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Abstract. This study constructs a new 5D nonlinear hyper-chaotic system with attractive
and complex behaviors. The standard behaviors of the chaotic system will also be
analyzed including: Equilibrium Point (EP), Bifurcation Diagram (BD), Poincare Map
(PM), Lyapunov Exponent (LE), and Kaplan-Yorke dimensional. We prove that the
introduced new 5D hyper-chaotic system has complex and nonlinear behaviors. Next, the
work describes Fast Terminal Sliding Mode Control (FTSMC) scheme for the control and
�nite-time fast synchronization of the novel 5D nonlinear hyper-chaotic system. Proof of
stability for both phases has been done for the new controller with the Lyapunov stability
theory. To ensure synchronization, both master-slave subsystems are perturbed by di�erent
parameter and model uncertainties. Both steps of the Sliding Mode Controller (SMC) have
chaos-based fast convergence properties. Subsequently, it has been shown that the state
paths of both master-slave systems can reach each other in a limited time. One of the
features of the novel controller in this paper is high performance and �nite-time stability
of the terminal sliding surface due to derivative error and other errors. Finally, by using
the MATLAB simulation, the results are con�rmed for the new hyper-chaotic system.

© 2023 Sharif University of Technology. All rights reserved.

1. Introduction

With the advent and development of telecommunica-
tion, especially wireless communications, encryption
and information hiding has become a communication
necessity [1]. With the progress of multimedia and
communication technologies as well as the limitations
of transportation, medical images have played an
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important role in tele-surgery. At the same time,
new communication technologies have enabled medical
image sharing and processing. These technologies have
also increased security issues such as con�dentiality and
integrity [2]. Given these advantages, it is risky to
send electronic patient records and medical con�dential
records to common networks such as the Internet.
Although sending information to these networks is less
expensive, it will have security risks, including the
availability of information to everyone. Therefore, one
of the necessities of information transfer, especially
medical information, is increased security of informa-
tion transfer [3]. In 1998, Friedrich introduced image
encoding using a two-dimensional chaotic function.
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Using the chaotic adaptive conversion method, he
designed a novel idea for chaos-based image encryption
based on random encryption [4].

Chaotic systems have a number of intrinsic prop-
erties, including high oscillations as well as complex
nonlinear dynamical equations [5]. Two important
features of chaotic systems are parametric uncertainty
and sensitivity to change in their initial conditions.
Chaos programs are now highly developed. Due to
the unpredictability of these systems, they can be
used in many applications including nonlinear anti-
synchronization [6], chaos-based control [7], encryp-
tion [8], robotic [9], biological networks [10], secure
communication [11], and neuroscience [12]. Many 3D
nonlinear systems have been designed, among which
the systems developed by Chen and Ueta [13], Lu and
Chen [14], and Qi et al. [15] are generic. These systems,
despite their good features, have one positive Lyapunov
Exponent (LE) and a simple structure. As a result,
these systems have a weak security 
aw that makes
them easy to break. Therefore, Rossler introduced a
hyper-chaotic system with two or more LEs [16]. The
hyper-chaotic systems have more nonlinear behaviors
and higher 
uctuations than the chaotic systems [6,17].
Many high-dimensional hyper-chaotic systems are de-
signed based on the available low-dimensional nonlin-
ear chaotic systems by two methods as follows:

� Feeding back the output of the nonlinear control
into the chaos system equation characterized by low
dimension [18];

� Junctioning two low-dimensional nonlinear chaos
systems together [19].

One way to create a nonlinear hyper-chaotic system
is to add the dimensions of a general chaotic system,
leading to instability. Alternatively, a usual method
is to get a novel nonlinear hyper-chaotic system via
adding one or more other state variables to a regu-
lar nonlinear chaos system [20], e.g., the Chen and
Ueta [13], Lorenz [21], L�u and Chen [14], and Qi
systems [22]. In a chaos-based secure communication,
the master-slave subsystems can be used to transmit
a secure communication. When these two systems are
synchronized, we will have a complete and successful
transfer. The chaos-based synchronization is one of
the main control approaches [23] has been considered
by researchers for many years [24]. For a successful
chaos-based synchronization, a suitable control signal
is used to move the state trajectories of the two chaotic
nonlinear subsystems. In recent years, several linear
and nonlinear controllers including linear and nonlinear
feedback control [25{27], adaptive tracking control
[28,29], backstepping design [30], optimal nonlinear
control [31,32], fuzzy controller [33], Proportional-
Integral-Derivative (PID) control [34], stochastic con-

trol [35,36], active control [37], general Sliding Mode
Controller (SMC) [38], linear feedback method [39],
passive control [40], �nite time stability [41,42], SMC
[43], and Terminal Sliding Mode Control (TSMC) [44]
have been utilized for chaos-based synchronization.
Among these studies done based on control theories
topics, most of them have investigated asymptotic
synchronization.

