2O3/H2O, than in Cu/H2O. For larger
values of �0(0) �2, the �0(0) decreases, whereas Cu-
Al2O3/H2O gains smaller values of �0(0) than Cu/H2O.
The e�ects of thermal slip on �0(0) are shown in Table
7. It can be seen that as the value of �0(0) is decreased,
thermal sip increases. Cu-Al2O3/H2O gains smaller

Figure 5. E�ects of �2 on �(�).

Figure 6. E�ects of N ,  and � on F 0(�).

values of �0(0) than Cu/H2O. Table 7 shows the e�ects
of velocity slip on the F 00(0) and �0(0). With a rise in
�0(0) and a decrease in F 00(0) the velocity slip increases.
It is observed that Cu-Al2O3/H2O gains smaller values
than Cu/(H2O) which is surprising. With increases in
�0(0) and F 00(0) the dimensionless parameter increases.
It is also observed that Cu-Al2O3/H2O gains smaller
values than Cu/H2O.

5. Final remarks

We have studied a second-grade hybrid nanouid
stagnation point ow over a stretching surface with
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Table 7. Skin frictions and Nusselt numbers of Cu-Al2O3/H2O and Cu/H2O.

Cu-Al2O3/H2O Cu/H2O

�2  � N F 00(0) ��0(0) F 00(0) ��0(0)

0.005 0.3 0.03 2.0 0.787087 0.925585 0.854221 1.0598

0.02 { { { 0.809948 0.903288 0.885582 1.03756

0.04 { { { 0.838365 0.87378 0.923625 1.00711

0.06 { { { 0.86466 0.844716 0.957992 0.976308

0.08 { { { 0.888998 0.816229 0.989151 0.945545

0.04 0.1 { { 0.838365 1.03848 0.923625 1.16947

{ 0.2 { { 0.838365 0.949037 0.923625 1.08223

{ 0.3 { { 0.838365 0.87378 0.923625 1.00711

{ 0.4 { { 0.838365 0.809582 0.923625 0.941738

{ 0.3 0.1 { 1.0672 0.802870 1.13178 0.925748

{ { 0.2 { 0.937379 0.842992 1.01565 0.970982

{ { 0.3 { 0.838365 0.87378 0.923625 1.00711

{ { 0.4 { 0.759557 0.898241 0.848211 1.03673

{ { 0.3 0.0 0.322344 0.648421 0.348645 0.734637

{ { { 2.0 0.838365 0.87378 0.923625 1.00711

Figure 7. E�ects of N ,  and � on �(�).

slip conditions. Tables and �gures are used to show
physical parameters that are involved. Surprisingly,
we found some important results, as below:

� Cu-Al2O3/H2O obtains lower values than Cu/H2O
for F 00(0) and ��0(0);

� For large values of the dimensionless parameter (N),
F 00(0) and ��0(0) increase in both cases;

� F 0 (�) and � (�) increase for large values of �2;

� Our �ndings are in good agreement with the previ-
ous literature.
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