Of all the stated methods, the SMC is character-
ized by such speci�cations as asymptotic stability, com-
putational simplicity, simple implementation, paramet-
ric robustness, reduced order of the system, suitable
transient response, and less sensitivity to bounded
disturbance [45]. In this method, due to the linear
sliding surface, the convergence time is unbounded and
the system states reach the Equilibrium Point (EP)
asymptotically [46]. Given the importance of time
in the transmission of medical information, conditions
must be provided to transfer the information as quickly
as possible. Compared with the traditional SMC,
the TSMC introduces a non-linear term in the sliding
surface function to improve the convergence properties
of the system to ensure that the system modes converge
to a given trajectory in a limited time span [47].

Much research has been done over the years on
the application and development of SMC design [48,49].
In [50], two Adaptive Sliding Mode Control (ASMC)
approaches to synchronizing the Genesio-Tesi system
with external disturbance and unknown parameters
are proposed. In [51], using a Second-Order Sliding
Mode Control (SOSMC), chaos-based synchronizations
uncertain with di�erent structures were investigated.
With all the advantages and popularity of the SMC,
this method has a major drawback called the chat-
tering phenomenon. This phenomenon is very un-
desirable in practice and will have such e�ects as
controller malfunction, mechanical wear in systems,
and increased energy consumption. Much research
has been done by researchers to solve this problem.
For example, in [52], a new chatter-free SMC strategy
with integral operators being di�erential was designed
for synchronization and chaos control signal to the
nonlinear uncertain chaos systems. In [53], using the
chaotic system proposed in [54], a new controller for
a chaos-based synchronization strategy was dedicated
to fractional-order nonlinear systems characterized by
several dimensions. It is shown that the error goes
to zero in the bounded-time. In [55], a new �xed-
time chattering-free observer-based SMC scheme was
proposed for chaos-based synchronization of two-sided
teleoperations under an unknown time-varying delay.
Using an SMC scheme, this system was evaluated for
unknown disturbances at a �xed time. The observer-
based �xed-time SMC is designed to estimate the
unmeasured speed state, while the position state is
supposed to be available. In this paper, the �xed
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time stability method is used for convergence. A new
SMC scheme is proposed to synchronize drive systems
to response system in the presence of time-delay in
the communication channel, as well as states and esti-
mating disturbances. The authors in [56] investigated
a novel robust prede�ned time chattering-free SMC
strategy for the nonlinear tracking control problem
of a Remotely Operated Vehicle (ROV) with Three-
Degree Of Freedom (3-DOF) with uncertainties. Upon
de�ning a novel sliding surface, a novel SMC scheme
was designed to ease the chatter phenomenon and
tracking precision without damaging the robustness
properties. The results illustrated that the proposed
control scheme could solve the design problem of the
prede�ned time tracking controller and also provide
robustness to various uncertainties. The Lyapunov
stability theory is used at both sliding phase and the
reaching phase. In [57], a novel nine-terms hyper-
chaotic system with line equilibrium was �rst designed.
This system enjoys rich behavior and attractors have
been developed and all of the attractive features of the
system have been analyzed. Finally, synchronization
between two new 9D nonlinear systems using active
control was designed. In [58], an SMC scheme was
presented for nonlinear chaotic systems. The proposed
new controller was built on a new SMC reaching law
and a nonlinear sliding surface in the bounded time.
In [59], a new robust controller was designed. The
new control strategy was proposed for digital secure
information between two nonlinear subsystems with
unknown parameters and uncertainties within a �nite
time by TSMC and combining adaptive backstepping
approaches. The TSMC provides faster convergence
than the general SMC. In [60], two di�erent new
controllers were developed using Non-singular Termi-
nal Sliding Mode Control (NTSMC) and the other
Adaptive Non-singular Terminal Sliding Mode Control
(ANTSMC) methods with unknown parameters and
di�erent uncertainties for synchronization. The con-
cept of TSMC method ensures controller robustness
against various external disturbances and parametric
uncertainties and, also, guarantees system stability in
a bounded time. Based on the above existing results,
the master-master system is synchronized in an in�nite
time. However, some engineering problems created in
di�erent structures are expected to be synchronized in
a bounded time. The chaos-based fast synchronization
has many advantages and features, such as �nite-
time tracking, optimality of the convergence time,
improved robustness, and rejection of uncertainties and
disturbances.

For an unauthorized receiver, chaos-based de-
cryption is di�cult without knowing the dynamics
of the system and the initial conditions. One of
the secure ways is to increase the dynamic of the
nonlinear chaotic system, because it is di�cult to re-

cover messages for unauthorized sources using retrieval
methods. Another way to increase security is the
dynamic complexity of the system, as this will make
decoding di�cult. For example, in [61], general chaos-
based synchronization between two new integer-order
and fractional-order hyper-chaotic nonlinear systems
was studied. The new control signals were constructed
using the technique of stability theory and the tracking
controller of the fractional-order system. In [62], the
chaos-based time-bound synchronization of the four-
dimensional Memristor Chaos Systems (MCS) was
studied. First, an emulator circuit of a memristor was
created to implement the MCS. Then, based on the
presented emulator circuit, the model of the MCS was
provided and its time-bound chaotic synchronization is
achieved under the designed new controller. Finally,
sustainability analysis has been performed. In [63],
chaos-based synchronization of nonlinear Lu systems
with disturbance and uncertainty and minor control
scheme with regard to systems' dimensions by applying
an ASMC was presented. First, an Integral-Type
Sliding Mode Control (I-TSMC) was proposed for
chaos-based synchronization of nonlinear Lu systems
upon specifying positive parameters. Second, a new
control signal was used for synchronization of nonlinear
master-slave Lu systems; in this case, unspeci�ed
positive parameters are estimated using an adaptive
control rule. Finally, stability of the designed control
scheme is proved using the Lyapunov stability method.
In [64], ASMC method was proposed for chaos-based
synchronization of 6D drive-response nonlinear systems
in the presence of unknown parameters and external
disturbance in the response system. First, two 6D
integer-order drive-response systems in the presence of
unknown parameters and external disturbance signal
in the response system were designed. Second, after
identifying chaos in fractional-order dynamic of the
foresaid system, chaos-based synchronization of 6D
nonlinear fractional-derivative drive-response systems
in the presence of uncertainty, disturbance signal,
and unknown parameters in the response system was
studied, in which fractional-order Riemann-Liouville
derivative was used. A novel sliding surface was
de�ned for the new 6D nonlinear system to specify the
proper active control. Finally, controller proofs and
numerical simulations for the e�ciency of the proposed
design were presented in the presence of parametric
uncertainty and disturbance.

Asymptotic stability is a weaker concept than
�nite-time stability. In �nite-time stability, system
state variables converge to their EP more rapidly in a
�nite time. The term \terminal" refers to the meaning
of �nite-time stability. Depending on the structure of
the systems, there are many applications that need
to be stable in a �nite-time. The paper makes the
following main contributions:
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(i) Designing and building a 5-D hyper-chaotic system
as well as analyzing and acquiring intrinsic prop-
erties;

(ii) Designing a novel Fast Terminal Sliding Mode
Control (FTSMC) for the chaos-based synchro-
nization of �ve-dimensional nonlinear master-slave
systems;

(iii) Designing a new sliding surface and proving the
global stability and fast convergence without chat-
tering.

This article is as follows: Section 2 provides the general
dynamical model of the novel 5D nonlinear system and
its bene�ts and features. Then, the chaos-based fast
synchronization problem of hyper-chaotic systems in
a time-bound state is formulated. Section 3 presents
the proof and design of the TSMC signal for chaos-
based synchronization. Section 4 performs numerical
simulations to prove the e�ectiveness of the methods.
Section 5 presents some conclusions.

2. Problem de�nition and description

2.1. Model of the novel 5-D hyper-chaos
system

The dynamics of the novel 5-D hyper-chaoatic system
is described as:

dx1(�)
d�

= a1(x2 � x1)� a2x5;

dx2(�)
d�

= a3x1 � x2 � a4x4 � x1x3;

dx3(�)
d�

= �a5x3 + x1x2 + x2
1;

dx4(�)
d�

= a6x5 + x2;

dx5(�)
d�

= a7x2 + x1; (1)

where ai; (i = 1; :::; 7), xi; (i = 1; :::; 5), and � are the
constant positive parameters, state variables, and time
of the new nonlinear system (1), respectively. The
nonlinear system (1) will have hyper-chaotic behaviors
by de�ning the following parameters:

a1 = 8:83; a2 = 0:75; a3 = 36:36; a4 = 20:779;

a5 = 7:79; a6 = 4:1; a7 = 4:286:

2.2. Dynamical behaviors and basic properties
of the novel 5D nonlinear system

This section presents the general properties of Nonlin-
ear System (1) such as: EP, chaotic attractors, eigen
values, Kaplan-Yorke dimension, LE, Poincare Map

(PM), and Bifurcation Diagram (BD). Upon setting
the di�erential equations in new Nonlinear System (1)
to zero, it is concluded that the 5D nonlinear system
(1) has EP at: Q = (0; 0; 0; 0; 0). The 5D nonlinear
system linearization matrix [65] at the EP Q is given
by:

J=
@Fi
@xj

(x)
����
Q�

=

266664
�a1 a1 0 0 �a2
a3 �1 0 �a4 0
0 0 �a5 0 0
0 1 0 0 a6
1 a7 0 0 0

377775 :(2)

According to Linearization Matrix (2), the system
eigenvalues are found as p(s) = jsId � J j = 0 with Id
as an 5� 5 identity matrix, that is:

(s+ a5)[s4 +A1s3 +A2s2 +A3s+A4];

A1 = (a1 � a1a3 + 1);

A2 = (a1 � a1a3a5 + a4a6a7 + a2a3a7);

A3 = (a1a4a6a7 + a4a5a6a7

+ a2a3a5a7 + a1a4a6 + a2a4);

A4 = (a1a4a5a6a7 + a1a4a5a6 + a2a4a5): (3)

By using parameter values in System (1), the eigenval-
ues are:
s1 = �23:2488; s2 = 8:7260; s3 = 7:3648;

s4 = �7:79; s5 = �2:6719:

Thus, Q is an unstable saddle. The divergence of the
nonlinear system (Eq. (1)) is as follows:

rV =
5X
i=1

@ _xi
@xi

= �a1 � 1� a5 =

� 8:83� 1� 7:79 = �17:62 < 0: (4)

Thus, the convergence speed of System (1) to its
attractors is e�(a1�1�a5)� . The phase portrait dia-
grams of System (1) are depicted in Figures 1 and 2.
The convergence and divergence of the states of the
nonlinear systems are speci�ed by its LE representa-
tion. If LEs are positive, it indicates the chaos and
hyper-chaotic behaviors of the nonlinear system [66,67].
The LEs of the novel 5-D nonlinear system (Eq. (1))
with initial conditions (x1(0) = �1:2), (x2(0) = 3:8),
(x3(0) = 7:7), (x4(0) = 2:7), (x5(0) = 1:4), are
numerically determined as LE1 = 2:512, LE2 = 0:211,
LE3 = �2:155, LE4 = �4:286, LE5 = �13:89, shown
in Figures 3 and 4. According to the numerical values
obtained for LEs, the Kaplan-Yorke dimensional [68,69]
of the 5D nonlinear system (Eq. (1)) is de�ned as:
DKY = 4:7115, which is fractional. The BDs examine
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Figure 1. x� y plane of the �ve-dimensional nonlinear system (Eq. (1)).

Figure 2. x� y � z plane of the �ve-dimensional nonlinear system (Eq. (1)).

Figure 3. Dynamics of Lyapunov Exponent (LE) of the
�ve-dimensional nonlinear system (Eq. (1)).

the dependence of the parameter values of the chaos
nonlinear systems. In Figure 5, BDs of Nonlinear
System (1) are plotted. Nonlinear System (1) enters
into chaotic oscillations with routine period doubling
[70,71]. Another attraction of chaotic nonlinear sys-

Figure 4. Lyapunov Exponent (LE) spectrum of the
nonlinear system (Eq. (1)).

tems is the use of PMs to describe the folding properties
of the system. This method is one of the most famous
topics in the nonlinear dynamical analysis that we
can use to prove the behavior and performance of
continuous dynamic systems similar to the proposed
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Figure 5. Bifurcation Diagram (BD) of the �ve-dimensional nonlinear system (Eq. (1)) in (a) (a2; x1), a2 2 (�3; 2), (b)
(a7; x1), a7 2 (50; 100), (c) (a1; x1), a1 2 (2; 20), and (d) (a3; x1), a3 2 (�20; 150).

Figure 6. Poincare Map (PM) of the �ve-dimensional nonlinear system (Eq. (1)) in (a) x1 � x2 map, (b) x2 � x3 map, (c)
x4 � x3 map, and (d) x2 � x4 map.

5D nonlinear system (1). Figure 6 displays the PMs of
5D Nonlinear System (1). According to Figure 6, the
regular set of points represents the chaotic behavior of
the system.

2.3. Problem formulation
In this section, chaos-based fast synchronization
is presented between two novel 5D nonlinear
master-slave subsystems with homogeneous parametric
uncertainties and unknown disturbances. Next, we
use Nonlinear System (1) with changes in parameters
and initial conditions to build master-slave subsystems

for chaos-based synchronization. Consider the 5D
nonlinear master system as follows:
dxim(�)
d�

=266664
�a1 a1 0 0 �a2m
a3m + x3m �1 0 �a4m 0
x1m + x2m 0 �a5m 0 0
0 1 0 0 a6m
1 a7m 0 0 0

377775xim(5)

where a1m; � � � ; a7m and Xm = x1m; :::; x5m are the
parameters and states of Subsystem (5), respectively.
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Thus, for the 5D nonlinear slave subsystem, we de�ne:

dxis(�)
d�

=

266664
�a1 a1 0 0 �a2s

a3s + x3s �1 0 �a4s 0
x1s + x2s 0 �a5 0 0

0 10 0 a6s
1 a7s 0 0 0

377775
xis + ��(�) + d(�); (6)

where Xs = x1s; :::; x5s are the state variables of
Subsystem (6) and �(�) = �1; :::; �5 are the nonlinear
command signals used for synchronization of master-
slave Subsystems (5) and (6).

Assumption 1: Let the chaos-based synchronization
errors of Subsystems (5) and (6) be as follows: ei =
xis � xim(i = 1; :::; 5).

Assumption 2: Constraints on uncertainties and
disturbances are de�ned as follows:
jf(x(�))j � �1; jd(�)j � �2; (7)

where �1 and �2 denote positive unknown constants.

Assumption 3: Suppose that yi(�) = xi(�) implies
that lim

�!1 ei(�) = 0.

De�nition 1 [72]: The chaos-based synchronization
of Subsystems (5) and (6) is obtained in a time-bound
manner if lim

�!T jje(�)jj = 0 and jje(�)jj = 0 for � � T,

where T = T (e(�0)) > 0, e(�) = [ei]T (i = 1; :::; 5).

De�nition 2 [73]: Hyper-chaotic master-slave Sub-
systems (5) and (6) are fast synchronization, if there
is a control signal �p(�) and a constant T > 0 such
that lim

�!T [z1
p(�) � z2

p(�)] = 0, where z1
p(�) � z2

p(�) for

� > T; z1(�) and z2(�) are the solutions of 5D hyper-
chaotic master-slave Subsystems (5) and (6).

Lemma 1 [11]: If the #(�) is a positive de�nite
performance such that:

_#(�) � ��#�(�); 8� � �0; #(�0) � 0; (8)

where � > 0; 0 < � < 1 are constants and known for
any initial time �0, then, function #(�) satis�es:

#1��(�)�#1��(�0)��(1��)(���0); �0����1; (9)

and:
#(�) � 0; 8� � �1; (10)

with the settling time �1 satisfying:

�1 � �0 +
#1��(�0)
�(1� �) : (11)

Lemma 2: Suppose that the function �(�), which is
continuous and positive de�nite, satis�es the following
equation [74]:

_�(�)����(�)�� ��(�) 8���0; �(�0)�0: (12)

At all times �0, the function �(�) at the �nite time �s
will converge to zero. Thus, we have:

�s = �0 +
1

�(1� �)
ln
��1��(�0) + �

�
: (13)

3. Main results

Consider the dynamical model as:

_x(�) = �x(�) +B�(�) + f(x(�)) + d(�); (14)

where x(�) is state variables, B and � are the constant
matrices, �(�) is the controller, f(x(�)) is the non-
linear functions of the nonlinear �rst-order system
(14) and d(�) sum of the unknown disturbance and
uncertainty of Nonlinear System (14). The sliding
surface for System (14) is de�ned as:

l(�) = Gx(�); (15)

where G is the gain coe�cient (row vector) as G =
[}1; }2; }3; }4; }5].

In order to satisfy the issue that l(�) converges
to origin in the �nite time, the following fast terminal
sliding surface is given as:

s(�) = _l(�) + �l(�) + �l�(�); (16)

where �, �, and � the positive constant values and
ratio of two odd positive integers with 1 > � > 0,
respectively.

Theorem 1: Let the FTSMC for Nonlinear System
(14) be de�ned as:

_�(�) =� (GB)�1
��
�+ ��l(�)��1

�
G [�x(�) + f(x(�)) +B�(�)]

+G
�

�2x(�)+�f(x(�))+�B�(�)+ _f(x(�))
�

+ �js(�)j� + 
s(�) + �sgn(s(�))
�
; (17)

where � and 
 are optional positive constants and �
satis�es:

� � max
h��
�+��l(�)��1

�
G+G�

�
d(�)+G _d(�)

i
:

(18)

With the control scheme (Eq. (17)), the state trajecto-
ries of the nonlinear dynamic system (Eq. (14)) move
to the sliding surface (Eq. (15)) in �nite time and they
stay there.
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Assumption 4: Function f(x(�)) 2 Rn�1 satis�es
the following conditions:

8x 2 Rn�1; jf(x(�))j 6= 0: (19)

Assumption 5: GB is a non-singular (invertible)
matrix.

Assumption 6: System (14) tracking errors reach
origin in a limited time span using the control scheme
(Eq. (17)).

Proof: We follow the steps of the �nite-time stability
of the FTSMC at two phases as follows:

(a) Reaching phase: Considering the sliding surface
Eq. (16), the Lyapunov candidate function can be
considered as follows:
v1(�) = 0:5�s2(�): (20)

Lemma 3 [75]: The following inequalities are estab-
lished:����� 1X

1

 (1 + �)
 (1 + �) (1� �+ �)

DksD��ks
����� � �jsj; (21)

where � is a positive constant. In Eq. (20), � is equal
to:
1X
1

 (1 + �)
 (1 + k) (1� k + �)

s _s: (22)

Di�erentiating the Lyapunov function (Eq. (22)) yields:

_�1(�) =s(�) _s(�)

+
1X
1

 (1 + �)
 (1� k + �) (1 + k)

s(�) _s(�)

� s(�) _s(�) +
���� 1X

1

 (1 + �)
 (1� k + �) (1 + k)

s(�) _s(�)
����: (23)

According to Eq. (21), we yield:

_�1(�) � s(�) _s(�)

+
���� 1X

1

 (1 + �)
 (1 + k) (1� k + �)

s(�) _s(�)
����

� s(�) _s(�) + �js(�)j: (24)

By substituting Eq. (16) into Eq. (24), we have:

_�1(�)�s(�)
d
d�

( _l(�)+�l(�)+�l�(�))+�js(�)j: (25)

By substituting Eq. (14) into Eq. (25), we have:

_�1(�) � s(�)
d
d�

�
(G�x(�) +GB�(�) +Gf(x(�))

+Gd(�)) + �Gx(�) + �(Gx(�))�
�

+ �js(�)j

= s(�)
�

(G� _x(�) +GB _�(�)

+G _f(x(�)) +G _d(�)) + �G _x(�)

+ �(G _x(�))�
�

+ �js(�)j � js(�)j
����G� _x(�)

+G _d(�) + �G _x(�) + �(G _x(�))�
����

+
�
s(�) +G _f(x(�)) +GB _�(�)

�
+ �js(�)j: (26)

Assumption 7: The uncertainty disturbances are
considered bounded as follows:

jd�
d�

(di(�))j � 
; (27)

where 
 is a positive custom constant.

Assumption 8: Assume that the sign function is
bounded as:����d�d� �isgn(�xi)

���� � �; (28)

where � is a positive constant. Using Eqs. (17)
and (26), we can write Eq. (29) as shown in Box I.
According to Assumptions 7 and 8, using Eqs. (18) and
(26), we obtain:

_�1(�) � js(�)j
�����G� _x(�) +G _d(�) + �G _x(�)

+ �(G _x(�))�
����� �� 
�+ js(�)j

(�G� � jsgn(s(�))j � �js(�)j�) + �js(�)j: (30)

From Eqs. (27) and (28), one gets:

_�1(�) ��(G+j�sgn(s(�))j��) js(�)j��s(�)�+1; (31)

Therefore, we have:

_�1(�) � � (G� �) js(�)j = ��js(�)j: (32)

Therefore, the state trajectories of the �rst-order non-
linear system (Eq. (14)) will converge to the sliding
surface s(�) = 0 with G > �:

With the designed reaching law (Eq. (32)), switch-
ing function will reach the sliding surface in �nite time
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_�1(�) � js(�)j
����G� _x(�) +G _d(�) + �G _x(�) + �(G _x(�))�

����
+s(�)

266664G _f(x(�))�

266664
(�+ ��l(�)��1)

G[�x(�) +B�(�) + f(x(�))]
+�js(�)j� +G(�2x(�)

+�B�(�) + �f(x(�)) + _f(x(�)))
+
s(�) + �sgn(s(�)) + �js(�)j

377775
377775 : (29)

Box I

�s with proper positive constant G and the stability-
time is de�ned as:

�s = finf � � �r : Xi(�) = 0g; (33)

where �r is the time to reach the EP.
By integrating from Eq. (32) from 0 to �r, one

gets:

v1(�r)� v1
��1(0)

�r��1

	(�)
� �(G� �)d��

d�
js(�)j: (34)

Assuming that d��
d� js(�)j � � is bounded and v1(�r) =

0, we will have:

v1
��1(0)

�r��1

	(�)
� �(G� �)�: (35)

Therefore, we have:

�r �
�
v1
��1(0)

(G� �)�
�1/1� �

: (36)

(b) Sliding phase: Considering the sliding surface
(Eq. (16)), the Lyapunov candidate function can be
considered as follows:

V (�) = 0:5s(�)2: (37)

From Eq. (16), the time-derivative of the FTSMC
surface is found as:

_s(�) = �l(�) +
�
�+ ��l(�)��1

�
_l(�); (38)

where using Eqs. (14) and (15), we have:

_s(�) = G�x(�) +
�
�+ ��l(�)��1

�
G _x(�)

= G
�

� _x(�) +B _�(�) + _f(x(�)) + _d(�)
�

+
�
�+ ��l(�)��1

�
G _x(�)

= G
�

�2x(�) + �f(x(�)) + �B�(�) + �d(�)

+ _f(x(�)) +B _�(�) + _d(�)
�

+
�
�+ ��l(�)��1

�
G[�x(�)

+B�(�) + f(x(�)) + d(�)]: (39)

Di�erentiating the Lyapunov function (Eq. (37)) and
using Eq. (39) yields:

_V (�) = s(�)
��

�+ ��l(�)��1
�

G [�x(�) + f(x(�)) + d(�) +B�(�)]

+G
�

�2x(�) + �f(x(�)) + �d(�)

+ �B�(�)+B _�(�)+ _f(x(�))+ _d(�)
��

; (40)

where substituting Eq. (17) into Eq. (40) yields:

_V (�) =� �js(�)j�+1 � 
s(�)2 � �s(�)sgn(s(�))

+ s(�)
���

�+��l(�)��1
�
G+G�

�
d(�)

+G _d(�)
�
� ��js(�)j�+1 � 
s(�)2 � � js(�)j

+ js(�)j
���� ���+ ��l(�)��1

�
G+G�

�
d(�)

+G _d(�)
����: (41)

Using Eqs. (18) and (41), we can write as follows:

_V (�) � �
js(�)j2 � �js(�)j�+1

= ��V (�)� �V ��(�); (42)

where �� = (� + 1) =2 < 1, � = 2
 > 0, and � = 2��� >
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0. Thus, the value of Lyapunov's function (Eq. (37))
decreases and the sliding surface converges to the origin
in a �nite time. Therefore, the proof is complete.

4. Simulation results

This section constructs a chaos-based fast synchroniza-
tion between the 5D nonlinear master-slave subsys-
tems with parametric uncertainty and unknown dis-
turbances. All numerical simulations were performed
using Simulink MATLAB software and with a solver
of ode45 and step size of 0.001. Here, both 5D
nonlinear master-slave subsystems (Eqs. (5) and (6))
for fast synchronization were used. Figure 7 displays
the amazing 5D nonlinear attractor of the master

subsystem (5) with initial condition x1m(0) = �1:19;
x2m(0) = 3:8; x3m(0) = 7:7; x4m(0) = 2:7; x5m(0) =
1:4 and parameters a1m = 8:84; a2m = 0:76; a3m =
36:4; a4m = 20:82; a5m = 7:78; a6m = 4:09; and a7m =
4:28. Similarly, the amazing 5D nonlinear attractors
of the slave subsystem (Eq. (6)) with initial condition:
x1s(0) = 1:19, x2s(0) = 4, x3s(0) = �1:5, x4s(0) = 3:8,
x5s(0) = �0:75 and parameters a1s = 8:83, a2s = 0:75,
a3s = 36:36, a4s = 20:779, a5s = 7:79, a6s = 4:1,
a7s = 4:286, are shown in Figure 8. According to
Assumption 2, total uncertainties and disturbances are
added to the slave subsystem given by Eq. (6).

We consider the hyper-chaotic systems (Eqs. (5)
and (6)) with di�erent initial conditions and unequal
parameters for fast synchronization. According to As-

Figure 7. Five-dimensional nonlinear time trajectories of Subsystem (5).

Figure 8. Five-dimensional nonlinear time trajectories of Subsystem (6).
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sumption 1, to prove chaos-based fast synchronization,
according to Subsystems (5) and (6), the errors can be
designed as follows:

ei =
5X
i=1

yi � xi )8>>>>>><>>>>>>:
_e1 = �a1e1 + a1e2 � a2e5

_e2 = a3e1 � e2 � a4e4 � y1y3 + x1x3

_e3 = �a5e3 + y1y2 � x1x2 + y2
1 � x2

1

_e4 = a6e5 + e2

_e5 = a7e2 + e1

+

266664
b1
b2
b3
b4
b5

377775 �(�) +

266664
d1
d2
d3
d4
d5

377775 : (43)

System (43) in the matrix form is:

dei(�)
d�

= �ei(�) + f(e(�)) +B�(�) +D(�); (44)

where:

e =

266664
e1
e2
e3
e4
e5

377775 ; B =

266664
0
1
1
0
1

377775 ;

f(e(�)) =

266664
0
x1sx3s � x1mx3m�x1sx2s + x1mx2m � x2

1s + x2
1m

0
0

377775 ;

A =

266664
�8:83 8:83 0 0 �0:75
36:36 �1 0 �20:779 0

0 0 �7:79 0 0
0 1 0 0 4:1
1 4:286 0 0 0

377775 ;
D(�) = random number: (45)

Then, according to Theorem 1, chaos-based fast syn-
chronization between two subsystems Eq. (5) and (6)
with error equation (Eq. (44)) is de�nite in a �nite
time. Therefore, we use the new control signal (Eq.
(17)) for synchronization and select the positive control
gains in the new controller (Eq. (17)) as follows:

G = (85; 5; 0:05; 3795; 2096): (46)

The d(�) and f(�) functions are speci�ed in Eq. (45).
The sliding surface (Eq. (16)) parameters are � = 10,
� = 50, and � = 1

19 . Using the control signal (Eq. (17))
with � = 20, and 
 = 30, we are sure we will have
chaos-based synchronization in a �nite time. Figure 9
displays the complete chaos-based fast synchronization
of the master-slave subsystems (Eqs. (5) and (6)).
According to Eq. (45) in the initial conditions, the
errors of �nite-time fast synchronization without the
controller are shown in Figure 10. By applying the
control scheme (Eq. (17)), the errors of �nite-time
fast synchronization obtained are the same as those
depicted in Figure 11. Finally, the control input used
for the synchronization is shown in Figure 12. It is
shown that no chattering phenomenon exists in the
control input. According to the simulation results,
it is easy to observe that the 5D nonlinear master-
slave subsystems (Eqs. (5) and (6)) are synchronized
in a �nite time. Figure 13 shows the time series of
chaos-based fast synchronization errors designed in this

Figure 9. Chaos-based synchronization between two master-slave subsystems.
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Figure 10. The errors of fast synchronization without the controller.

Figure 11. The errors of fast synchronization with the controller.

Figure 12. Simulation results of the input control during
fast synchronization.

paper with the same controller. As is known, the
designed controller (Eq. (17)) has better results than
the controller designed in [7]. Moreover, it is obvious
from this �gure that the designed control method
produces low overshoot and better settling time.

5. Conclusions

A new �ve-dimensional hyper-chaotic system was re-

ported in this study. The dynamical behaviors of
the new system were analyzed using time series tra-
jectories, phase portraits, Poincare Map (PM), Lya-
punov Exponent (LE), Bifurcation Diagram (BD),
and Kaplan-Yorke dimension. The new 5D nonlinear
system had an extremely complicated structure and
dynamics. Next, a Fast Terminal Sliding Mode Con-
trol (FTSMC) was designed for stabilizing the new
nonlinear system with disturbances and uncertainty.
The main weakness of FTSMC is that it encoun-
ters singularity drawback, which causes a complex
value and a high control e�ort. A new controller
was designed for �nite-time synchronization between
the two identical proposed 5D nonlinear master-slave
subsystems in the presence of matched disturbances,
di�erent initial conditions, and unequal parameters.
The novel terminal sliding surface can supply a par-
ticular convergence characteristic. Finally, the nu-
merical simulations pointed to the viability of the
designed methods. The simulations demonstrated that
the analytical results and computational results were
similar.
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Figure 13. Time-response of the chaos-based fast synchronization errors.
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